-)

-

CASSETTE (APX-10065) DISKETTE (APX-20065)
REQUIRES: 2t4K RAM REQUIRES: 24K RAM

Q. A7AR PROGRAM EXCHANGE

VOLKER MULTHOPP MARCH T3987

DSEMBLER

User-Written Software for ATARI Home Computers

VOLKER MULTHOPP MARCH 1982

DSEMBLER

CASSETTE (APX-10065) DISKETTE (APX-20065)
REQUIRES: 2tK RAM REQUIRES: 24K RAM

DDSEMELER
by

Volker Multhopp

Froaram and Marnuwal Contents © 1982 Volker Multhopp

Copyright notice, On receipt of this computer program and associated documentation (the
software), the author grants you a nonexclusive license to execute the enclosed software. This
software is copyrighted. You are prohibited from reproducing, translating, or distributing

this software in any unauthorized manner,

TRADEMARKS OF ATART
The following are trademarks of Atari, Inc,

ATARI®

ATARI 400" Home Computer
ATARI £00™ Home Computer
ATARI 410" Program Recorder
ATARI 310" Disk Drive

ATARI 820™40-Column Printer
ATARI 822" Thermal Printer
ATARI 825780-Column Printer
ATARI 830" Acoustic Modem
ATARI 350" Interface Module

R s S L e L a2 2 R R R R R R TR Py
Distributed by

The ATARI Program Exchange
P. O, Box 427
155 Moffett Park Drive, B-1
Sunnyvale, CA 94084

To request an APX Software Catalog, write to the address abave, or call toll-free!

800/338-1862 (outside California)
800/672-1850 (within California)

Or call our Sales number, 408/745-5535S,
B S S s R R R R R R R R R R R R R g gy

CONTENTS

INTRODUCTION ___ 1

Overview __ 1

Required accessories ___ 1
Optional accessories ____ 1
Contacting the author ___ 1

GETTING STARTED __ 2

Loading DSEMBLER into computer memory ___ 2
The first display screen--the menu ___ 2

USING DSEMBLER __ 4
Introduction ___ 4

Entering data and responding to prompts ___ 4
Numerical input ___ 4

BREAKs and ERRORs __ 4

DSEMBLER's tasks ___ 4

M!Menu__ 4

C: Convert number __ 5

D! Disassemble ___ 5

L: Label regenerator __ 6

T: Table of labels __ &

S and R! Store and Recall labels __ 6
K! Kill label __ 7

P! Memory page displayer ___ 7

H! Hexpacker ___ 7

Jt Jump to a machine language subroutine (TSR) ___8
O:! Operations __ 8

F! Find sequence ___ 9

U! User section __ 10

TIPS FOR USERS ___ 11

Working in direct mode ___ 11

Examining USR functions contained in strings ___ 11
Merging programs ___ 12

How to renumber DSEMBLER ___ 12

Sundry notes about DSEMBLER __ 13

Strings used in DSEMBLER ___ 13

General purpose strings ___ 13
Data strings ___ 13
Strings holding USR functions ___ 13

INTRODUCTION

OVERVIEW

DSEMBLER is a deluxe tool for the study of 6502 machine language code, Through a series
of menu options, you can perform a wide variety of tasks. You can disassemble any of the
valid 6302 machine code in memory and display or print the results in a five-field

formati (1) the location of the disassembled instruction} (2) the hex value of each byte

of the instruction; (3) if you labeled the location while debugging the code, the label

name (i.e., not necessarily the label you assigned as you wrote the code); (4) the

op-code for the instruction} and (5) any associated operand using standard 4502 format

(if you labeled an operand address while debugging, the label name will appear instead of
that address),

