ATARI® PROGRAM EXCHANGE

< (S

ATARI’PASCAL LANGUAGE SYSTEM

APX+20102

March 1982

4 User-Written Software for ATARI Home Computers

ATARI®
PASCAL LANGUAGE SYSTEM

REFERENCE % OPERATIONS MANUAL

COPYRIGHT 1982 ATARI. INC. © ALL RIGHTS RESERVED

Copyright and right to make backup copies. On receipt of this computer
program and associated documentation (the software), ATARI grants to
you a nonexclusive license to execute the enclosed software and %o
make backup copies of the computer program for your personal use only.
and only on the condition that all copies are conspicuously marked
with the same copyright notices as appear on the original. This
software is copyrighted. You are prohibited from reproducing.
translating, or distributing this software in any unauthorized manner.

Notice: The names and addresses used in this manual are fictitious
and are included for demonstration purposes only.

TRADEMARKS OF ATART
The follawing are trademarks of Atari, Inc,

ATARI®

ATARI 400" Home Computer
ATARI 200" Home Computer
ATARI 410" Program Recorder
ATARI 210" Disk Drive

ATARI 320" 40-Column Printer
ATARI 222" Thermal Printer
ATARI 225" 20-Column Printer
ATARI 220" Acoustic Modem
“ATARI 350" Interface Module
ATARI Program-Text Editor
ATARI Disk Operating System (DQOS II)
ATARI BASIC

Ty Lt s
Distributed by

The ATARI Program Exchange
P. O. Box 427
155 Moffett Park Drive, B-1
Sunnyvale, CA 24034

To request an APX Software Catalog, write to the address above, or call toll-free!

800/328-1842 (outside California)
200/5672-1850 (within California)

Or call our Sales number, 405/745-5535,
e S e

IMFORTANT!

DUPLICATE
THIS
DISKETTE
EEFORE
USING
THIS
PROGRAM !

This APX diskette is unnotched to protect the software against
accidental erasure, However, this protection also prevents a program
from storing information on the diskette. The program you’ve
purchased involves storing information. Therefore, before you can use
the program, you must duplicate the contents of the diskette onto a
notched diskette that doesn’t have a write—-protect tab covering the
notch,

To duplicate the diskette, call the Disk Operating System (DOS) menu
and select option J, Duplicate Disk. You can use this option with a
single disk drive by manually swapping source (the APX diskette) and
destination (a notched diskette) until the duplication process is
complete. You can also use this option with multiple disk drive
systems by inserting source and destination diskettes in two separate
drives and letting the duplication process proceed automatically.
(Note. This option copies sector by sector. Therefore, when the
duplication is complete, any files previously stored on the

destination diskette will have been destroyed.)

V. Additional Terms and Conditions |

A. Licensee understands and agrees that:

(1) The Run-Time System is distributed on an "as is" basis without
warranty of any kind by Atari.

(2) The entire risk as to the performance and quality of the
Run-Time System is with Licensee.

(3) Should the Run-Time System as incorporated into Licensee's products
prove defective following its purchase, Licensee and not Atari,
Atari's distributors, or retailers, assumes all costs associated with
or resulting from use of Licensee's products including all necessary
repair or servicing.

(4) Atari shall have no liability to Licensee or to custamers of Licensee
for loss or damage, including incidental and/or consequential damage,
caused or alleged to be caused, directly or indirectly, by the
Run-Time System. This includes, but is not limited to, any
interruption in service or loss of business or anticipatory profits
resulting fraom the use or operation of the Run-Time System.

B. Licensee shall indemnify and hold Atari harmless from any claim,
loss, or liability allegedly arising out of or relating to the operation of the
Run-Time System as used by Licensee or custamers of Licensee pursuant to this
Agreement.

C. Licensee shall not suggest, imply or indicate in any manner that any of
his/her software products which incorporate or use the licensed Run-Time System
are approved or endorsed by Atari.

D. Licensee acknowledges that a failure to conform to the provisions
of Subsection C of Section V will cause Atari irreparable harm and Atari's
remedies at law will be inadequate. Licensee acknowledges and agrees that
Atari shall have the right, in addition to any other remedies, to obtain an
immediate injunction enjoining any breach of Licensee's obligations set forth
in Section V.C above.

E. No waiver or modification of any provisions of this Agreement shall be
effective unless in writing and signed by the party against wham such waiver or
modification is sought to be enforced. No failure or delay by either party in
exercising any right, power or remedy under this Agreement shall Operate as a
waiver of any such right, power or remedy.

F. This Agreement shall bind and work to the benefit of the successors and
assigns of the parties hereto. Licensee may not assign rights or delegate
obligations which arise under this Agreement to any third party without the
express written consent of Atari. Any such assignment or delegation, without
written consent of Atari, shall be void. -

#59(A2) 2/23/82

G. The validity, construction and performance of this Agreement shall
be governed by the substantive law of the State of California and of the
. United States of America excluding that body of law related to choice of law.
Any action or proceeding brought to enforce the terms of this Agreement shall
be brought in the County of Santa Clara, State of California (if under State
law) or the Northern District of California (if under Federal law).

H. In the event of any legal proceeding between the parties arising from
this Agreement, the prevailing party shall be entitled to recover, in addition
to any other relief awarded or granted, its reasonable costs and expenses,
including attorneys' fees, incurred in the proceeding.

VI. Specific Disk Operating System Exclusion

The license granted herein does not relate in any way to the ATARI®
Disk Operating System, DOS II. Inquiries relating to such a license should be
sent to:

Atari, Inc.

Home Computer Division

60 East Plumeria Drive

San Jose, CA 95134

Attn: Software Acquisition Group

For Atari: %\ \ s)
\ \
Atari, Inc. By: (NS NS NG "4 Ve Vi P

1265 Borregas Avenue Name: Bruce W. Irvine
P.O. Box 427 Title: V.P., HCD Software
Sunnyvale, CA 94086 Date: V-V -%A

#59 (A3) 2/23/82

CHAPTER 1:

[S S
LA Y O LA R

CHAPTER 2:

wn =

P+

CUBVUUULWL WS-
NOCAOhWN =

MNPRPPRERNNDD -

=~ 0ONCAPWN -

NNUNRNRUNNNRNNUNNNNNNRNRRNNRNRRNRN RN
GARPWUEUUOUUROUONNNNNNNNRNRPN DD R

CHAPTER 3:

TABLE OF CONTENTE

ATARI PASCAL INTRODUCTION AND OVERVIEW

Manual Overviesw

System Dverview

System Requirements

Run—-Time Requirements

ATARI Pascal Distribution Diskette Information

HOW TO OPERATE THE PASCAL LANGUAGE SYSTEM

Compile, Link and Run & Sample Program
Compile Sample Program

Link Sample Program

Run Sample Program

Compiler Operation

Invocation and Filenames

DOS and QUIT Options

Compile

Compilation Data

Compiler Toggies . .
Entry Point Record Generation (E)
Include Files (I)

Strict Type and Portability Checking (T.W;
Run—-Time Range Checking (R)

Run—-Time Exception Checking (X)
Listing Controls (L.P)

Summary of Compiler Toggles

Built—in Routines and Include Files
Error Messages

Line Numbers

Linker Operation

Invocation and Commands

Linker Option Switches

Run-Time Library Search (/S)

Memory Map (/M)

Load Map (/L) and Extended Load Map (/E}
Program (/P) and Data (/D) Origin
Continuation Lines (/C)

Linker Input Command File (/F)

Linker Switch Summary

Relocatable File Requirements

Linker Error Messages

Attributes of Linkable Modules

Obyect Program Execution

ATARI Program—-Text Editor (MEDIT)
Running the ATARI Program-Text Editor

ATARI PASCAL LANGUAGE SYSTEM EXTENSIONS

[

PRQWMN

o

NN NN NN NN NN NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

0:00:00:00000000000DDDODMNNNNNNN

AN PR

AT AN LR

L I e S N

ahp -

LN -

R R b
PO -

BWMN = W~

W -

PUWWWMNNM -

(LA I

(VN

Declaration and Denotation of Variables
Entire Variables
Component VYarisbles
Indexed Variables

Field Designators

File Buffers

Referenced Variables
Expressions

Operators

The DOperator NOT
Multiplying Operators
Adding Operators
Relational Operators
Function Designators
Statements

Simple Statements
Assignment Statements
Procedure Statements
GOTO Statements
Structured Statements
Compound Statements
Conditional Statements
If Statements

Case Statements
Repetitive Statements
While Statements

Repeat Statements

FOR Statements

With Statements
Procedure Declarations
Standard Procedures

File Handling Procedures
Dynamic Allocation Procedures
Data Transfer Procedures
FORWARD

CONFORMANT ARRAYS
Function Declarations
Standard Functions
Arithmetic Functions
Predicates

Transfer Functions
Further Standard Functions
INPUT ANLD QUTPUT

The Procedure READ

The Procedure READLN

The Procedure WRITE

The Procedure WRITELN
Additional Procedures
Programs

o1
92
92
92
92
92
92
93
94
94
94
94
94
94
95
95
95
96
%6
%6
96
94
964
96
97
97
97
97
97
98

100

100

101

101

101

102

104

104

104

104

104

104

106

106

106

106

106

106

108

APPENLCIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPEMDIX
APPENDIX
INDEX

TABLE OF

Figure 1-

Figure D-

A: LANGUAGE SYMNTAX DESCRIPTION

B: RESERVED WORDS

c: ERROR MESSAGES

D: ATARI PASCAL FILE I/0

E: BIBLIOGRAPHY

F: PLAYER/MISSILE DEMO PROGRAM

G: HELPFUL HINTS

FIGURES

1 Schematic Diagram of ATARI Pascal Operation

1 File Input and Output

Figure D=2 Text Files

Figure D-

3 Writing to a printer and number Formatting

109

117

118

126

142

143

152

153

130

138

140

. PREFACE

PASCAL - WHAT IE IT™®

Pascal was crested by Niklaus Wirth to facilitate teaching =a
systematic approach to computer programming and problem solving. This
high—level structured programming language is suited for professional
software developers, making it an excellent tool for developing and
maintaining programs.

PURPOSE OF THISE MANUAL

This reference and operations manual defines the language features of
ATARI Pascal and can help you to understand how to use these features.
This manual assumes familiarity with the Jensen and Wirth’s "Pascal
User Manual and Report" and/or International Standards Organzation
(IS0) draft standard (DPS/7185). The standard Pascal features that
differ in ATARI Pascal from those in the standard and in Jensen and
Wirth’s "Report" are described here. This manual alseo contains
information on how fto operate the compiler and linker; a description
of the implementation of ATARI Pascal data types; and a summary of
built—in features and examples of their usage

AULIENCE

This manual is specifically designed for advanced programmers who

' are familiar with Pascal and with the features of the ATARI 800 Home
Computer System. This manual is not suited for learning Pascal or the
ATARI 800 Home Computer.

HOW TO USE THIS MANUAL

We recommend starting with the Introduction and Overview (Chapter 1)
and then proceed through Chapter 2, which describes how to operate the
system, recommendations for backup and a sample program to get you
started. The rest of the manual is technical and should be referred to
‘as needed.

PRODUCT CONSIDERATIONS

The ATARI Pascal Language System was designed for use by experienced
softwsre developers. The steps required toc compile an ATARI Pascal
program are time consuming. Memory limitations, diskette capacity and
access time will affect product performance. As with other APX
procgrams, ATARI does not support this product after the sale.

REPORTING PROBLEMS

All documented problems submitted to The ATARI Program Exchange will
be studied and considered in future revisions of this product.

CHAPTER 1: ATARI PASCAL INTRODUCTION AND OVERVIEW

This manual describes the ATARI Pascal Language System being offered
through the ATARI Program Exchange as a software development tool for
professional developers. ATARI Pascal is a pseudo-code compiler which
supports the International Standards Organization (ISO} draft standard
(DFS/7185 as of 1G/1/80)., including variant records: s2%ts, typed and
text files, passing procedures and functions as parameters, GOTO out
of a procedure, conformant arrays and program parameters. Additions
to the standard available in ATARI Pascal include:

Additional predefined scalars: EYTE. WORD, STRING.
Operators on integers % (and), !, / (or) i, 7 (NOT)
Else on CASE statement
Null Strings
Absolute Variables
External procedures
Additional built—in procedures and functions:
graphic, sound, and controller definitions
real and trancendental definitions
move and fill procedures
bit and byte manipulation
file manipulation procedures
heap management aids
string manipulation
address and sizeof functions
Modular compilation facilities

In addition, run—time error handling provides for divide by zero
check, heap overflow check, string overflow check. range check and
user—supplied error routines.

ATARI Pascal has been designed for data processing applications
consisting of compilers, editors, linkers, business, and entertainment
packages. It is designed to operate with the ATARI Disk Operating
System 2. 0S and is compatible with the ATARI Program Text—-Editor [TMI.

This chapter presents an overview of this manual, the system and
compilation and run—time system requirements, and it describes the
files on the distribution diskettes

Because of the availability of many text books on the Pascal
programming language, this document is not a tutorial but rather a
reference manual and a detailed description of the extensions and
additions that make ATARI Pascal unique. Refer to the bibliography for
additional reference materials

1.1 Manual Overview

The feollowing provides a brief overview of each chapter contained in
this manual.

-~

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter
Chapter
Appendix
Appendix

Appendix

Appendix
Appendix
Appendix

Appendix

1:

LV

A

This chapter introduces and outlines the features of ATARI
Pascal, provides an overview of the system and identifies
the system requirements

This chapter gets you started. It describes the

options of the compiler and linker and it presents
step-by—step instructions to compile, link, and run a
sample program.

This chapter describes the extensions to ATARI Pascal. It
presents such features as modular compilation, built—in
procedures, graphics and sound extensions.

This chapter briefly summarizes of the run—time error
handling routines

This chapter describes the structure of a program generated
by the compiler. Data storage is also discussed in this
chapter.

This chapter briefly compares ATARI Pascal and UCSD Pascal.

This chapter defines the language features of ATARI Pascal.
A complete description of the language syntax

The reserved words list

A complete description of each compilation error
message

ATARI Pascal File I/0
A bibliography of additional Teading suggestions
Player/Missile Demo Program

Helpful Hints

L8}

1.2 System Overview

The ATARI Pascal Language System contains the Pascal monitor,
compiler, linker, run—time subroutine library and interpreter. Figure
1-1 shows a diagram of the relationship among these products
Reference to the ATARI Program-Text Editor (APX-20075) has been
included to show its relationship to ATARI Pascal.

+ +
{ TEXT EDITOR!
e ——————— +
H
Vv
Source
Program
file
v
Fo——————————— + {——=2temporary work file
{ COMPILER i &——— error message file
o ———————— +
v Fo—————— *relocatable file run—time library

listing file H

<
& e

e +
H L INKER i
+—— - - - +
!
Vv
executable program
Vv
+— ——+
H INTERPRETER H

Figure 1-1 Schematic Diagram of ATARI Pascal Operation

The ATARI Program-Text Editor may be used to create and modify the
Pascal source program. The compiler is used to translate the source
program into relocatable machine code. The wuser then links this
machine code with the run—time subroutine library to produce an
executable object program.

1.3 System Requirements

The ATARI Pascal Language System requires the ATARI 800 with 48K of
RaM and two ATARI 810 Disk Drives. The ATARI 825 80-Column Printer and
the ATARI 850 Interface Module are optional. ATARI Pascal also

requires the ATARI Program-Text Editor. When using ATARI Pascal, no ’
cartridge should be inserted in the cartridge slot

1.4 Run-Time Reguirements

The ATARI Pascal Language System generates programs that use a variety
of run—time support subroutines that are extracted from PASLIB, the
run—time library, and other relocatable modules. These run—-time
routines handle such needs as "multiply" and “divide" and file input
and output interface to the Operating System.

1.5 ATARI Pascal Distribution Diskette Information

The ATARI Pascal Language System is distributed on diskettes
compatible with the ATARI 810 Disk Drive. The system consists of two
diskettes containing object, source and relocatable files. Listed
below are the names of each file and @ brief description of their
contents.

Diskette 1 PASCAL /L INKER

File Contents

bOg. 8YS ATARI Disk Operating System

DUP. SYS ATARI Disk Operating System

PASCAL Interpreter used to execute all Pascal obgject programs. _.

MON Pascal monitor loaded by the PASCAL file, providing the
menuy to specify the desired operation: compile, link, edit
or Tun.

LINK Pascal linker used to take relocatable files (.ERL) and
Trun—time library files as input to create object files
(. COM».

LINK. OVL Pascal linker part two.

PASLIE. ERL Run-time subroutine library in relocatable form. Should
always be linked last.

FPLIB. ERL Run—time support routines for floating point arithmetic
and transcendental functions.

GREND. ERL Run—time support routines for graphic, sound and
controller functions.

CcaLC. PAS This is the source file for the Pascal demo program.

Diskette 2 Pascal Compiler

File Contents

PHO

PH1

PH2

PH3

PH4

ERRORS. TXT

GSPROCS

FLTPROCS

MOVES

BITPROCS

HEAPSTUF

DSKPROCS

STDPROCS

ISOPROCS

STRPROCS

Phase O of the Pascal compiler used for syntax scan and
creation of token file

Phase 1 of the Pascal compiler used to create the
permanent symbol tables and build the user symbols.

Phase 2 of the Pascal compiler containing code generation
initialization.

Phase 3 of the Pascal compiler used to create the
relocatable object code file

Phase 4 of the Pascal compiler used to complete the object
code generation.

File containing ATASCII text for error messages.

This file is the include file containing graphic, sound
and controller definitions.

This file is the include file containing real number and
transcendental function declarations.

This file is the include file containing declarations for
character arrays.

This file is the include file containing declarations for
bit manipulation routines.

This file is the include file containing declarations for
heap procedures.

This file is the include file containing file manipulation
procedures.

This file is the include file containing standard Pascal
routines including the floating point routines.

This file is the include file containing ISO standard
Pascal routines excluding floating point routines

This file is the include file containing string processing
procedures and functions.

CHAPTER 2: HOW TO OPERATE THE PASCAL LANGUAGE SYSTEM

This chapter describes how to use the ATARI Pascal Language System
contained on the PASCAL/LIMNKER and Pascal Compiler diskettes. It
covers the following information:

Section 1 provides step-by-step instructions on how to compile,
link and run a sample program.

Section 2 describes the compiler and its options.
Section 3 describes the linker and its options.
Section 4 describes how to run an object program.

Section 5 describes the ATARI Program Text—-Editor.

2.1 Compile, Link and Run a Sampie Program

BEefore compiling and running the sample program described in this
section: make a backup copy of all diskettes included in this
package.

2.1.1 Compile Sample Program
Step One

Place the PASCAL/LINKER diskette into disk drive 1 and boot the Disk
Operating System 2. 0S. Then use option C to copy the sample
calculation program "CALC. PAS" to a blank diskette on disk drive 2.
At this time use the L option to load the file named "PASCAL" from
disk drive 1. The Pascal menu will then appear.

ATARI Pascal
Version 1.0 : 1-Mar-82
{c) 1982 by ATARI

Eidit Clompile
Liink Riun
D)os Qluit

Enter letter and [RETURNI:
Step Two

Respond to the Pascal menu displayed on the screen with the command
“C" [RETURNI] to begin compilation.

When prompted for your source filename, type "“D2:CALC. PAS" [RETURNI].

The monitor will then prompt you for a token and code file name.
Respond with [RETURN] for each

A message will then be displayed "Change D1 to compiler disk." At this
time place the Pascal Compiler (diskette 2) into disk drive 1 make
sure the sample program “CALC.PAS" is in disk drive 2 and then press
CRETURNI.

The compiler will be loaded into memory and prompt you to choose a
listing device. Respond “P:" (printer), "E:" (screen). or [RETURNI]
(no listing).

The compiler will proceed to display the following compilation
statistics.

Loading Compiler

ATARI Pascal
Yersion 1.0 - 1-Mar—-82
(c) 1982 by ATARI

Syntax Scan

Creating: D2:CALC. TOK
Listing file, P: or E:
<return> for none

File does not contain line numbers

<2 0> ...

Including Text from File: D1:STDPROCS

< 14 oL

< 322

< EAZ

< RO e,

<o12e> ...

End of Phase O (syntax / token file generation)
Source lines processed: 132

Loading Phase I
Open as input: D2:CALC. TOK
Open as output: D2:CALC. ERL

REPLACE D1 THEN

Type <return> to continue

Minutes later

Available Memory: 4387 {total symbol table space}
User Table Space: 3264 (after predefined symbols)
Yersion 1.0, Phase 1

#H#H## (one # for each routine body)
Remaining Memory 2100 {(after user symbols)
-Version 1.0, Phase 2

SUBREAL 18

ADDREAL 43

TF &4 (decimal offset from beginning)
caLcC 119

MENU 2?15

CALCULAT

External: TRUNC

External: SGRT

External: SIN

External: ROUND

External: oQuTPUT

External: LN

External: INPUT

External: EXP

External: cos

External: ARCTAN

Lines 130

Errors: G

Code 1727

Data &4

(place diskette 1 PASCAL/LINKER)
(in disk drive 1, then press [RETURNI]

The system will prompt you to "REPLACE D1 THEN Type L[RETURNI to
continue. * At this time vemove the Pascal Compiler from disk drive 1
and insert the PASCAL/LINKER in disk drive 1 then press [RETURNI.

The compilation process will then be completed and the Pascal menu
will display.

NDOTE: If the compiler fails to complete compilation. check to see if
the diskettes are in the proper drives. If they are try <{SYSTEM
RESET>. If both of these attempts fail, the only recourse is to turn
off your computer and turn it on again.
2.1.2 Link Sample Program
Step One
To create the relocatable object file, respond to the Pascal menu with
the command "L" [RETURN] to begin the linking process. At this time
the following will be displayed.

Loading Linker

when LINKER prompts with "#" enter

your .ERL file names separated by

commas ending with PASLIB/S

Then type L[RETURNI]

LINKER V1. G
When prompted for your filename by an asterisk (#), you don’t need to
use an extension (.ERL) but you must use the device prefix "D2:".

The Pascal library routines must then be linked along with your
program.

At this time respond to the filename prompt with the following:
b2: CALC, FPLIB, PASLIB/S L[RETURN]

NOTE: This program may be uvsed as an example of using the Floating
Point Library (FPLIB) routines

The linker will then display the following statistics and print
"LINK COMPLETE TYPE [RETURMNI".

D2: CALC. ERL C48ATH>
D1:FPLIB. ERL C2FFAH
D1: PASLIB. ERL L1FS0H>

Undefined Symbols

—— No Undefined Symbols --—

11405 bytes written to D2:CALC. COM

Total Data OCBEH bytes
Total Code 2BCEH bytes
Remaining : 1442H bytes

Link complete type C[RETURNI]
At this time press C[RETURNI] and the PASCAL menu will display.

10

2.1.3 Run Sample Program

To run the sample program respond to the Pascal menu with the command
YR" then [RETURNMNI to run the object program.

You will then be prompted for the filename and should respond with the
following:

D2: CALC. COM

The calculation program will begin execution displaying the message
"ENTER FIRST OPERAND?" Try this example for adding 5.5 to 99 256.
First respond with "S5. 5" then [RETURN]. The message "R1 = 5. SOOE+QO"
should be displayed followed by "ENTER SECOND OPERAND?". Respond with
"9F. 256" then [RETURNI. The message "R2 = 9. 92560E+1" should be
displayed followed by "ENTER OPERATOR:" followed by a list of
operators. Respond with the operator "+" then [RETURN]. The result
*104. 756" should then be displayed. You should now press the [ESCAPE]
key to return to the DOS menu.

¥You have now completed the compilation, linking and running of your
first ATARI Pascal program!

11

n

2 Compiler Operation

n

.21 Invocation and Filenames

The ATARI Pascal Language System is executed under the ATARI Disk
Opersting System (DOS 2.0S). To execute the compiler, place the
PASCAL/LINKER (diskette 1) in disk drive 1 and LOAD the file cslled
PASCAL from the DOS menu. This file is the Pascal interpreter and will
automatically call the Pascal monitor with a filename of MON. The
monitor then displays the following menu:

ATARI Pascal
Version 1.0 : 1-Mar-82
(c) 1982 by ATARI

Eidit Clompile
LYink Riun
Dlos Qluit

Enter letter and [RETURNI:

Select the first character of the desired function and enter this
character followed by a [RETURNI].

2.2.1.1 DOS and QUIT Options

The "DOS" and "QUIT" operation allows you %o exit the Pascal menu and
return to the ATARI Disk Operating System.

2.2.1.2 Compile

When you select “C" for "“Compile," the monitor will request you

to enter three file names and then load the compiler. The first
request is for the source file name. You may then respond with the
filename prefix (D2:) to identify the device, the input filename, and
the extension .PAS. The Compile function then requests the name for
the token and code files. If there is sufficient room on the diskette
containing the source file you may respond by simply depressing
CRETURN] in response to these requests. If there is not sufficient
Toom you may specify that these files be placed on separate diskettes
by specifying the FULL file name as desired. NOTE: None of the
Compiler files may be cassette based.

A message will then be displayed "Change D1 to compiler disk." At this
time place the Pascal Compiler (diskette 2) in disk drive 1, place the
diskette containing your source program in disk drive 2 then press
CRETURNI]. ATARI Pascal then creates a Telocatable file <name>. ERL
which must be linked with the Pascal linker to the routines in the
run—time library (PASLIRB).

2. 2.2 Compilation Dats

The ATARI Pascal compiler will periodically display characters during
the first two phases of the compilation (Phase ©C and Phase 1).

A period (.} will be displayed on the console for every source code
line syntax scanned during Phase C. At the beginning of Phase 1, the
available memory space is displayed. This is the number of bytes (in
decimal) of memory before generation of the symbol ftable.
Approzimately 1K of the symbol table space is consumed by pre—defined
identifiers. When a procedure or function is found, a pound sign (#)
will be displayed on the console. At the completion of Phase 1, the
number of bytes remaining in memory is displayed in decimal.

Phase 2 generates object code. When the body of each procedure is
encountered the name of the procedure is displayed so that you

can see where the compiler is in the compilation of the program. The
linker /M (Map) option will list the absolute addresses of the
procedures in each module. Upon completion the following lines
display:

Lines lines of source code compiled (in decimal).
Errors: number of errors detected.

Code bytes of code generated (in decimal).

Data bytes of data reserved (in decimal).

13

2.2.3 Compiler Toggles .

A compiler toggle may be included in the source program %to signal the
compiler that you wish to enable or disable certain options. The
format of this toggle is (#%_ _ _ _ #) where the blanks are filled in
with the toggle. The compiler does not accept blanks before the key
letter or trailing or imbedded blanks in names but will skip over
leading blanks; e.g., (#$E +%) is the same as (#$E+#), but the (%% E
+#) will be ignored.

Examples:

(#EE+H)
(#$P3x)
(#%] D:USERFILE. LIB#*)

2.2.3.1 Entry Point Record Generation (E)

$E+ and #E- control the generation of entry point records in the
Telocatable file. $E+ causes the global variables and all procedures
and functions to be available as entry points (i.e., available to be
referenced by EXTERNAL declarations in other modules). $E- supresses
the generation of these records thus causing the variables.
procedures: and functions to be logically private. The default state
is $E+ and the toggle may be turned on and off at will.

2.2.3.2 Include Files (I}

$I<filename> causes the compiler to include the named file in the
sequence of Pascal source statements. Filename specification includes
drive name and extension in standard format.

The format is as follows:

(#$IDn: XXXXXXX3%#)
ar
(#$IDn: XXXXXXX. PASH)

where n is the disk drive number
where XXXXXXX is the Include file name

Using these standard Include file procedures as examples, you may
create Include files to be used during the compilation process.

2.2.3.3 Strict Type and Portability Checking (T: W)

T+, =T—, SW+, and SW- control the strict type checking /7 non—portable

warning facility. These features are tightly coupled (i.e. strict type
checking implies warning non—-portable usage and vice versa). The

default state is $T— ($W-) in which type checking is relaxed and

warning messages are not generated. This may be turned on and off

throughout the source code as desired. A use of non-standard logic

and/or built—in routines will cause error 500 to be generated. This ,

error is not fatal but serves as a warning to the programmer. Code

14

generated with error 500 during the compilation will still execute
properly.

2.2.3.4 Run—-time Range Checking (R)

#R+ and $R- control the compiler‘s generation of run—time code which
will perform range checking on array subscripting and storing inteo
subrange variables. The default state is $R— (off) and this toggle may
be turned on and off throughout the source code as desired.

2.2.2.5 Run—time Exception Checking (X}

gX+ and $X— control the compiler‘s generation of run—time code, which
will perform run—time error checking and error handling for what is
termed exceptions. Exceptions are:

Zetro divide
String overflow/truncation
Heap overflow

The system philosophy under which ATARI Pascal operates states that
zero divide and string overflow are treated in a "reasonable" manner
when exception checking is disabled. Zero divide returns the maximum
value for the data type and string overflow results in truncation of
the string rtather than modification of adjacent memory areas. The
default state is $X— and may be changed throughout the source code as
desired. See chapter 4 for more discussion of run—time error handling
and options.

2.2.3.6 Listing Controls (L.P}

The $P and $L+, $L- toggles control the listing generated by the first
pass of the compiler. %P will cause a formfeed character (CHR(12)) to
be inserted into the .PRN file %L+ and $L- are used to switch the
listing on and off throughout the source program and may be placed
wherever desired.

15

2.2 3.7 Summary of Compiler Toggles

Listed below is a summary of available compiler toggles:

Compiler Toggles Default
$E +/-—- Controls entry point generation $E+
$I <namelr Includes another source file into the

input stream (e.g. (#$I XXX LIB%)

$R +/- Controls range checking code $R-
T +/- $T-
SW +/~ Controls strict type checking and generation SW-

of warning messages

sEX +/- Controls exception checking code $X-
$P Enter a formfeed in the .PRN file
sL +/- Controls the listing of source code $SL+

16

2.2.4 Built—in Routines and Include Files

The ATARI Pascal compiler contains only the logic necessary for
defining "magic" pre—-defined procedures, functions and variables

These are such routines as READ:. WRITE. ADDR, SIZEOF, etc. which
require in—line code generation by the compiler or require support for
a variable number of parameters.