Using DSEMBLER, you can also perform the following tasks. (1) You can convert integers
between 0 and 635535 to hexadecimal and vice versa. (2) You can regenerate labels (a
memory address and associated name), rename existing labels, and remove an existing
label. DESEMBLER can create as many as 254, two-to-eight character labels, (3) You can
display or print a list of label values and their names. (4) You can store a file of

labels to diskette or cassette and recall them. (5) You can load your machine code

quickly into memory. (6) You can display "pages” of memory for quick scanning. (7) You
can jump to a machine language subroutine with the 6502, X, Y, and A registers set as you
wish. (8) You can search any part of memory for any specified byte sequence, using wild
cards for byte values if you wish. (?) You can write your own operation as an option on

DSEMBLER'’s menu.
REQUIRED ACCESSORIES

For cassette version

24K RAM

ATARI 410 Program Recorder
For diskette version

24K RAM

ATARI 210 Disk Drive
ATARI BASIC Language Cartridge

OPTIONAL ACCESSORIES

ATARI printer or equivalent printer

CONTACTING THE AUTHOR

Users wishing to contact the author about DSEMBLER may call him at!

301/675-4473

GETTING STARTED

LOADING DSEMBLER INTO COMFUTER MEMORY

1. Insert the ATARI BASIC Language Cartridge in the (Left Cartridge) slot of your
computer.,

2. If you'll be using a printer, turn it and the ATARI 850 Interface Module, if
applicable, on.

3+ If you have the cassette version of DSEMBLER!

a. Turn on your TV set,

b. Turn on your computer and connect your program recorder to the computer and to a
wall outlet.

c. Slide the DSEMBLER cassette into the program recorder’s cassette holder and press
REWIND on the recorder until the tape rewinds completely. Then press FLAY,

d. Type CLOAD on your computer and then press the RETURN key two times, The tape
will load into computer memory.

e, After the tape finishes loading, the word READY will display on your TV screen.
Type RUN and press the RETURN key. The first display screen will appear on your TV
screen.

If you have the diskette version of DSEMBLER!

a. Turn on your disk drive.

b. When the BUSY light goes out, open the disk drive door and insert the DSEMBLER
diskette with the label in the lower right-hand corner nearest to you. Close the
door.,

¢, Turn on your computer and TV set.

d+ When the READY prompt displays on your TV screen, type RUN "D!DSEMBLER" and press
the RETURN key, The program will load into computer memory and start.

THE FIRST DISPLAY SCREEN--THE MENU

DSEMBLER'’s menu appears on the screen after the program loads into computer memory. It
looks like this!

X DSEMELER ¢ MENU OF TASKS x
(c) V.Multhopp 571981

C: Conmnvert mumber M$: MENU

D! Disassemble 0: Operations

F! Fingd sequence F{ Fage displayer
H?: Hex packer {$ Recall labels
J: Jump sub (JSR)Y 8! Store labels

K?: Kill label T: Table of lashels

*

: Label reqenertr U! User section

what now (gQive a capital letter)?

Figure 1 DSEMELER‘s Meru

USING DSEMELER

INTRODUCTION

DSEMBLER is a powerful and sophisticated program for studying 6502 machine language.
Although the following instructions may seem extensive, using DSEMBLER is simple, The
following notes will help you quickly master DSEMBLER's capabilities.

Entering data and responding to prompts

Whenever DSEMBLER isn‘t executing a command, it’s waiting for you to enter something. You
enter all information (data, responses to prompts, etc.) through the keyboard and you
press the RETURN key after each entry.

In some cases, you can press the RETURN key without entering information first. We‘ll
refer to this action as a "default". Some tasks (for example, menu options D, P, and T)
automatically assign values to defaults for your convenience. Most tasks, however, abort
if you default (i.e., press the RETURN key without first entering information), and the
program then prompts you for another task.

Numerical input

DSEMBLER uses only whole numbers between 0 and 65535 ($0 and $FFFF). Using other numbers
may result in problems.

DSEMBLER accepts both decimal and hexadecimal numbers. Always precede hexadecimal numbers
with a dollar sign.

BREAKs and ERRORs

If you press the BREAK key or if an untrapped ERROR occurs, do not type RUN. Instead,
give the direct mode BASIC command GOTO MENU . Otherwise, important accumulated data
will be purged from computer memory.