All other routines are defined using a special keyword “PREDEFINED"
and two special types ANYTYPE and ANYFILE. You must include in

the source program declarations for these routines. This is normally
done using the %I toggle to include STDPROCS and other similar files.
STDPROCS contains declarations for procedures and functions defined by
the ISO standard for Pascal. Additional files contain declarations for
procedures and functions which are extensions to the ISO standard such
as string routines, ASSIGN, IORESULT etc. You may edit STDPROCS

and these files to contain only the routines necessary for a given
program.

This method of defining built—in routines is present because the ATARI

200 Home Computer has limited memory for all the declarations and user
symbols used in compiling large programs.

17

2.2.5 Error Messages ,

Compilation errors are numbered in the same sequence and meaning as
those in Jensen and Wirth’s "User Manual and Report". The error
messages, brief explanations, and some causes of the error are found
in Appendix C.

Error 407, Symbol Table Dverflow: Occurs in Phase 1 when not enough
symbol table space remains for the current symbol. This may be
alleviated by breaking the program into modules.

2.2.6 Line Numbers

ATARI Pascal allows line numbers. When line numbers are desired. the
first line of the program source file must contain a numeric valve. It
then assumes all lines contain line numbers and the line number must
start in column one. Line numbers may be of any length and it should
be noted that they are ignored by the compiler.

18

2.2 Linker Operation
2.2.1 Invocation and Commands

LINK is used by executing the linker from the Monitor. Enter ‘L’ from
the Pascal menu followed by [RETURN] and the linker will load. The
linker will then prompt the user for the name of the main program and
modules to be linked, separated by commas. The output is directed to
the same diskette as the main program unless you specify an output
file name followed by an equal sign before the main program name.

Example:
CALC, FPLIB/S, PASLIB/S
p2: CALC=CALC, FPLIE, PASLIB/S (CALC.COM is written to D2:)

The above command will link one of the demo programs with the run—time
package. The items to be linked may be preceded by a disk drive device
prefix:

D2: CALC, D1:FPLIB, D1: PASLIB/S
2.3.2 Linker Option Switches

The linker lets you to place a number of "switches" following the file
names in the list. Each switch is preceded by a slash (/) and is a
single letter. There is a parameter on the /P and /D switches

2.2.2.1 Run—time Library Search (/S)

The examples above show the use of the /S switch which, commands the
linker to search the previously named rTelocatable file, PASLIB, as a
library and extract only the necessary modules. The /S switch
extracts modules only from libraries and does not extract procedures
and functions from separately compiled modules. It is position
dependent in that it must follow the name of the run—-time library in
the linker command line as in the examples above. PASLIB is a
specially constructed, searchable library. Other .ERL files supplied
with the system, unless explicitly specified, are not ssarchable.
Ugser—created modules are not searchable. The order of modules within
a library is important.

Each searchable library must contain routines in the correct order and
be followed by /S for searching to occur. If /S is not specified the
entire contents of the library is loaded

2.3.2.2 Memory Map (/M)

A /M following the last file named in the parameter list generates a
map to the screen.

2.3.2.3 Load Map (/L) and Extended Load Map (/E}

19

A /L following the last module named causes the linker to display .
module code and data locations as they are being linked. A /E

folliowing the last module works as a modifier to /M and /L and causes

the linker to display all routines including those beginning with %,

-

7. or @, which are reserved for run—time library routine names
2.2.2.4 Program (/P) and Data (/D) Origin

To support relocation of object code and data areas, the linker
supports the /P and /D switches. The /P switch controls the location
of the object area (ROM) and the /D switch controls the location of
the data area (RAM). The syntax is: /P:nnnn or /D:nnnn where "nnnn" is
34 hexadecimal number in the range O...FFFF.

In addition, if you specify /D, the linker will not sawve any of the
data area in the .COM file. This is a good way for reducing the data
storage on diskette for programs, since only the code will be loaded
from diskette and not uninitiaslized data areas. Note that local file
operations are not guaranteed if this is used because the system
depends on the linker zeroing the data area to make this facility work
properly.

Also, if /D is used, more space is gained in the linking process
because the data is not intermixed with the code as it is being
linked. Using this switch is the first way to solve and "out of
memory" messages displayed by the linker.

Using the /P switch and /D switch does not cause the linker to leave .
empfty space at the beginning of the .COM file. The philosophy of the

linker is that if the /P switch is used, you really want to move the

program to another system for execution. This means that if you

specify /P:B0O00, the first byte of the .COM file will be placed at

location 8000H and not 32K of zeros before the first byte. In

addition, if you specify /D the linker will not save any of the data

area in the .COM file. This is a good way for reducing the data

storage on diskette for programs since only the code will be loaded

from a diskette and not uninitialized data areas.

The switches /P and /D are specified after the last routine to be
loaded and may be in any order.

2.3.2.53 Continuation Lines (/C)

If a line needs to be continued enter /C after the last character on
the line before pressing the [RETURNI] key

2.3.2.6 Linker Input Command File (/F)

The linker lets you enter data into a file and have the linker process

the file names from the file. You specify a file with an extension of

.CMD and follow this file name with a /F (e.g., CFILES/F). The linker

will read input from this file and process the names Just as if they

were typed from the computer keybosrd. If the file contains more than

one line, you must use /C after each line. If you wish to return to ‘

the computer console for more input you may place /C on the last line
in the file. Data on the command line following the /F is ignored. A
.CMD file may not contain a line containing /F.

2.2.2.7 Linker Switch Summary

/S Search preceeding name as a library extracting only the
required routines.

/L List modules as they are being linked.
/M List all entry points in tabular form.
/E List entry points beginning with %, 7 or € in addition to

other entry points.

/P:nnnn Relocate object code to nnnnH.
/D nnnn Relocate data area to nnnnH.
/F Take preceeding file name as a .CMD file containing file

names {(z2e above for syntax}.

/C Continuation Lines

2.2.2.8 Relocatable File Requirements

The distribution diskettes contain several .ERL files that must be
linked into the program. The particular files depend on what group of
routines the compiler must reference, based on the contents of your
program. Below is a list of each file and the routines it contains. I+f
you have any of these rtoutines as an undefined reference, then link
the appropriate relocatable file to resolve the undefined reference.

FPLIB Floating point real numbers @ XOP, @RRL., @WRL (searchable)
PASLIE Comparisons, I1/0, arithmetic support, etc.

GREND Graphics, sound, and controllers support

2.2.2.9 Linker Error Messages

The linker allows up to forty names on the command line (or command
file input) for +files to be linked.

Errors encountered in the linking process are usually
self—explanatory, such as "unable to open input file: xxxxxxxx" and
"Dupliicate symbol— xxxxxxx. " Duplicate symbol means that a run—time
routine or variable and user Toutine or variable have the same name.
UUndefined reference indicates the appropriate relocatable file has not
been included. Refer to the preceeding paragraph on Relocatable File
Requirements.

I¥ you run out of memory while linking, you may temove the data from ‘
the code space with the /D switch. You may need to run a test link ’
with the /D switch set very high to find out what the code size is.

then relink with the /D switch set just above the last code address

fwith some room for code expansion).

2.3.2. 10 Attributes of Linkable Modules

[N

The linker will bind together ATARI Pascal main programs, Atari Pascal
modules, and assembly language modules created by an appropriate

assembler.

2.4 Obgject Program Execution

Once the source program has been successfully compiled and linked with
the appropriate run—time libraries you mau execute or “Run" the
praogram.

When you select “R" for Run from the Pascal menu: you will then be
asked for the object filename to Tun.

Example:

The object program will then be loaded into memory and executed.

23

2.5 ATARI Program—-Text Editor (MEDIT)

The ATARI Program—-Text Editor is a versatile tool that can be used to
create and modify source programs written in ATARI Pascal. This
product may be ordered through the ATARI Program Exchange (APX-20075)
or may be purchased with the ATARI Macro Assembler (CXBi21)

2.5.1 Running the ATARI Program—-Text Editor

The Pascal menu provides an option of calling the ATARI Program—Text
Editor. The default value of this option is disk drive 2. Prior to
using this option you must first make the following modifications.

1} Copy MEDIT from the distribution diskette to a blank diskette on
disk drive 2. '

2) Load D2:MEDIT from the DOS menu using the "/N" option to prevent it
from running {(this will require the temporary presence of MEM. SAY
which can be deleted afterwards).

3 Save it back from DOS as follows: D2:MEDIT/A, 2600, 2601.

This append operation tells the "Pascal" program pointer to begin
execution at the MEDIT entry point.

Note: The append operation may also be used to run any assembly
language file from Pascal. The file must be appended with the start
address and start address plus one. If the file consists of many
disconnected modules scattered throughout the program: make sure
the appended start address used is the run-time entry point.

24

CHAPTER 3: ATARI PASCAL LANGUAGE SYSTEM EXTENSIONS

This chapter describes the function and use of ATARI Pascal
extensions.

It covers the following areas:

3.1 Modular Compilation

3.2 Data Allocation and Parameter Passing
2.3 Program Segmentation - Chainiﬁg

3.4 Built—-in Procedures

3.5 Non-Standard Data Access

3.6 Imbedded Assembly Code

3.7 Graphics and Sound Extensiaons

2.1 Modular Compilation

ATARI Pascal supports a flexible modular compilation system.

Programs may be developed in a monolithic fashion until they become
too large to manage (or compile) and then split into modules at that
time. The ATARI Pascal modular compilation system allows full access
to procedures and variables in any module from any other module. A
compiler toggle is provided to allow you to "hide" (i.e. make private)
any group of variables or procedures. See section 2.2.3.1 for a
discussion of the $E toggle.

The structure of a module is similar to that of a program. It begins
with the reserved word MODULE, followed by an identifier and
semi—colon (e.g., MODULE TEST1l;) and ends with the reserved word
MODEND, followed by a period (e.g., MODEND.). In between these two
lines you may declare label, constant, type, variable, procedure and
function sections just as in a program. Unlike a program, however,
there is no BEGIN. . END section after the procedure and function
declarations, just the word MODEND followed by a period (.).

Example:

MODULE MOD1;

<label, const, type:, var declarations>
‘<procedure / function declarations and bodies>
MODEND.

To access variables, procedures and functions in other modules (or in
the main program) a new reserved word, EXTERNAL, has been added and is
used for two purposes.

First, the word EXTERNAL may be placed after the colon and before the
type in a GLOBAL variable declaration denoting that this variable list
is not actually to be allocated in this module but rather in another
module. No storage is allocated for variables declared in this way.

Example:
I.J/K, : EXTERNAL INTEGER; (# in another module #)
R: EXTERNAL RECORD (# again in another module)

L. (% some fields)
END;

You MUST BE responsible for matching declaration identically, because
the compiler and linker do not have the ability to type check.

Second, the EXTERMNAL word is used to declare procedures and functions
which exist in other modules. These declarations must appear before
the first normal procedure or function declaration in the

26

module/program. Externals may only be declared at the global
(putermost! level of a program or module.

Just as in variable declarations, the ATARI Pascal language requires
you to make sure the number and type of parameters match exactly and
the returned tuype matches exactly for functions, because the compile
and linker do not have the ability to type check across modules

External routines may NOT have procedures and functions as parameter

Note that in ATARI Pascal external names are significant only to sev
characters and not eight. When interfacing to assembly language, 1lim
the length of identifiers accessible by assembly language to six
characters.

Listed below are a main program skeleton and a module skeleton. The
main program references variables and subprograms in the module., and
the module references variables and subprograms in the main program.
The only differences between a main program and a module are that at

the beginning of a main program there are 15 bytes of header code
and a main program body following the procedures and functions.

Main Program Example:

PROGRAM EXTERNAL _DEMO;
“<label., constant. type declarations>
VAR

I.J : INTEGER; (# AVAILABLE IN OTHER MODULES)

K,L : EXTERNAL INTEGER: (# LOCATED ELSEWHERE)
EXTERNAL PROCEDURE SORT (VAR G:LIET; LEN: INTEGER);
EXTERNAL FUNCTION IOTEST: INTEGER:
PROCEDURE PROC1;
BEGIN

IF IOTEST = 1 THEN

(# CALL AN EXTERNAL FUNC NORMALLY)

END;

BEGIN

SORTC(C....);

(% CALL AN EXTERNAL PROC NORMALLY #)
END.

Module Example: (Note these are separate files)

MODULE MQDULE_DEMO;

™

S.

en
it

27

<label, const, type declarationsl

VAR
I,J : EXTERNAL INTEGER; (%
K:L : INTEGER: (%
EXTERNAL PROCEDURE PROC1; (#
PROCEDURE SORT(. ..): (%
FUNCTION IOTEST: INTEGER; (3

USE THOSE FROM MAIN PROGRAM)
DEFINE THESE HERE #)
USE THE ONE FROM THE MAIN PROG #)

DEFINE SORT HERE 3}

DEFINE IOTEST HERE)

<maybe other procedures and functions herel

MODEND.

2.2 Data Allocation and Parameter Passing
2.2.1 Data Allocation

In addition to accessing variables by name, you must know how
variables are allocated in memory. Section 5.1 discusses the storage
allocation and format of each built—-in scalar data type. VYariables
allocated in the GLOBAL data area are allocated essentially shown
here. However, variables in an identifier list before a type (e.g.. A,
B, C : INTEGER) are allocated in reverse order (i.e., C first,
following by B, followed by A).

Example:
A : INTEGER:
B : CHAR;
I.J K . BYTE:
L . : INTEGER:

STORAGE LAYOUT:

+0 A LSB
+1i. A MSB
+2 B
+3 K
+4 J
+35 1
+6 L LSB
+7 L MSB

Structured data types: ARRAYs, RECORDs and SETs require additional
explanation. ARRAYs are stored in ROW major order. For example
A: ARRAY [1..3,1..31 OF CHAR is stored as:

+0 AC1,11
+1 AL1,21]
+2 All, 31

+3 Al2, 1]
+4 Al2, 2]
+5 Al2, 31

+6 AL3, 11
+7 AL3, 21
+8 AL3, 31

This is logically a one—-dimensional array of vectors. In ATARI Pascal
all arrays are logically one—-dimensional arrays of some other type.

RECORDs are stored in the same manner as global wvariables.

SETs are always stored as 32-byte items.

Each element of the set is ’

stored as one bi{. SETs are byte—oriented and the low order bit of
that byte of the set. Shown below is the

2ach byte is the first bit in
st ‘A’ ‘7.

Byte number
00 01 02 03 04 05 06 07 08 09

00 00 00 00 00 00 00 00 FE FF

The first bit is bit &5 (%41)
bit is bit 90 and is found in

O0Aa OB OC OD OE OF 10 ...