DSEMBLER'’s TASKS

DSEMBLER performs a wide variety of tasks and subtasks. Each task is identified by a
capital letter on DSEMBLER's menu (see Figure 1), The tasks are explained below.

M! MENU

The Menu displays (1) when you RUN the program, (2) commit certain errors, (3) select task M

in response to a prompt for task selection, or (4) enter a direct mode GOTO MENU command.
Besides listing the tasks DSEMBLER performs, the Menu corrects certain types of chicanery you
may have committed while in direct mode.

Beneath the Menu is the prompt "what now (give a capital letter)?", This prompt appears often
while you use DSEMBLER. It indicates that the program has done everything expected of it and

is waiting for your next task. Select a task by typing its capital letter (e.g., C for the
task CONVERT NUMBER) and pressing the RETURN key,

C: CONVERT NUMBER
Use task C to convert a decimal number to its hexadecimal equivalent and vice-versa,
Remember to use only whole numbers between 0 and 65535 ($0 and $FFFF) and to precede a
hexadecimal number with a dollar sign.
This task reprompts itself so that you can convert a series of numbers without having to

reselect C each time. Or, you may go to another task by pressing an appropriate capital
letter,

DIDISASSEMELE
Use task D, the heart of DSEMBLER, to disassemble any valid 6502 machine code located in
memory. Of course, as with any disassembler, if you start disassembling in a data field,
or at the second or third byte of a multibyte instruction, your results will be garbage.

Important note! If you disassemble code contained in a BASIC string, the address of the
string in direct mode is not equal to the address in execute mode.

Task D first prompts you for an address at which to start disassembling. If you default,
the program assumes the location immediately following the last disassembly. It then
prompts you for the number of 6502 machine language instructions to disassemble, If you
default, the program does 16 instructions. (You may also select another task in response
to either prompt by pressing the appropriate capital letter.)

After you answer the two prompts, a header appears and the disasssembly begins. The
listing is formatted in five fields, as follows!

Field 1--contains the hexadecimal address of the instruction being disassembled.
First 2--contains the hexadecimal value of each byte of the instruction.

Note. Neither field uses dollar signs to denote hex values.

Field 3-—-the label name, if the instruction address has been labeled.

Field 4--contains the correct op-code for the instruction.

Field S--contains the associated (if any) operand using standard 4502 format. If the
operand refers to a labeled address, the label name will appear instead of the

address value. Immediadiate operands never show label names.

Task D reprompts itself. Or, you may go to another task by pressing an appropriate
capital letter, If you have a printer and want a hard copy disassembly, see task O.

L! LABEL REGENERATOR

By "label", we mean a memory address and a name associated with that address, Task L
first prompts you for the address to be labeled, and then for the label name, You can use
this task to rename an existing label. Just give the old address and the new name.

The following rules apply to label regeneration?
1. You can create a maximum of 254 different labels.
2, Do not label address $00,
3. Label names must be between two and eight characters.

4, Although the program doesn’t restirct you as to the characters you may use in
label names, you should limit yourself to characters your printer can produce.

Task L reprompts itself, Or, you may go to another task by pressing an appropriate
capital letter,

T: TABLE OF LABELS

Use task T to produce a listing of label values and their associated names. The task
prompts you for an initial specification. You need enter only as many characters as are
contained in all the label values you want to list. If, for example, you respond with
"C", all labels with names beginning with C display (and no others), If you respond with
"COL", all labels with names starting with COL display. If you default, the program
lists all labels.

You cannot select task T without getting some kind of listing, even though the list may
contain zero entries. The program lists 40 labels to the screen at one time} to continue
the listing, press the RETURN key (default), Or, you may go to another task by pressing
an appropriate capital letter. To obtain a hard copy of the Table of Labels, see task O.