FF 07 00 00 00 00 0O

and is found in byte 8,

iF

. 00

bit 1. The last

byte 11, bit 2. In this dicussion bit O
is the least significant bit in the byte

30

3.2.2 Parameter Passing

When calling an assembly language routine from ATARI Pascal or cailing
an ATARI Pascal routine from assembly language, parameters are passed
on the stack. The parameter passing stack in ATARI Pascal is different
than the 6502 hardware stack. This software stack is at locations %$&00
through $6FF in memory. The hardware X Tegister must be saved and
restored during execution of assembly language routines and is used as
the pointer to the software stack. You may load the top of the stack
using "LDA $600, X", efc. Upon entry to the routine, the top of the
hardware stack contains the return address. On the software stack,

in reverse order the declaration, (A,B: INTEGER;C:CHAR), would result
in C on top of B on top of A. Each parameter requires at least one
16-bit WORD of stack space. A character or boolean is passed as a
14-bit word with a high order byte of 00O. VAR parameters are passed by
address. The address represents the byte of the variable with the
lowest memory address.

Non—scalar parameters (excluding SETs) are always passed by address

I+ the parameter is a value parameter then code is generated by the
compiler in a Pascal routine to move the data. SET parameters are
passed by value on the stack and then the interpreter is used to store
them.

The example below shows a typical parameter list at entry to a
procedure:

PROCEDURE DEMO (I.J : INTEGER; VAR Q: STRING; C,D:CHAR);

AT ENTRY STACK (%4600, X):

+0 D

+1 BYTE OF 0OC

+2 C

+3 BYTE OF 00

+4 ADDRESS OF ACTUAL STRING
+5 ADDRESS OF ACTUAL STRING
+4 J (LSB}

+7 J (MSB)

+8 I (LSB)

+9Q I (mMSB)

The assembly language program must remove all parameters from the
evalvation stack before returning to the calling routine.

SETs are stored on the stack with the least significant byte on
bottom (high address).

Function values are returned on the stack. They are placed "logically"
underneath the refturn address before the return is executed. They
therefore rtemain on the top of the stack after the calling program is
re—entered following the return. Assembly language functions may only
return the scalar types INTEGER, REAL, BOOLEAN and CHAR.

2.2 Program Segmentation—— Chaining

There are times when programs exceed the memory available and also
many times when segmentation of programs for compilation and
maintenance purposes is desired. ATARI Pascal provides a “chaining"
mechanism in which one program may transfer control to another
program.

You must declare an untyped file (FILE;) and use the ASSIGN and RESET
procedures to initialize the file. You may then execute a call to the
CHAIN procedure, passing the name of the file variable as a single
parameter. The run~time library routine will then perform the
appropriate functions to load in the file you opened using the RESET
statement. Program size does not matter. A small program may chain to
a large one and a large program may chain to a small one. If you
desire to communicate between the chained program you may choose to
communicate in ftwo ways: shared global variables and ABSOLUTE
variables.

If you vuse the shasred global variable method, you must guarantee that
at least the first section of global variables is the same in the twe
programs wishing to communicate. The remainder of the global variables
need not be the same and the declaration of external variables in the
global section will not affect this mapping. In addition to having
matching declarations, you must use the /D option switch available in
the linker (see section 2.3.2.4) to place the variables at the same
location in all programs wishing to communicate.

To wse the ABSOLUTE variable method you would typically define a
record used as a communication area and then define this record at an
absolute location in each module.. This method does not require using
the /D switch in the linker but does require knowledge of the memory
used by the program and system.

Listed below are two example programs that communicate with each other
using the ABSOLUTE wvariable method. The first program will CHAIN to
the second program, which will print the results of the first
program’s execution:

W
n

Example:
PROGRAM PROGI1:

TYPE
COMMAREA = RECOCRD
I.J,K : INTEGER
END;

VAR
GLOBALSE : ABSOLUTE [$8000]1 COMMAREA;
CHAINFIL: FILE;

BEGIN (3 MAIN PROGRAM #1)
WITH GLOBALS PO

BEGIN
I := 3;
J o= G
K :=1 % J
END;
ASSIGN(CHAINFIL, ‘'D1:PROGZ2. COM " };
RESET(CHAINFIL);
IF IORESULT <2 ¢ THEN
BEGIN
WRITELN('UNABLE TO OPEN D1:PROG2. COM’);
EXIT
END:
CHAIN(CHAINFIL:
END. (# END PROG1 #)

(# PROGRAM #2 IN CHAIN DEMONSTRATION)
PROGRAM PROGZ2;

TYPE
COMMAREA = RECORD
I,.J/K : INTEGER
END;

VAR
GLOBALS : ABSOLUTE [$80001 COMMAREA;

BEGIN (% PROGRAM #2)
WITH GLOBALS DO
WRITELN(‘RESULT OF “, I, TIMES ‘,J, ’ IS =/, K)

END. (# RETURNS TO OPERATING SYSTEM WHEN

COMPLETE)

33

2.4 Built—in Procedures and Parameters

This section describes ATARI Pascal’s built—in procedures and
functions. Each routine is described syntactically, followed by a
description of the parameters and an example program using the
procedure of the function. Section 2.4.2. 53 is a quick reference
ocf all built—in procedures and functions.

34

3.4.1 MOVE, MOVERIGHT., MOVELEFT

PROCEDURE MOVE (SOURCE., DESTINATION, NUM_BYTES)
PROCEDURE MOVELEFT (SOURCE, DESTINATION., NUM_BYTES)
PROCEDURE MOVERIGHT(SOURCE, DESTINATION, NUM_BYTES)

These procedures move the number of bytes contained in NUM_BYTES from
the location named in SOURCE to the location named in DESTINATION.
MOVE is a sunonym for MOVELEFT. MOVELEFT moves from the left end of
the source to the left end of the destination. MOVERIGHT moves from
the right end of the source to the rtight end of the destination (the
parameters passed to MOVERIGHT specify the left hand end of the
source and destination).

Use MOVELEFT and MOVERIGHT to transfer a byte from one data

structure to another or to move data around within a single data
structure. The move is done on a byte level so the data structure
type is ignored. MOVERIGHT is useful for transferring bytes from the
low end of an array to the high end. Without this procedure, a FOR
inop would be rTegquired to pick up each character and put it down at a
higher address. MOVERIGHT is also much: much faster. MOVERIGHT 1is
ideal to use in an insert character routine whose purpose is to make
room for characters in a buffer.

MOVELEFT is useful for transferring bytes from one array to another,
deleting characters from a buffer, or moving the values in one data
structure to another.

The source and destination may be any type of variable and both need
not be of the same type. These may also be pointers to variables or
integers used as pointers. They may not be named or literal constants.
The number of bytes is an integer expression greater than zero.

Watch out for these problems:

1. Since no checking is performed as to whether the number of bytes is
greater than the size of the destination, spilling over into the
data storage adjacent to the destination will occur if the
destination is not large enough to hold the number of bytes.

2. Moving zero bytes moves nothing.

3. No type checking is done.

W
Ui

Example:

PROCEDURE MOVE_DEMO;
CONST
ETRINGEZ = BQ;
VAR
BUFFER : STRINGLSTRINGSZI;
LINE : STRING;

PROCEDURE INSRT(VAR DEST : STRING:; INDEX : INTEGER; VAR SOURCE
STRING):
BEGIN
IF LENGTH(SOURCE) <= STRINGSZ -~ LENGTH(DEST)} THEN
BEGIN
MOVERIGHT(DESTL INDEX 1, DESTL INDEX+LENGTH(SOURCE) 1,
LENGTH(DEST)—INDEX+1);
MOVELEFT(SOURCEL1]1, DESTLINDEX], LENGTH(SOURCE));
DESTLC] :=CHR(ORD(DESTCLO]} + LENGTH(SOURCE))

END:
END;
BEGIN
WRITELN(‘MOVE_DEMO.)i
BUFFER := ‘Judy J. Smith/ 335 Drive/ Lovely, Ca. 95&&&7;
WRITELN(BUFFER;
LINE := ‘Roland ‘;

INSRT(BUFFER, POS(’5’, BUFFER)>+2, LINE);
WRITELN(BUFFER);
END:

THE OUTPUT FROM THIS PROCEDURE:
MOVE_DEMO. :

Judy J. Smith/ 355 Drive/ Lovely, Ca. 95&&é
Judy J. Smith/ 355 Roland Dive/ Lovely, Ca. 956&é

3.4.2 EXIT
PROCEDURE EXIT:

EXIT is the equivalent of the RETURN statement in FORTRAN or BASIC.
It will leave the currtent procedure/function or main program. EXIT
will also load the registers and re—enable interrupts before exiting
if EXIT is used in an INTERRUPT procedure. It is usvually executed as
a statement following a test.

Example:

PROCEDURE EXITTEST:
(#EXIT THE CURRENT FUNCTION OR MAIN PROGRAM. #)

PROCEDURE EXITPROC(BOOL : BOOLEAN);

BEGIN
IF BODOL THER
BEGIN
WRITELN('EXITING EXITPROC “);
EXIT:
END;
WRITELN(/STILL IN EXITPROC, ABDUT TO LEAVE NORMALLY "),
END;

BEGIN
WRITELN(/EXITTEST....... ¥
EXITPROC(TRUE };
WRITELN('IN EXITTEST AFTER 1ST CaALL TO EXITPROC‘J;
EXITPROC(FALSE); .
WRITELN(’IN EXITTEST AFTER 2ND CALL TO EXITPROC ‘)i
EXIT:
WRITELN(/THIS LINE WILL NEYER BE PRINTED);
END;

Qutput:

EXITTEST.

EXITING EXITPROC

IN EXITTEST AFTER 1ST CALL TO EXITPROC
STILL IN EXITPROC, ABOUT TO LEAVE NORMALLY
IN EXITTEST AFTER 2ND CALL TO EXITPROC

37

2.4.3 TSTBIT, SETBIT. CLRBIT

FUNCTION TSTBIT(BASIC_VAR, BIT_NUM) : BOOLEAN;
PROCEDURE SETBIT(VAR BASIC_VAR, BIT_NUM);
PROCEDURE CLRBIT(VAR BASIC_VAR, BIT_NUM):

TSTBIT returns TRUE if the designated bit in the basic_wvar is on, and
returns FALSE if the bit is off. SETBIT sets the designated bit in the
parameter. CLRBIT clears the designated bit in the parameter.

BASIC_VAR is any B or 16 bit variable such as integer, char, byte,
word, or boolean. BIT_NUM is O..15 with bit O on the right. Attempting
to set bit 10 of an B8 bit variable does not cause an error but has no
effect on the end result.

These procedures are useful for generating wait loops or altering
incoming data by flipping a bit where needed. Another application is
in manipulating a2 bit mapped screen.

Example:

PROCEDURE TST_SET_CLR_BITS:;

VAR
I : INTEGER;
BEGIN
WRITELN('TST_SET_CLR_BITS.......)i
I := 0Q;
SETBIT(I. S);
IF I = 32 THEN
IF TSTBIT(I,S5: THEN
WRITELN(I="*,13;
CLRBIT(I, S5);
IF I = O THENM
IF NOT (TSTBIT(I.S)) THEN
WRITELNC('I=",11};
END;

Qutput:
TET_SET_CLR_BITS..
I1=32

I=0

38

3.4.4 SHR, SHL

FUNCTION SHR(BASIC_VAR, NUM) : INTEGER;
FUNCTION SHL(BASIC_VAR, NUM) : INTEGER;

SHR shifts the BASIC_VAR by NUM bits to the right, inserting O bits.
SHL shifts the BASIC_VAR by NUM bits to the left, inserting O bits
BASIC_VAR is an 8 or 1& bit variable. NUM is an integer expression.

The uses of SHR and SHL are generally obvious. For example, suppose a
10 bit value is £to be obtained from two separate input ports. You can
use SHL to read them in:

VAR
PORT1 : ABSOLUTE [$DOOCI BYTE:
PORT2 : ABSOLUTE [$D232] BYTE:

X = SHL(PORT1 % $1F, 3) ! (PORT2 % $1F);

The above example reads from portl, masks out the three high bits
returned from the INP array, and shifts the result left. Next, this
result is logically OR‘d with the input from port2, which has also
been masked.

The following procedure demonstrates the expected result of executing
these two functions.

Example:

PROCEDURE SHIFT_DEMO;
vVaR I : INTEGER;

BEGIN
WRITELN(/SHIFT_DEMO DY
I := 4;

WRITENLN(/I=",11};

WRITELN(/SHR(I, 2)=,SHR(I, 2));

WRITELNC/SHL(I, 4)=",8HL(I, 4}
END;

Output:
SHIFT_DEMO.
I=4

SHR(I, 2)=1
SHL(I, 4)=64

39

3.4.5 HI. LO, SWAP

FUNCTION HI(BASIC_VAR) : INTEGER;
FUNCTION LO(BASIC_VAR) : INTEGER:;
FUNCTION SWAP(BASIC_VAR) : INTEGER;

HI returns the upper 8 bits of BASIC_VAR (an 8 or 16 bit variable} in
the lower B8 bits of the result. LO returns the lower 8 bits with the
upper B bits forced to zero. SWAP returns the uvpper B bits of
BASIC_VAR in the lower 8 bits of the result and the lower 8 bits of
BASIC_VAR in the upper 8 bits of the result. Passing an 8 bit variable
to HI causes the result to be O and passing 8 bits to LD does nothing.

These functions enhance ATARI Pascal‘s abilities to read and write to
I1/0 ports. If a data item has 14 bits of information to send to a port
that can handle B bits at a time, use LD and HI to send the low byte
followed by the high byte. Similarly, reading 16 bits of data from a
port that sends 8 bits at s time may be performed by SWAPping the
first 8 bits into the high byte:

VAR
PORT& : ARPSOLUTE [$D2341 BYTE;
PORT& = LO(B:;
PORT& := HI(B};
B := SWAP(PORT&) ! PORTGS

The following example shows what the expected results of these
functions should be:

Example:

PROCEDURE HI_LO_SWAP;

VAR
HL : INTEGER;

BEGIN
WRITELN('HI_LO_SWaP. ¥
HL = $104;

WRITELNC ‘HL=", HL);

IF HI(HL) = 1 THEN
WRITELN(/HI(HL)Y=", HI(HL));

IF LOC(HL) = 4 THEN
WRITELNC/LO(HLY=", LO(HL));

IF SWAP(HL) = %0401 THEN
WRITELN('SWAP (HL)=", SWAP (HL});

END;

Dutput:
HI_LO_SWAP.
HL=2&0

HI(HL)=1
LOHL))=4

SWAP (HL)=102%5

4C

3.4. 5 ADDR
FUNCTION ADDR(VARIABLE REFERENCE: : INTEGER]

ADDR returns the address of the variable referenced. Variable
reference includes procedure/function names, subscripted variables and

" record fields. It does not include named constants, user defined

types, or any item that does not occupy code or data space.

This function is used to return the address of anything: compile time
tables generated by INLINE, the address of a data structure to be
used in 8 move statement, and so on.

Example:

PROCEDURE ADDR_DEMO(PARAM : INTEGER);
VAR
REC : RECORD
J : INTEGER;
BOOL : BOOLEAN;

END;
ADDRESS : INTEGER:
R : REAL:
S1 : ARRAY[1..101 OF CHAR:;
BEGIN
WRITELN(‘ADDR_DEMO.)i

WRITELN(‘ADDR(ADDR_DEMO)="‘, ADDR (ADDR_DEMD));
WRITELN(‘ADDR (PARAM)="', ADDR(PARAM) };
WRITELMN(‘ADDR(REC)="', ADDR(REC));
WRITELN(‘ADDR(REC. J) ‘, ADDR(REC. J));
WRITELN(‘ADDR{(ADDRESS)=', ADDR(ADDRESS))i
WRITELN(‘ADDR(R})=', ADDR(R));
WRITELN(ADDR(S1)=", ADR(S1)};

END;

Dutput is system dependent.

41

3.4.7 SIZEOF

FUNCTION SIZEOF (VARIABLE OR TYPE NAME)

SIZEOF returns the size of the parameter in bytes.

statements for the number of bytes
not keep changing constants as the
any variable: character, array,

Example:

PROCEDURE SIZE_DEMO;
VAR '
E : ARRAY[L1.. 101 OF CHAR;
A © ARRAY[1.. 151 OF CHAR;
BEGIN
WRITELN('SIZE_DEMO.
A 1= IR R RERH
B := ’'01234567£%";
WRITELN('SIZEOF(A)="‘, SIZEOF(A), ’
MOVE(B, A, SIZEOF(B))i
WRITELN(‘A= 7, A};
END;

Output:

SIZEOF(A)=15 SIZEOF(B)=10C
A= 012345678F##%x

record,

INTEGER;:

It is used in move
to be moved. With SIZEOF you need
program evolves. FParameter may be
etc, or any user-defined type.

SIZEOF(B)="',SIZEOF(B));

3. 4.8 FILLCHAR
PROCEDURE FILLCHAR(DESTINATION, LENGTH, CHARACTER)

This procedure fills the DESTINATION (a packed array of characters)
with the number of CHARACTERs specified by LENGTH. DESTINATION is
packed array of characters. It may be subscripted. LENGTH is an
integer expression. If LENGTH is greater than the length of
DESTINATION, adjacent code or data is overwritten. Also, if it is
negative, adjacent memory can be overwritten. CHARACTER is a literal
or variable of type char.

The purpose of FILLCHAR is to provide a fast method of filling in
large data structures with the same data. For instance, blanking out
buffers is done with FILLCHAR.

Example:
PROCEDURE FILL_DEMO;
VAR
BUFFER : PACKED ARRAYL1..2561 OF CHAR;
BEGIN
FILLCHAR(BUFFER, 284, * “)i {# BLANK THE BUFFERS)}
ENDi

2.4.9 LENGTH
FUNCTION LENGTH(STRING) : INTEGER;
This function returns the integer value of the length of the string.

Example:

PROCEDURE LENGTH_DEMO;

VAR
S1 : STRING [401;
BEGIN
€1 := ‘This s&ring is 33 characters long “;
WRITELN(LENGTH OF ‘,S1, ‘=', LENGTH(S1});
WRITELN('LENGTH OF EMPTY STRING =',LENGTH(’’));
END;
Output:

LENGTH OF This string is 33 characters long=33
LENGTH OF EMPTY STRING = §

44

3.4.10 CONCAT

FUNCTION CONCAT (SOURCE1l, SOURCEZ2.

This function returns a string in which all sources

list are concatenated.
literals, or characters.
with no problem. If the
the string is truncated
next section concerning

A SOURCE of
total length

restrictions

Example:

PROCEDURE CONCAT_DEMO;

VAR
s1, 82 STRING:

BEGIN
S1 := ‘left link:, vight link";
€2 := ‘root rtont root’;

WRITELN(SL, 7/, S2};

S1 := CONCAT(S1, r 7,82, /11111t);
WRITELN(S1);
END:;
Output:
left link, right link/root root root
left link, tight link root root root

The sources may be string variables:

at 25& bytes.

: SOURCE) ETRING;

in the parameter
string
zero length can be concatenated
of all SOURCES exceeds 5& bytes
See the note under COPY in the

when using both CONCAT and COPY.

[B |

45

3.4.11 COPY
FUNCTION COPY (SOURCE, LOCATION, NUM_BYTE) : STRING;

Copy returns a string containing the number of characters specified in
NUM_BYTEE from SOURCE beginning at the index specified in LOCATION.
E0URCE must be a string. LOCATION and NUM_BYTES are integer
expressions. If LOCATION is out of bounds or is negative, no error
occurs. If NUM_BYTES is negative or NMUM_BYTES plus LOCATION exceeds
the length of the SOURCE, truncation occurs.

Example:

PROCEDURE COPY_DEMO;

BEGIN
LONG_STR := ‘Hi from Cardiff-by—the sea’;
WRITELN (COPY(LONG_STR: %, LENGTH(LONG_STR}=9+1)};
END;
Outputi

Cardiff-by—the—-sea
Note:

COPY and CONCAT are "pseudo" string returning functions and have only
one statically allocated buffer for the Teturn value. Therefore, if
these functions are used more than once within the same expression,
the value of each occurrence of these functions becomes the value of
the last occurrence. For instance, "IF (CONCAT(A:STRING1) =
(CONCAT(A, STRING2))" will always be true because the concatenation of
A and STRING1 is replaced by that of A and STRING2. Also, "WRITELN
(COPY(STRING1,1,4), COPY(STRING1,S5S,4))" writes the second set of four
characters in STRING1 twice.

3. 4.12

POS

FUNCTION POS(PATTERN, SOURCE)} : INTEGER:

This function rteturns the integer value of the position of the first
occurrence of PATTERN in SDURCE. If the pattern is not found, a zero
is returned. SOURCE is a string and PATTERN is a string, a character,
or a literal.

Example:

PROCEDURE POS_DEMO;

VAR .
STR, PATTERN : STRING;
CH CHAR;
BEGIN
STR := ‘ABCDEFGHIJKLMNO;
PATTERN = ‘FGHIJ';
CH ‘B’

WRITELN(’pos of ‘,PATTERN, ’ in ‘,8TR, ' is ’, POS(PATTERN, STR));
WRITELN(‘pos of ‘,CH,’ in ’,S8TR, ‘is ’ ,POS(CH,STR}}i
WRITELM(’pos pf “‘z’‘ in ‘,S8TR, ' is *,POS{‘z/,8TR}};

END;

Dutput:

pos of
pos of
pos of

FGHIJ in ABCDEFGHIJKLMNO is &
B in ABCDEFGHIJWALMMNG is 2
‘z’ in ABCDEFGHIJKLMNO is O

47

3.4.13 DELETE

PROCEDURE DELETE (TARGET, INDEX, SIZE);:

This procedure is used to remove SIZE chararters from TARGET,
beginning at the byte named in INDEX. TARGET is a string. INDEX and
SIZE are integer expressions. If SIZE is zero, no action is taken. If
it is negative, serious errors result. If the INDEX plus the SIZE is
greater than the TARGET or if the TARGET is empty, the data and
syrrounding memory can be destroyed.

Example:

PROCEDURE DELETE_DEMO;

VAR
LONG_STR : STRING:
BEGIN
LONG_STR : =" get vid of the leading blanks’;

WRITELN(LONG_STR};
DELETE(LDNG_STR.i,PDS('g"LDNG_STR)—l);
WRITELN(LONG_STR i

END:;

Output:
get rid of the leading blanks
get rid of the leading blanks

48

. 2 4. 14 INSERT

PROCEDURE INSERT(SOURCE, DESTINATIGN, INDEX:;

This procedure is used to insert the SOURCE into the DESTINATION at
the location specified in INDEX. DESTINATION is a string. SOURCE is a
character or string, literal or variable. INDEX is an integer
expression. SOURCE can b= empty. I+ INDEX is out of bounds or
DESTINATION is empty, destruction of data occurs. If inserting SOURCE
into DESTINATION causes DESTINATION to be longer than allowed
DESTINATION is truncated.

Example:

PROCEDURE INSERT_DEMO;
VAR
LONG_STR : STRING;
€1 : STRING [103;

BEGIN
LONG STR := ‘Remember May 9°;
€1 := ‘Mother’s Day., ;

INSERT(E1, LONG_ETR, 10}
WRITELN(LONG_STR};
INSERT(‘te celebrate’, LONG_STR, 10}
WRITELN(LONG_STR};

END:;

. Output:

Remember Mother ‘s Day, May 9
Remember to celebrate Mother ‘s Day. May <9

49

2.4.15 ASSIGN
PROCEDURE AESIGN (FILE, NAME);

Use this procedure to assign an external filename to a file variable
prior to a RESET or REWRITE. FILE is a filename, NAME is a literal or
a variable string containing the name of the file to be created. FILE
must be of type TEXT to use the special device names below.

Note that standard Pascal defines a "local®" file. ATARI Pascal
implements this facility using temporary filenames in the form
PASTMPxx where "xx" is sequentially assigned, starting at zero at the
beginning of each program. If an external +file REWRITE is not
preceeded by an ASSIGN, then a temporary filename will also be
assigned to this file before creation.

NAME is normally a diskette filename in the standard format:
dn: filename. ext but can also be a special device name.

Device Names

Console screen editor device
Console screen output device
Console keyboard input device
Printer output device

Ixam

NOTE: Cassette (C:) files are not supported by ATARI Pascal

Examples of ASSIGN usage:

ASSIGN(PRINTFILE, ‘P:)
ASSIGN(F, ‘D2: MT280. OVL “};
ASSIGN(KEYBOARD, "K: “);
ASSIGN(CRT, ’S: 7);

Note: After ASSIGN(CRT. ‘S: ‘) you must use REWRITE, as the assign
does not open the file.

90

3. 4. 1& WNE, GNE

FUNCTION GNB(FILEVAR: FILE OF PAOC): CHAR;
FUNCTION WNE(FILEVAR: FILE OF CHAR; CH:CHAR:! : BOOLEAN;

These functions allow you to have BYTE-level access to a file in

a high speed manner. PAOC is any type that is fundamentally a Packed
Array OFf Char. The size of the packed array is optimally in the range
i28. . 4095.

GNE will let youw read a file a byte at a time. It returns a value of
type CHAR. The EOF function will be valid when the physical
end—of—file is reached but not based upon any data in the file.

WNE will let you write a file a byte at a time. It requires a file and
a character to write. It returns a boolean value that is true if there
was an error while writing that byte to the file. No interpretation is
done on the bytes that are written.

GNE and WNB are used (as opposed to F™, GET/PUT combinations) because
they are significantly faster.

o1

2.4.17 BLOCKREAD, BLOCKWRITE

BLOCKREAD (F:FILEVAR; BUF:ANY; VAR IOR: INTEGER; SZ,RB: INTEGER};
BLOCKWRITE(F: FILEVAR: BUF:ANY; VAR IOR: INTEGER; SZ,RB: INTEGER;

These procedures are used for direct diskette access. FILEVAR is an
untyped file (FILE;). BUF is any variable large enough to hold the
data. IOR is an integer that receives the returned value from the DOS.
SZ is the number of bytes to transfer and RB should always be O

The data is transferred either to or from the user‘s BUF variable for
the specified number of bytes.

2. 4. 18 OPEN
PROCEDURE OFEN (FILE, TITLE, RESULT)I

The OPEN procedure increases the flexibility of ATARI Pascal. FILE is
any file type variable. TITLE is a string containing the filename.
RESULT is a VAR INTEGER parameter and upon return from OPEN has the
same value as IDORESULT. The maximum number of files that may be opened
at any one time is three not including Console (E:, S:, or K:) files.

The OPEN procedure is the same as executing an ASSIGN(FILE, TITLE).,
RESET(FILE) and RESULT := IORESULT sequence,

Examples:

OPEN (INFILE, ‘D:FNAME.DAT’, RESULT);

3.4.19 CLOSE, CLOSEDEL

PROCEDURE CLOSE ¢ FILE, RESULT);
PROCEDURE CLOSEDEL (FILE, RESULT);

The CLOSE and CLOSEDEL procedures are used for closing and closing-
with—delete respectively. The CLOSE procedure must be called to
guarantee that data written to a file using any method is properly
purged from the file buffer to the diskette. The CLOSEDEL is normally
used on temporary files to delete them after use. FILE and RESULT are
the same as used in OPEN (see section 3. 4. 18;.

Files are implicitly closed when an open file is RESET.

The CLOSE procedure is used in the file section of the appendix.

54

2.4 .2C

PURGE

PROCEDURE PURGE (FILE 7

The PURGE procedure is used to delete a file whose name is cstored in a

string.
PURGE.

Example:

You must first ASSIGN the name to the file and then execute

ASSIGN(F, 'D2: BADFILE. BAD ');
PURGE(F); (# DELETE D2: BADFILE. BAD #)

55

z.4.21 IORESULT

FUNCTION IORESULT : INTEGER

After each I/0 operation the value returned by the IORESULT function
is set by the run—time library routines. On the ATARI Home Computer,
the general rule is that a non-zero value means an error and zero is a

good result.
Example:

ASSIGN(F, ‘D2: HELLO ")
RESET(F)i

IF IORESULT < O THEN
WRITELN(’C: HELLO IS NOT PRESENT‘);

96

3. 4. 22 MEMAVAIL, MAXAVAIL

FUNCTION MEMAVAIL : INTEGER;
FUNCTION MAXAVAIL : INTEGER;

The functions MEMAVAIL and MAXAVAIL are used in conjunction with NEW
and DISPOSE to manage the HEAP memory area in ATARI Pascal. The
MEMAVAIL function returns the largest total available memory at any
given time irrespective of fragmentation. The MAXAVAIL function will
first garbage collect and then report the largest block available.

The MAXAVAIL function can be used to force a garbage collection before
a time—sensitive section of programming.

The ATARI Pascal system fully supports the NEW and DISPOSE mechanism
defined by the Pascal Standard. The HEAP area grows from the end of

the data area and the stack frame (for rtecursion) grows from the top
of memory downward.

57

2.4.23 Quick Reference Guide to Built-in Procedures and Parameters

(Alphabetical within each group:)

Character array manipulation routines
PROCEDURE FILLCHAR (DESTINATION, LENGTH, CHARACTER};
PROCEDURE MOVELEFT (SOURCE, DESTINATION, NUM_BYTES):
PROCEDURE MOVERIGHT(SOURCE, DESTINATION, NUM_BYTES);

Bit and byte manipulation routines

PROCEDURE CLRBIT(BASIC_VAR, BIT_NUM);

FUNCTION HI (BASIC_VAR) : INTEGER;
FUNCTION LO (BASIC_VAR) : INTEGER;
PROCEDURE SETBIT(BASIC_VAR, BIT_NUM);

FUNCTION SHL (BASIC_VAR, NUM) : INTEGER;
FUNCTION SHR (BASIC_VAR, NUM) : INTEGER:
FUNCTION SWaP (BASIC_VAR : INTEGER:

FUNCTION TSTBIT(BASIC_VAR, BIT_NUM) : BOOLEAN;
S¢ring handling routines
FUNCTION CONCAT (¢ SOQURCE1l, SOURCE2,...,S0URCER) : STRING;
FUNCTION COPY (SOURCE, LOCATION, NUM_BYTES) : STRING;
PROCEDURE DELETE (TARGET, INDEX, SIZE ;
PROCEDURE INSERT (SOURCE, DESTINATION, INDEX);
(
¢

FUNCTION LENGTH STRING) : INTEGER;
FUNCTION POS PATTERN, SOURCE) : INTEGER;

File handling routines

PROCEDURE ASSIGN (FILE, NAME)i
PROCEDURE BLOCKREAD (FILE, BUF, IOR, NUMBYTES, RELBLK);
PROCEDURE BLOCKWRITE(FILE, BUF, IOR, NUMBYTES. RELBLN);

PROCEDURE CLOSE ¢ FILE, RESULT)
PROCEDURE CLOSEDEL (FILE, RESULT);
FUNCTION GNB (FILE) : CHAR
PROCEDURE IDORESULT : INTEGER:
PROCEDURE OPEN (FILE, TITLE, RESULT)});
PROCEDURE PURGE ¢ FILE)i

FUNCTION WNE (FILE, CHAR) : BOOLEAN;

Miscellaneous Toutines

FUNCTION ADDR (VARIABLE REFERENCE) : INTEGER;
PROCEDURE EXIT;

FUNCTION MAXAVAIL : INTEGER:

FUNCTION MEMAVAIL : INTEGER;

FUNCTION SIZEOF(VARIABLE OR TYPE NAME) : INTEGER;

S8

‘ 2.5 Non-Standard Data Access
3.5.1 Absolute Variables
<absolute var> ::= ABSOLUTE [<constant>l <var>

ABSOLUTE variables may be declared if you know the address at
compile time. You declare variable(s) to be absolute using

special syntax in a VAR declaration. ABSOLUTE variables are not
allocated any space in your data segment by the compiler and you are
responsible for making sure that no compiler—allocated variables
conflict with the absolute variables. NOTE: STRING VARIABLES MAY NOT
EXIST below [$100]1 in memory.