S and R! STORE and RECALL LABELS

Use task S to store a file of labels on cassette or diskette and task R to load a file of

labels from diskette or cassette inta computer memory, Task R erases all labels currently
in RAM,

It’s good practice to create a file of standard labels with which you’re familiar and to
recall the list at the start of each session. You can then produce a specialized file of
labels for each section of machine code you‘re studying.

For CASSETTE USERS

Respond to the prompt with a "C", No filenames are used with the cassette. Then
follow the regular cassette handling procedures with which you are familiar.

For DISKETTE USERS

Respond to the prompt with "Difilename", where "filename" is the name you assign the
file. Always use the extension ".LBL" to identify a Label file. Specify an alternate
drive by preceding the device code with the drive number (e.g., D2 for drive twao). A
Label file occupies 23 single-density disk sectors. These two tasks are somewhat
slow; have patience.

K! KILL LABEL

Use this task to remove a current label. Respond to the prompt with the address of the
label you want purged. You needn’t use this task to rename a label} select task L (Label
Regenerator) directly.

If you want to remove a label named, for example, "GEORGE", and have forgotten the
address, first select task T (Table of Labels) and enter GEORGE in response to the
prompt. Then select task K and enter GEORGE's address.

Task K does not reprompt itself. You may go to another task by pressing an appropriate
capital letter,

P! MEMORY PAGE DISPLAYER

Memory is divided into 256 "pages" of 256 bytes, The page number is the same as the high
byte of an address. Use task P to scan a page (or two) of memory quickly. A primary use
of task P is to scan memory for ATASCII characters. To use task P, give the number of the
page you want displayed in response to the prompt.

The extensive character set of the ATARI 400/800 Home Computer assigns a unique character
to (almost) every byte value, The one exception is CHR$(155), whose control function

cannot be escaped. For this character, DSEMBLER prints the escape character and gives a
peep.

Task P reprompts itself., Defaulting displays the next page. Or, you may select another
task by pressing an appropriate capital letter.

H! HEXPACKER

DSEMBLER does not contain an assembler, but with this hex loader you can quickly load RAM
with machine code. Most assembly listings give the hex value of each byte.

Task H first prompts you for the address at which to begin the loading process. Then it
prompts you for each byte. IMPORTANT NOTE! Enter each byte as a one- or two-digit
hexadecimal with NO DOLLAR SIGN! A dollar sign will precede the prompt. This is the
exception to the rule that DSEMBLER is indifferent to the hex or decimal mode of a
number, and it was done to save you keystrokes.

To end the packing process, press the RETURN key (i.e., a default) in response to the
prompt for another byte.

J1 JUMP TO A MACHINE LANGUAGE SUBROUTINE (JSR)

0

+
+

Use this task to jump to a real machine language subroutine with the 6502 X, Y, and A
registers set as you wish, Task J prompts you for each register in turn and then for the
address to be JSRed to. You may also preset register P} see task O (Operations), After
the appropriate RTS is processed, control passes back to DSEMBLER and the program
displays the exit values of the X, Y, A, and P registers.

Note! Unless you know what you’re doing, using task J will probably cause DSEMBLER to
crash, You’ll have to turn off the computer, turn it on again, and start everything from
scratch. This is no task for faint hearts and fickle folks, You may select another task

at any time by entering an appropriate capital letter,

OPERATIONS

Task O is a submenu of five items. It looks as follows!

Operations?

count labels

printer on/off

force set F- on/off
table of a1l DOS files
table of X.LEL files
which number?

MW=

Figure 2 Operatiorns Submenu

Respond to the prompt with the appropriate number, Operations 2 and 3 are toggle
switches, Calling them once turns them on} calling them again turns them off, You can do
the following operations with Task O.

1! Count Labels
This subtask displays a count of the current number of labels in RAM,

2! Printer on/off :
This subtask affects only tasks D and T, Every disassembly (task D) automatically
prints after you select this subtask. For task T, the label table also displays on
your TV screen and prints. The screen display doesn‘t stop after every 40 labels; it
displays continuously until the end.