Examples:

I: ABSCOLUTE [$80003 IMNTEGER;
SCREEN: ABSOLUTE [$CCO00]1 ARRAYLO.. 151 OF ARRAYLO.. 631 OF CHAR;

3.6 INLINE

ATARI Pascal has a very useful built—in feature called INLINE. This
feature lets you insert data in the middle of an ATARI

Pascal procedure or function. In this way small machine code or P-code
sequences and constant tables may be inserted into an ATARI Pascal
program.

3. &1 Syntax

The suntax for the INLINE feature is very similar to that of a
procedure call in Pascal. The word INLINE is used followed by a left
parenthesis "(" followed by any number of arguments separated by the
slash "/" character and terminated by a right parenthesis ")". The
arguments between the slashes must be constants or variable references
that evaluate to constants. Thesze constants can be of any of the
following types : CHAR, STRING, BOOLEAN, INTEGER or REAL. Note that a
STRING in quotes does not generate a length byte but simply the data
+for the string.

Literal constants of type integer will be allocated one byte if the
value falls in the range O to 255. Mamed. declared, integer constants
which will always be allocated two bytes.

3. 6.2 Applications

The INLINE facility can be used to insert code or to build

compile time tables. The following two sections give examples of each
of these uses.

&0

The program fragment below demonstrates
used to construct a compile time tatble

Example:
PROGRAM DEMO_INLINE;

TYPE
IDFIELD = ARRAY [1..43 OF ARRAY [1.

VAR
TPTR : ~IDFIELD;

PROCEDURE TABLE:;

how the INLINE facility

. 103 OF CHAR;

BEGIN
INLINE(‘ATARI r /7
‘HOME ‘s
‘COMPUTER * /
‘SYSTEMS. .. 7 i
END:
 BEGIN (% MAIN PROGRAM #)
TPTR := ADDR(TABLE)+S; {# +53 for P—-code only #)
WRITELN(TPTR™C31}); (% SHOULD WRITE ‘COMPUTER ‘ :)

END.

can be

3.7 Graphics and Sound Documentation

The graphics, sound, and controller package consists of an include
file, GSPROCS, and a Pascal module, GRSND.ERL. The include file
defines the entry points available in the Pascal module. The Pascal
module must be linked with your program.

To use the package, type (#$ID:GSPROCS%#) following the global
variables of your program, and execute INITGRAPHICS as the first
statement in your main program.

Example:

PROGRAM GRSND;

VAR

(# INCLUDE THE GRAPHICS AND SOUND DEFINITIONS 3#)
(#%ID: GSPROCS*)

{# LOCAL PROCEDURES #)

PROCEDURE XXXX;
BEGIN

BEGIN

(# MAIN PROGRAM)
BEGIN
INITGRAPHICS(S); (# INITIALIZE GRAPHICS PACKAGE WITH A MAXIMUM
GRAPHICS MODE OF S)

The following sections describe each of the items asvailable in the
graphics and sound package.

3.7.1 Screen Types
TYPEs:

SCRN_TYPE = (SPLIT_SCREEN, FULL_SCREEN);
CLEAR_TYPE = (CLEAR_SCREEN, DO_NOT_CLEAR_SCREEN};

These screen types are used by the GRAPHICS procedure to define the
type of screen and whether or not the screen will be cleared during
the GRAPHICS procedure.

3.7.2 Variables
VaRs:

SCRNFILE : EXTERNAL TEXT;
GRRESULT : EXTERNAL INTEGER:

SCRNFILE may be used to do standard Pascal I/0 to the screen such as:
WRITE(SCRNFILE, ‘A7};

This variable will send an "A" to the screen and depending on the
current mode, the “A" will be displayed in some manner. Note this
technique is normally used only in graphics modes 1 and 2. For the
other graphics modes, use the procedures described below.

GRRESULT is used to determine if any errors occurred during one of the
graphics procedures. The following are the procedures and functions
that alter GRRESULT.

INITGRAPHICS GRRESULT = O OK, 255 = ERROR
GRAPHICS GRRESULT = O OK, 255 = ERROR
PLOT GRRESULT = RESULT FROM XIO CALL
LOCATE GRRESULT = RESULT FROM XIO CALL
FILL GRRESULT = RESULT FROM XIO CALL
DRAWTO GRRESULT = RESULT FROM XIO CALL

&3

3.7.3 Graphic Procedures and Functions
3.7.2.1 Initialize Procedure
PROCEDURE INITGRAPHICS(MAX_MODE: INTEGER);

INITGRAPHICS must be the first statement of a program that uses the
graphics and sound module. There is one parameter:

MaX_MODE Maximum mode used by this program should be a value
from O to 9.

If an error occurs, the GRRESULT = 255; otherwise; GRRESULT = O.

3.7.3.2 6Graphics Procedure
PROCEDURE GRAPHICS(MODE: INTEGER; SCREEN: SCRN_TYPE: CLEAR:CLEAR_TYPE);

GRAPHICS performs the same function as the GRAPHICS statement in ATARI
BASIC, except it has three parameters instead of one.

MODE The desired graphics mode O to MAX_MODE
SCREEN FULL_SCREEN or SPLIT_SCREEN
CLEAR CLEAR_SCREEN or DO_NOT_CLEAR_SCREEN

I+ an error occurs:, then GRRESULT = 255; otherwise, GRRESULT = O.

3.7.3.3 Textmode Procedure
PROCEDURE TEXTMODE:

TEXTMODE closes "S: " and reopens "E:". GRRESULT is unchanged.

3.7.2. 4 Setcolor Procedure
PROCEDURE SETCOLOR(REGISTER. HUE, LUMINANCE: INTEGER);

SETCOLOR performs the same function as the SETCOLOR statement in ATARI
BaEIC. GRRESULT is unchanged.

REGISTER A value from O to 4. Refer to section 9 of the ATARI
400/800 BASIC Reference Manuval under SETCOLOR.

HUE & value from O to 15 Refer to section @ of the ATARI
400/800 BASIC Reference Manual under SETCOLDR.

LUMINANCE A even value from O to 14. Refer tn sectio 9 of the
ATARI 400/800 BASIC Reference Manual under SETCOLOR.

&4

3.7.2. 5 Color Procedure
PROCEDURE COLOR(COLOR_VALUE: INTEGER)
COLOR performs the same function as the COLOR statement in BASIC.

COLOR_VALUE A value from O to 255. Refer to section @ of the ATARI
400/800 BASIC Reference Manual under COLOR.

3.7.3. 6 Plot Procedure
PROCEDURE PLOT(X, Y: INTEGER)

PLOT performs the same function as the PLOT statement in ATARI BASIC.
It plots a point in the current color at the screen pesition X,Y.

the horizontal coordinate on the screen.
the vertical coordinate on the screen.

=C <

GRRESULT = value of an XI0O PUT character call.

3.7.3.7 Locate Procedure
FUMNCTION LOCATE(X,Y: INTEGER): INTEGER;

LOCATE performs the same function as the LOCATE statement in ATARI
BASIC. It returns the pixel value at the screen position X.Y.

X the horizontal coordinate on the screen.
Y the vertical coordinate on the screen.

GRRESULT = value of an XIO GET character call.

3.7.32.8 Position Procedure
PROCEDURE POSITION(X, Y: INTEGER);

POSITION performs the same function as the POSITION statement in ATARI
BASIC. It moves the invisible graphics cursor to position X,Y. Note
the cursor is not moved until the next I/0 function is performed.

X the horizontal coordinate on the screen.
Y the vertical coordinate on the screen.
3.7.3.9 Drawto Procedure

PROCEDURE DRAWTO(X. Y: INTEGER);
DRAWTO performs the same function as the DRAWTD statement in ATARI

BASIC. It draws a line from the current graphics position to position
X; Y in the current color.

&5

X the horizontal coordinate on the screen.
Y the vertical coordinate on the screen.

GRRESULT = value of an XIO DRAWTO call.

2.7.3. 10 Fill Procedure

PROCEDURE FILL(X,Y: INTEGER);

FILL performs the same function as the XIDO 18 call in ATARI BASIC
except it performs a plot at position X, Y to move the cursor to X, Y at

the end of the FILL.

X the horizontal coordinate on the screen.
Y the vertical coordinate aoan the screen.

GGRESULT = value of an XIDO FILL call.
3.7. 4 Sound Procedures and Functions

2.7.4. 1 Sound Procedure
PROCEDURE SOUND(VOICE,PITCH, DISTORTION, VOLUME: INTEGER)
SOUND performs the same function as the SOUND statement in ATARI

BASIC. It turns on the sound channel indicated by VOICE at the
indicated PITCH, DISTORTION, and VOLUME.

VOICE One of the four sound channels at O to 3.

PITCH A value between O and 255. Refer to section 10 of the
ATARI BASIC manuval under SOUND.

DISTORTION A even value from O to 14. Refer to section 10 of the
ATARI BASIC manual under SOUND.

YOLUME & value from O to 15 O is off; 15 is maximum volume.

3.7.4.2 Soundoff Procedure

PROCEDURE SOUNDOFF;

SOUNDOFF turns off the sound to all the sound channels

2.7.95 Controller Functions

2.7.5. 1 Paddles

&b

2.7.5.1.1 Paddle Function
FUNCTION PADDLE(PDLNUM: INTEGER): INTEGER:

PADDLE performs the same function as the PADDLE statement in ATARI
BASIC. It returns the current value of one of the eight paddles.

PDLNUM Is the paddle number to return; must be a value between
0 and 7.
2.7.5.1.2 Trigger Function

FUNCTION PTRIG(PDLNUM: INTEGER): INTEGER:

PTRIG performs the same function as the PTRIG statement in ATARI

BASIC. It returns the current trigger value of one of the eight

paddles.

PDLNUM Is the paddle number to return; must be a value between
0 and 7.

3.7.5.2 Joysticks

2.7.5.2.1 Stick Function

FUNCTION STICK(STKNUM: INTEGER): INTEGER;

STICK performs the same function as the STICK statement in ATARI
BASIC. It returns the current value of one of the four joysticks.

STKNUM ‘ Is the joystick number to Teturn; must be a value
between O and 3.

&7

CHAPTER 4: RUN-TIME ERROR HANDLING

The ATARI Pascal system supports two types of run—time checking:
range and exception.

Range checking is performed on array subscripts and on subrange
assignments. The default condition of the system is that these checks
are disabled. You may enable them around any section of coding desired
using the $R and $X toggles (see sections 2.2.3. 4 and 2.2.3. 5). These
sections describe the implementation of this mechanism and how you may
take advantage of this mechanism to handle run—time errors in a
non—standard manner.

The general philosophy is that error checks and error routines will
set Boolean flags. These Boolean flags along with an error code will
be loaded onto the stack and the built—in routine @ERR is called with
these two parameters. The @ERR routine will then test the Boolean
parameter. If it is false then no error has occurred and the @ERR
routine will exit back to the compiled code and execution continues
If it is true the @ERR routine will print an error message and lets
you continue or abort.

Listed below are the error numbers passed to the @ERR routine:

Value Meaning
1 Divide—-by-0 check
2 Heap overflow check

S€tring overflow check

W

Range check

4.1 Range Checking

When range checking is enabled the compiler generates calls to @CHK
for each array subscript and subrange assignment. The @CHK routine
leaves a Boolean value on the stack and the compiler generates calls
to @ERR after the @CHK call. If range checking is disabled and a
subscript falls outside the valid range, unpredictable results will
occur. For subrange assignments, the value will be truncated at the
byte level.

4.2 Exception Checking

When exception checking is enabled, the compiler will load the error
flags (zero divide, string overflow, and heap overflow) as needed and
call the @ERR routine after each operation that can set the flags. I¢
exception checking is disabled the run—time routines attempts to
provide a friendly action if possible: divide by zero results in a

68

maximum value being returned, heap overflow does nothing, and string
overflow truncates.

4.2 User Supplied Handlers

You can write your own @ERR routine to be used instead of the system
routine. You should declare the routine as:

PROCEDURE @ERR (ERROR: BOOLEAN; ERRNUM: INTEGER);

The routine will be called, as mentioned above, each time an error
check is needed and this routine should check the ERROR variable and
exit if it is FALSE. You may decide the appropriate action if

the value is true. The values of ERRNUM are as shown in section 9. 0.

4.4 Fatal Errors

“Fatal Errors" message can be deciphered for debugging purposes but
may be confusing. The error can be translated to the Pascal error
message and to the ATARI standard error message. The following example
will illustrate the translation process:

Fatal Error 64.88 -- Pascal Error . ATARI Error

Using base 16 (non—standard. &4 —-— 100 and 88 -— 136
156 10 16 10

A Pascal 100 error for our system refers to an operating system error.
In this example we would then look at the ATARI Error 136 message to
see that our error relates to an “EOF".

The following are predefined Pascal fatal errors.

464: Error while chaining.

45: Bad pseudo code.

&6&: Bad pseudo code.

47: Undefined pseudo opcode.

68: Stack overflow (program too complex).

&%

CHAPTER S: STRUCTURE/FORMAT OF A PASCAL PROGRAM

This chapter describes the data types and how they are stored. It also
discusses the use of strings

A description of the layout of a .COM file in memory under DOS 2.0S is
presented.

5.1 Data Types

This section describes how the standard Pascal data types are

implemented in ATARI Pascal. Table — summarizes the data types.
Data Type Size Range

CHAR 1 B-bit-byte 0..255

BOOLEAN 1 B8-bit-byte false. . true
INTEGER 1 B-bit-byte 0..255

INTEGER 2 B-bit-bytes =32748. . 327467
BYTE 1 B-bit-byte 0..255

WORD 2 8-bit-bytes 0. . 465535
FLOATING REAL 4 B-bit-bytes 10E-98. . 10E+98
SETRING 1..256 bytes -
SET 22 B-bit-bytes 0. .255

S.1.1 CHAR

The data type CHAR is implemented using one 8-~bit byte for each
character. The reserved word PACKED is assumed on arrays of CHAR. CHAR
variables may have the range of CHR(O).. CHR(255). When pushed on the
stack, a CHAR variable is 16 bits, with the high—order byte containing
00. This is to allow OD, ODD, CHR, and WRD to work together.

5.1.2 PEOOLEAN

The data type BOOLEANM is implemented using one 8-bit byte for each
BOOLEAN variable. When pushed on the stack, 8 bits of O are pushed to
provide compatibility with built—in operators and routines. The
reserved word PACKED is allowed but does not compress the data
structure any more than one byte per element (this occurs with and
without the packed instruction). ORD(TRUE) = 0001 and ORD(FALSE) =
00CO. The BOOLEAN operators AND, OR and NOT operate only on ONE byte.
Refer to the % and ! operators for 16—-bit booclean operators.

FXEXIXIXIXiIXiXios1d (X means don’t care)

70

5.1.2 INTEGER

The data type INTEGER is implemented using two 8-bit bytes for each
INTEGER variable. MAXINT = 32767 and INTEGERS can be in the range
-32768. . 32767. An integer subrange declared to be within the 0..255
range occupies only one byte of memory instead of two bytes. Integer
constants may be hexadecimal numbers by preceeding the hex number with
a dollar sign (e.g. $0F3B).

5.1. 4 REAL

The implementation of the data type REAL in ATARI Pascal is the same
as that used by ATARI BASIC. Six bytes of data are required to
implement a floating point number. The first byte contains the
mantissa sign, the exponent in excess—64. The base of ¢the exponent is
16G. The remaining five bytes contain the mantissa in binary coded
decimsl. The precision is approximately 8 digits.

+——— ————— - ———— - /=== +

low mem Imantissa sign/exponent excess 64! ms! t 1s thigh mem
F————— - - - /77 -t
ms most significant bits

ls = least significant bits

5.1.5 Byte

The BYTE data type occupies a single byte. It is compatible with both
INTEGER and CHAR types. This compatibility can be very useful when
manipulating control characters, handling character arithmetic, etc.
Characters and integers may be assigned to a BYTE.

5.1.6 Word

WORD is an unsigned, native machine word. All arithmetic and
comparisons performed on expressions of type WORD are unsigned.

5.1.7 8tring

5.1.7.1 Definition

The pre—declared type STRING is like a packed array of characters in
which the byte O contains the dynamic length of the string, and bytes
i through n contain the characters. Strings may be up to 255
characters in length. The default length is 80 characters that may be
altered when a wvariable of type STRING is declared (see example
below’.

71

The string "This is & Wottle" is 16 characters long. The following ,
diagram shows how these characters are stored in a string declared to
be 20 characters long.

low mem (14iTihiilst {ils! lal lWioltitilie!?!?!I?!?! high mem

If the number of characters in the string is less than the declared
length, the bytes on the end are not defined. Note that the length
is stored in the first byte and the total number of bytes required
for the string is 17.

Example:

VAR
LONG_STR: STRING: (This may contain up to B0 characters)
EHORT_STR: - STRINGL101]; (This may contain up to 10 characters)

VERY_LONG_STR: STRINGI[2S551: (This may contain up to 255 characters,
the maximum allowed.)

2.1.7.2 Assignment

Assignment to a string variable may be made via the assignment
statement, reading into a string variable using READ or READLN, or the
pre—defined string functions and procedures. .

Example:

PROCEDURE ASSIGN;

VAR
LONG_STR : STRING;
SHORT_STR : STRING [121;
BEGIN

LONG_STR := ‘This string may contain as many as eighty characters’;
WRITELN(LONG_STR):

WRITE(‘type in a string 10 characters or less : ‘};
READLN(SHORT_STR);
WRITELN(SHORT_STR):

SHORT_STR := COPY(LONG_STR:1,11);
WRITELN('COPY(LONG_STR. .)=', SHORT_STR):
END;
Dutputk:

This string may contain as many as eighty characters

type in a string 10 characters or less : {123456) (USER INPUT)
122454

COPY(LONG_STR. . }=This string m ‘

The individual characters in a8 string variable are accessed as if the
string were an array of characters. Thus: normal array subcripting via
constants, variables, and expressions allows assignment and access to
individual bytes within the string. Access to the string over its
entire declared length is legal and does not cause a run—time error
even 1if an access is made to a portion of the string beyond the
current dynamic length. If the string is actually 20 characters lang
and the declared length is 30 then STRING [25] is accessible.

Example:
PROCEDURE ACCESS:;
YAR
I : INTEGER;
BEGIN
I := 15;
LONG_STR := 7122345&678%abcdetf ’;

WRITELN(LONG_STR);

WRITELN(LONG_STRC&]I, LONG STRL i-5 1)

LONG_STRL16] = “#/;

WRITELN(LONG_STRL161);

WRITELN(LONG_STR); (3 will still only write 15—characters)
END;

Qutput:
12345478%abcdef
ba
*
i

2345678%abcdef

73

5.1.7.3 Compsariscns

Comparisons are valid between two variables of type STRING (regardless
of their length) or between a variable and a literal string. Literal
strings are sequences of characters between single quotation marks.
Comparisons may also be made between a string and & character. The
compiler “forces" the character to become a string by using the CONCAT
buffer; therefore, comparison of the result of the CONCAT function and
a4 character is not meaningful because this comparison would always be
equal.

Example:

PROCEDURE COMPARE;

VAR
§1,82 : STRINGL101;
CH1 : CHAR;

BEGIN
S1 := ‘0123454787
g2 = 22234547871

IF 81 < 52 THEN
WRITELN(S1, © is less than ‘,S82);

81 := ‘aipha beta’;
IF S1 = ‘alpha beta ‘ THEN
WRITELN(‘trailing blanks don’‘t matter’)
ELSE
WRITELN(‘trailing blanks count’);
ir 81 = ¢ alpha beta’ THEN
WRITELN(’blanks in front don’‘t matter’)
ELSE
WRITELN(‘blanks in front do matter’)};
IF 81 = ‘alpha beta’ THEN
WRITELN(S1, * = /,81);
St := *Z27;
CHL := *Z7;
IF 81 = CH1 THEN
WRITELN(’strings and chars may be compared’);
END;

Output:

012345678 is less than 222345478
trailing blanks don‘t matter
blanks in front do matter

alpha beta = alpha beta

strings and chars may be compared

74

5.1.7.4 Reading and Writing Strings

Strings may be written to a text file using the WRITE or WRITELN
procedure. WRITELN will cause a carriage rteturn and line feed
following the string. Reading a string is always done via the READLN
statement because strings are terminated with & carriage return and
line feed. Using READ will not work, because the end—of-line
characters are incorrectly processed. Tabs are expanded when they are
read into a variable of the STRING type

5.1.8 Set

The SET data type is always stored as a 32 byte item. Each element of
the set is stored as one bit. The low order bit of esach byte is the
first bit in that byte of the set. Shown below is the set A" . "Z"
(bits 65..122)

Byte number OO0 O1 02 032 04 05 06 07 08 09 0A OB OC ... 1IF

Contents 0C 00 00 00 OC 00 OO0 00 FE FF FF 07 00 ...00

CHAPTER 6: COMPATIBILITY

Pascal is considerably more standardized than BASIC. Nearly every
version of Pascal is based on a definition of the language contained
in "Pascal User Manual and Report", by Kathleen Jensen and Niklaus
Wirth, Springer-VYerlag, 1974. The Pascal Language System is a
superset of the Pascal described in this book. In addition, ATARI
Pascal meets a more recent standard, namely the ISO standard
(International Standards Organization, similar to ANSI). It is
expected that any Pascals developed from now on will certainly be
compared to this standard, and will strive to meet it. ATARI has
learned the importance of compatibility from its experience with ATARI
BASIC. A Pascal that meets the newly developed ISO standard is a very
positive step toward compatibility.

A possible compatibility problem is that the ATARI Pascal Language
System is not entirely compatible with UCSD Pascal. UCSD Pascal has
attained considerable popularity on small computers. While it is true
that ATARI Pascal is not completely compatible with UCSD Pascal, it
should be remembered that both versions are written around a common
core—— Pascal as defined by Jensen and Wirth. The differences, though
presant, are not as significant as. for example, the differences in
various BASICs. In addition, the superiority of the Pascal Language
System justifies the incompatibilities involved

A brief comparison of the features that differ between the two Pascals

follows. Parts of this comparison is necessarily somewhat technical,
as most of the differences are deep in the details of the language

74

4.1 Incompatabilities With UCED Fascal

1. The predefined type INTERACTIVE is available only in UCSD Pascal.
On the ATARI Computer, any file associated with the computer console
is auvtomatically interactive, and therefore this type is not needed

and would only clutter the language unnecessarily.

2. The predefined procedure SEEK is available only in UCSD Pascal.

3. UCED Pascal wuses UNITS to implement modular compilation. They are
easy to understand, but are much more restrictive than ATARI Pascal’s
implementation of modular compilation.

4. UCED Pascal provides SEGMENT procedures to allow overlays from
diskette. ATARI Pascal will use the standard DOS methods for invoking
overlays.

5. Sets can be considerably larger in UCSD Pascal. They are
considerably faster in ATARI Pascal. The ATARI Pascal implementation
is more in keeping with the spirit of the Jensen and Wirth standard.

&. UCSD Pascal includes bit—-level packing on PACKED structures.
Bit—level packing costs in both the size of the interpreter, and the
speed of execution of the program (particularly on a machine based on
the 6502 microprocessor which does not contain multiply and divide).

7. UCSD Pascal has a construct EXIT <procedure namel» that is not
included in ATARI Pascal, although ATARI Pascal permits EXIT without
the procedure name. Many Pascal purists feel that the construct as
implemented by UCED is not a structured construct, and is therefore
counter to the philosophy of the language.

8. UCSD Pascal includes the type LONG INTEGER that is not available
in ATARI Pascal.

9. Several features in UCSD Pascal are operating system dependent.
e.g., long file names, and unit I/0 (similar to XIO). These have not
been implemented in ATARI Pascal. ‘

77

4.2 Additional Features Available with the ATARI Pascal Language
System

1. The ATARI Pascal Language System is a complete ISO standard
Pascal. Some of the ISO features not included in UCSD Pascal are
conformant array handling, procedures and functions as parameters,
local files, PACK and UNPACK procedures, READ and WRITE for non—text
files, WRITE and WRITELN of Boolean expressions, and GOTO out of a
procedure into a surrounding procedure.

2. The Pseudo code implemented in ATARI Pascal was optimized for the
6502 microprocessor.

3. ATARI Pascal uses the same operating system as all other ATARI
programs. ATARI Pascal and ATARI BASIC files are the same format, and
data files can be read by either language. You do not have the
inconvenience of learning two different and incompatible operating
systems, as you do with UCED Pascal. In addition, ATARI Pascal allows
access to I/0 in a manner very similar to ATARI BASIC. XIO, graphics,
sound, game controllers, and named devices are all implemented

4. UCED segment procedures are limited to six per program which limits
the development of large applications. ATARI Pascal should allow the
development of more complex applications.

5. ATARI Pascal has nine or ten digits of precision on real numbers.
UCSD Pascal has only 6.5 digits of precision.

6. ATARI Pascal permits the programmer to trap errors, and prevent
programs from aboarting. .

7. ATARI Pascal provides protection when Teading in a string. If the
string is too long for the receiving variable, ATARI Pascal will
truncate the string. UCSD Pascal will overwrite the bytes following
the string in memory, resulting in undefined program errors.

8. ATARI Pascal has extended the CASE statement by adding an ELSE
clause. If the case selecting expression would not result in the
execution of a statement with the CASE, the ELSE clause is executed
ELSE simplifies error checking. Execution of a similar unmatched
CASE in UCSD Pascal causes an undefined result

?. Modular compilation is much more flexible in ATARI Pascal. Local
static variables, external procedures and functions located in the
main program, and external global variable usage are all missing from
UCED Pascal.

10. ATARI Pascal has a built in BYTE data type. This data type
eliminates the use of confusing CASE variant records when manipulating
characters as integers.

11. ATARI Pascal has a built—in WORD data type. An unsigned 16-bit

data type is very useful for address arithmetic and machine—-level
programming.

78

12. UCSD Pascal does not fully implement compatibility between strings
and characters. Strings and characters are tctally compatible in
ATARI Pascal.

13. For system dependent applications: ATARI Pascal allows relaxation
of type checking rules. This relaxation allows machine I/0 and memory
manipulation to be done without cluttering the program with confusing
CASE variant records

14, ATARI Pascal has the builit—-in bit-manipulation routines TSTBIT,
SETBIT, CLRBIT, SHL, and SHR. Bit manipulation in UCSD Pascal must be
done with CASE variant records, which are confusing and machine
dependent.

15. In both ATARI Pascal and UCSD Pascal. the GET/PUT file I/0 is
quite slow. ATARI Pascal also contains GNB and WNB, which are high-
speed I/0 routines for byte I/0.

i5. ATARI Pascal fully implements the NEW and DISPOSE procedures,
including fragmentation management and re—-use of disposed areas. UCSD
Pascal implements a much more restricted version of these procedures.
This feature is wvital to any program doing dynamic data management.

17. ATARI Pascal allows full use of files. UCSD Pascal does not allow
local files, files in records, or arrays of files.

12. ATARI Pascal includes the ADDR function. This returns the address
of a variable, procedure, or function. This function is useful when
doing machine dependent programming.

19. ATARI Pascal has a built—in INLINE feature that can be used to
generate compile—time constant data. This feature eliminates run—time
initialization of constant tables, increasing execution speed and
decreasing code size.

20. ATARI Pascal allows output in any number base from two through
sixteen.

21. ATARI Pascal allows input of either decimal or hex numbers.
22. ATARI Pascal has not extended the parameter list on any ISO

standard routine (specifically RESET and REWRITE). For acessing
external files, a new procedure (ASSIGN) has been added.

79

CHAPTER 7: LANGUAGE DEFINITION
7.1 Introduction

Chapter 7 defines the language features of ATARI Pascal that are
common to each implementation of the compiler. It is assumed here that
you are familiar with Jensen and Wirth’s "“Report" and/or the ISO draft
standard (DPS/7185). The ATARI Pascal features that differ from those
in the IS0 standard and in Jensen and Wirth ‘s "Report", are described
by section. In each section, BNF (Backus Normal Form} syntax is
provided for reference. The complete BNF description of the language
is present in an appendix. Each section corresponds to Wirth‘s
“Report".

80

7.2 Summary of the ATARI Fascal Language

Features of the IESD Pascal include the data types REAL. INTEGER, CHAR,
BODOLEAN: multidimensional ARRAYS, user—defined RECORDS, POINTERS
types, file variables, user—defined TYPES and CONSTANTS, and SETS
(implemented in this version with a base type of 2546 one byte
elements). ENUMERATED types. and SUBRANGE types

Also included in ISO Pascal are PROCEDURES: FUNCTIONS, and PROGRAMS.
Passing procedures and functions as parameters to a Pascal routine are
part of the IS0 standard: as well as conformant arrays. Arrays of the
same index type and element tupe but different sizes may be passed to
the same procedure. External parameters with the PROGRAM statement
are suppaorted at the syntax level.

TYPED and TEXT files are supported as defined in the standard using
the Pascal routines RESET, REWRITE, GET. PUT, READ, WRITE. READLN, and
WRITELN. The default I/0 files INPUT and OUTPUT are defined.

All ISO statements are supported including WITH, REPEAT...UNTIL, CASE,
WHILE loops: FOR loops, IF..THEN..ELSE, and GOTO.

PACK and UMPACK are supported, but do not affect the outcome of the
program (data structures are always packed at the byte level). NEW
and DISPOSE are implemented; they allocate and deallocate HEAP space.

Modular compilation is an extension of the ATARI compiler. Variables
and routines may be made public and/or private and may be called from
any other module or from the main program.

The extended data types STRING, BYTE. and WORD are implemented in the
ATARI Pascal compiler. The STRING type includes a length byte followed
by the maximum number of bytes possible. Routines are supplied to
INSERT a character or a string, DELETE from a string., find the
POSition of a character in a string, COPY a portion of one string to
another, and CONCATenate two or more strings and/or characters
together. BYTE is a one-byte data item for representing numbers from O
to 255. WORD is two bytes for the B-bit CPU.

Additional procedures to manage +files on diskette are implemented. A
file on diskette is associated with an internal file and may be closed
or deleted.

Manipulating BITS and BYTES is done using routines to TEST, SET,
CLEAR, SHIFT RIGHT:, and LEFT, rveturn HI or LOW of a variable, and SWAP
the high and low bytes of a variable. ’

Miscellaneous routines to access items in a program are to return the
address of a variable or routine, return the size of a variable or
type, move a given number of bytes from one memory location to
another and fill a data item with a certain character. Also, the
amount of HEAP space available at any given time is accessible
Garbage collection on the HEAP is supported.

81

Logical operators for non-Booleans are implemented
HEX literal numbers may be used with a dollar sign ($).
Include files are supported.
An ELSE clause on the CASE statement is provided
Program CHAINING is supported. Chaining is such that the code for one

program is totally replaced by code for the next program, but heap
space may be maintained across a CHAIN.

7.3 Notation. Terminology, and VYocabulary

Lletter> ::=A { B+ C I DIEV'/F I G611 HIT I J i
Kt LI M Nt OGP I Q@ IR S T
Uit v i Wwi X i1 yizZiaibitcitodi
e { £t g +vh it gt kit imion i
ot pitgiris it i ut v iwi!i x|
y « z + @
<digit> =0 {1 {21314 1516617 181 91
A B I C I DI E U F | (only allowed in HEX numbers)
<special symbol2 ::= (reserved words are listed in the appendix)
+ | HEE B A N E T RO B
<= =1 C L) 1 C S A
= | P A

(the following are additional or substitutions:)
(O A I A R T T A - T A

(. is a synonym for [
.7) is a synonym for 1
7 and \, are synonyms
! and | are synonyms
% ;

Extensions:

The symbol "@" is a legal letter in addition to those listed in the
“Report". This symbol has been added because the run—-time library
routines are written using this special character as the first letter
of their name. By adding "@" conflict with user names is avoided but
users are allowed to call these routines. See section 7.4 for further
information.

A comment beginning with "(#" must end with "#)".

-

Lcomment> = (% < any characters 2> #)

83

7.4 Identifiers, Numbers, and Strings.

Cidentifier> Lletter> {{letter or digit or underscorel}

<letter or digitl> :: letter: | <digit> |

“digit sequencel
funsigned integer>

<digitl {ldigit>}
$ <digit sequenceX
<digit sequence>

<unsigned TealX = <unsigned integer> . <digit sequence> |
<unsigned integer> . <digit sequenceX

E <scale factor> :
<unsigned integer>» E <scale factor>

<unsigned number> = <unsigned integer | <unsigned reall

<scale factor> = <unsigned integer> | <sign®Cunsigned integer>
Lsignl =+ [-

Lstringz = ‘4Lcharacter> {<character>»}’ | **

All identifiers are significant to eight characters. External
identifiers are significant to either six or seven characters
depending upon usage. The underscore character (_) is legal between
letters and digits in an identifier and is ignored by the compiler
(i.e., A_B is equivalent to AB). Identifiers may begin with an "@".
To allow declaration of external run—time routines within a

Pascal program. Users are, in general, advised to avoid the "@"
character to eliminate the chance of conflict with run-time routine
names.

Numbers may be hex as well as decimal. Placing a "$" in front of an
integer number causes it to be interpreted as a hex number by the
compiler. The symbol <digit> now includes: "A“, "“B", “C", w“pw, ugw
and "F". These may be upper or lower case.

84

. 7.2 Constant Definitions

Lidentifier>

funsigned number:-

<sign>*<unsigned number>

<constant identifier>

<sign>»<constant identifier>
<string>

“constant defination> ::= <identifier>» = <constant>

<constant identifierX>
Lconstant>

“n e~ wn o

In addition to all constant declarations available in standard Pascal,
ATARI Pascal supports declaration of a null string constant:

Example:

nullstr = 7;

85

7.6 iData Type Definitions

<typel o= <simple typeZ
<structured type>
“<painter typel

“type definition>::= {identifier> = Ctype>

1
1
)
1

7.6.1 Simple Types

<simple typel .= <scalar type>
<subrange typel
“<type identifier>
<identifierl

“type identifier>

7.&.1.1 Scalar Types

{scalar type> ::= (<identifier <{, <identifier>))

7.6.1.2 Standard Types
The following types are standard in ATARI Pascal.

INTEGER
REAL
BOOLEAN
CHAR

BYTE
WORD
STRING

Three additional standard types exist in ATARI Pascal. Refer to the

Appendix for information on representation and usage of all standard

and structured types.

STRING : Packed array L O..n J of char‘~
byte O is dynamic length byte
bytes 1.. n are characters

BYTE : Subrange O..255 with special attribute that it is compatible

also with CHAR type.

WORD : Unsigned native machine word

7.6.1.3 Subrange Types
“<subrange typel ::.= <constant> .. <constant>

7.6.2 Structured Types

86

Lstructured typel ::= <unpacked structured typel
PACKED <unpacked structured typel
unpacked structured typel> ;.= <array typel i

“record typel
“set typel
<file type>

The reserved word PACKED is detected and handled by the ATARI Pascal
compiler as follows:

All structures are packed at the BYTE level even if the PACKED
reserved word is not found.

7. &. 2.1 ArTay Types

<array type> <normal array> |
€string array>
STRING <max length>

[<intconst> 1 |
LTemptyl

<unsigned integer> |
“Zint const id>
<identifierX

ARRAY [<index type> {, <index type>:>] OF
<component typel>
{simple typel

<typel

<string array>
“<max length>

<inconst>

<int const id>

<noermal array>

<index type>
<caomponent typel

Variables of type STRING have a default length of 81 bytes (80 data
characters). A different length can be specified in square brackets
following the word STRING. The length must be a constant (either
literal or declared, e.g., STRINGLS] or STRINGLCxyzl (where xyz is a
constant (xyz=10) }. It represents the length of the DATA portion
(i.e, one more byte is actually allocated for the lengthi.

87

7.6.2. 2 Record Types

RECORD «<field list> END

“<fixed part> H

<fixed part> ; <variant part> |
<variant part>

<record section> {; <record section>}
“field identifier> {,<field identifier>}
<type> | <emptyl

CASE <tag field> <type identifier> OF
Lvariant>» {i<variant>}

“case label list> : (<{field list>) H
Lempty>

<case labell {,<case labell}

Lconstant>

<identifierl : |
Lemptyl

<record typel
<field list>

Lfixed part>
<record section>

“<variant part>

Lvariant>

<case label list>
‘<.case label>
<tas field>

Wun

7.6.2.3 Set Types

<set typel .= EET OF <base typel>
<base type> = <simple typel

The maximum range of a base type is O0..255. For example, a set of
£0..10000] is not legal. The set of CHAR or set of 0..255 is legal
but set of O0..254 is not. .

88

7.64.2. 4 File Types
<file typer ::= file {of <typel}

Untyped files are allowed. They are used for CHAINING and are also
vsed with BLOCKREAD and BLOCKWRITE procedures. Be extremely careful
when using untyped files

When you wish to read a file of ASCII characters and use implied
conversions for integers and real numbers use the pre—-defined type
TEXT. TEXT is NOT the same as FILE OF CHAR. It has conversion implied
in READ and WRITE procedure calls and also may be used with READLN and
WRITELN. A file of type TEXT is declared in the following manner: "“VAR
F . TEXT". The INCORRECT syntax for declaring a TEXT file is "VAR F
FILE OF TEXT". See the appendix on Pascal file handling.

7.6.3 Pointer Types

{pointer typer ::= ~Ltype identifier:

Pointer types are identical to the standard except that weak type
checking exists when the RELAXED type checking feature of the compiler

is enabled (the default). In this case, pointers and WORDS used as
pointers are compatible in all cases.

7.464. 4 Tupes and Assignment Compatibility

The most common standard Pascal question concerns type conflict
errors messages from the compiler. Types must be identical if the
variable is passed to a VAR parameter. Types must be compatible for
expressions and assignment statements. To understand the difference
between compatible and identical types, think of types as pointers to
compile—time records. If you declare a type (such as T=ARRAY [1.. 101
OF INTEGER!). then anything declared as type T veally points to the
record describing type T. If, on the other hand, you declare two
variables as follows:

VAR
Al : ARRAY [1..10] OF INTEGER;
A2 : ARRAY [1..10]1 OF INTEGER:

they are not identical. The compiler created a new record for each
type and therefore Al and A2 do not point to the same record in memory
at compile-time. The general rule is that if you cannot find your way
back to a type definition, then the types are not identical.

CHR, ORD, and WRD are type converson operators that generate no code
but tell the compiler that the following 8-bit data item is to

be considered type CHAR, INTEGER, or WORD respectively.

These operators may be used in expressions and with parameters except
VAR parameters.

Below is a section from the ISO draft standard (DPS-7185) which is
available from the American National Standards Institute. The ISO
standard definition of compatible types is as follows:

Types T1 and T2 shall be designated compatible if any of the four

statements that follow is true.

(a) Tl and T2 are the same type.

(b) Tl is a subrange of T2 or T2 is a subrange of T1, or both T1 and
T2 are subranges of the same host type.

(c) Tl and T2 are designated packed or neither T1 nor T2 is
designated packed.

(d) Tl and T2 are string—types# with the same number of components.

...Assignment compatibility. A value of type T2 shall be designated
assignment—compatible with a type Tl if any of the five statements
that follow is true.

{a) Tl and T2 are the same type, that is neither a file-type nor
a8 structured-type with file component (this rule is to be
interpreted recursively).

(b} Tl is the real-type and T2 is the integer—type.

(c) Tl and T2 are compatible ordinal—-types## and the value of type
T2 is in the closed interval specified by the type T1.

(d) Tl and T2 are compatible set-types and all the members of the
value of type T2 are in the closed interval specified by the
base—type of T1.

(e) Tl and T2 are compatible string—types#.

90

At any place where the rule of assignment-compatibility is used:

{a) It shall be an error if Tl and T2 are compatible ordinal—-types#x

and the value of type T2 is not in the closed interval specifi
by the type T1.
(b) It shall be an error if Tl and T2 are compatible set—-types and

ed

any member of the value of type T2 is not in the closed interval

specified by the base—type of the type TIi.

String-types in IS0 Pascals are arrays of characters.
#% Ordinal types are named subranges of numbers or enumerations.

7.7 Declaration and Denotations of Variables

<variableX = Lvars H
<external var> H
<absonlute var>

<external var> CEXTERNAL <var>

<absolute var> ::= ABSOLUTE [<constant> 1 <var>

<var> = <entire variable> H
<component variableZ |
<referenced variableX

ABSOLUTE variables may be declared if you know the address at compil
time. You declare wvariable(s) to be absolute using special syntax in
VAR declaration. ABSOLUTE variables are not allocated any space in

your data segment by the compiler and you are responsible for making
sure that no compiler—allocated variables conflict with the absolute

e
a

variables. NOTE: STRING VARIABLES MAY NOT EXIST AT LOCATIONS <= $100..

This is done so that the run—time routines can detect the difference
between a string address and a character on the top of the stack.
Characters have the high byte of O when present on the stack. After
the colon (:) and before the type of variable(s), you place the
keyword ABSOLUTE followed by the address of the variable in brackets
(.. 1)

Examples:

I: ABSOLUTE [$8C01 INTEGER;
SCREEN: ABSOLUTE L[$CC00] ARRAY[LO. . 151 OF ARRAYLO.. 631 OF CHAR;

21

7.7.1 Entire Yariables

Lentire variableX
“variable identifier>

<variable identifier>
Lidentifier>

7.7.2 Component Variables

“component variablel ::= <indexed variable> !
“<field designator> |
<file buffer>

7.7.2. 1 Indexed VYariables

<indexed variable> = <array variable> [<expression> {,Cexpression>}]
<array variablel := <variablel

STRING variables are to be treated as a PACKED array of CHAR for
subscripting purposes. The valid range is O. . maxlength, where
maxlength is 80 for a default length.

7.7.2. 2. Field Designators

<field designator> = <record variable> . <field identifier>
<record variable» ::= <variable>
Lfield identifier> = Lidentifier>

7.7.2.3 File Buffers

“<file buffer>
<file variable>

<file variable>»™
<variableX

7.7.3 Referenced Variables

<referenced variable> = <pointer variable>~
<pointer variablel ::= <variable>

?2

. 7.8 Expressions

<{unsigned constantl

<factor>

L{set>
Lelement list>

Celement>

-

<term>
<simple expression

‘expression>

{unsigned number>

Lstring>

NIL

“<constant identifierX

“<variableZ

<unsigned constant>

<function designator>

(YexpressionZ)

<logical NOT operataor> <factorl

<setl

[“element list> 1

<element> {, Celement>}

Cempty>

fexpression>

{expression> .. +<expressionX

<factor» <multiplying operator <factor>

Lterm>

<simple expression* <adding operator> <term>

“adding operator> <term>

“simple expressionl

<simple expression <relational operator>
<simple expressionz

An additional category: of operators on 1lé6-bit variables are &, !
. {also (), (alsoc % and ?) denoting AND, OR and ONE’s complement NOT.

respectively. These have the same precedence as their equivalent

boolean operators and accept any type of operand with a size <= 2

bytes.

23

7.8.1 Operators

7.8.1.1 The Operator NOT
<logical NOT operator> ::=NOT AN

\ and ? are NOT operators for non—-Boolean operators.

7.8.1.2 Multiplying Operators
<multiplying operator> ::= % { / | DIV | MOD ! AND ! &

% is an AND operator on non—-Boolean operators.

7.8.1.3 Adding Operators
<adding operator> ::= + | - | DR | | ¢ !

! (synonym {) is an OR ogperator on non-Boolean operators.

7.8.1. 4 Relational Operators

<relational operators (== ! <> ! £ I <= ! »= | IN
7.8. 2 Function Designators
“function designator> .:= <function identifier> H

“function identifier> (<parm> {, <parm>}
<identifier>

L<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>