You may communicate directly to the printer after selecting the subtask by pressing
the BREAK key and then typing the direct mode command PRINT#4}-. After completing

this activity, you can return to DSEMBLER with a direct mode GOTO MENU statement.
No labels will be lost,

3! Force set P- on/off
This subtask has nothing to do with printer, It affects task J only. After toggling

on subtask 3, everytime you select task J, you must preset register P (the processor
status register), Doing so significantly increases the likelihood of crashing the
system, However, task J will ignore any attempt to set P=32($20),

4} and 5! Table of (diskette) files--for DISKETTE USERS only
These subtasks list all diskette files, or only those with the extension ".LBL",
These subtasks prompt you for a drive number. The default is drive ane.

F! FIND SEQUENCE

Task F uses another submenu, Use task F to search any part of memory for any specified
sequence of bytes. You may also designate any byte value to be a "wild card", The program
ignores a wild card during the search except as a place holder. You may use the wild card

repeatedly in your search specification. The initial appearance of the submenu is as
follows:

Find?$

1! Start addr- $00

Fimish addr- $FFFF

Wild card?- NO

spec. bytes and Qo firmd.

DS WN
e o oo

Which subtashk?

Figqure 3 Find Sequernce Submeru

The values next to subtasks 1, 2, and 3 change as you use the subtasks.

1! Start addr- $00
Select 1 to change the address at which your search is to begin.

2! Fnish addr- $FFFF
Select 2 to change the address at which your search is to end.

3! Wild card?

Use 3 to set or change the value of the wild card. To cancel the wild card, give a
value greater than $FF (255),

i spec, bytes and go find
Use 4 to enter your search specification. Each byte is indivdually prompted. You may
enter from two to fourteen bytes. Pressing the RETURN key (a default) initiates the
search process. Each address matching the input specification displays on the screen.

You may select another task at any time by pressing an appropriate capital letter.
The values you enter in subtasks 1, 2, and 3 remain in effect until you change them.
As always, you may use either decimal or hexadecimal values.

An example can help explain how to use this task. Suppose we want to find all places
in the ATARI BASIC Language Cartridge where a Load A from zero-page instruction is
followed by a BNE. The BASIC cartridge runs from $A000 to $BFFF. An LDA Z-page is

coded as $AS, A BNE is $DO0. The unspecified operand of the LDA instruction will
have to be wild-carded. We do the following:

F <RETURNI -=* call task F

1 <RETURN:

$A000 RETURN --* set the start
2 “RETURN:

$BFFF <RETURN> -- set the end

3 <RETURN:

$FF <“RETURN> --* gset a wild card

F “RETURNX == just checking!

4 <RETURN: -=* start specifying

$AS <RETURN>» ~-3» the LDA

$FF <RETURN:* --> wild-card the operand

$D0 “RETURN:> ==3 the ENE
SRETURN --» start search

The listing that follows depends on your BASIC cartridge. Of course, some of the
addresses might represent data fields and not machine code, Check using the
disassembler,

U USER SECTION

As is, this task simply lists a section of BASIC code, You may want another task not
included in the Menu. To create your own task, select task U, press the BREAK key, delete
the indicated line, and write your own task in the indicated area. Then type a direct

mode GOTO MENU command and debug. You may then select the new User task like any other
Menu item.

If the User task requires a numerical input, then use the following coding to achieve a
flexible, DSEMBLER-like input!

prompt—={ INFUT IN$:GOSUE TRANS
If the input is a decimal or hexadecimal number, then the subroutine TRANS will return,
the variable DEC will contain the decimal value of the input, and IN$ will contain its

hexadecimal representation. Otherwise, the subroutine TRANS will POP, and the input is
interpreted as a task selection. In the worst case, the MENU will redisplay.

-10-

TIFS FOR USERS

WORKING IN DIRECT MODE

DSEMBLER has been designed so that you may work in direct mode and then return to
DSEMBLER with all data (such as regenerated labels) intact. You press the BREAK key, do
your direct mode operations and return to DSEMBLER with a GOTO MENU statement, Your
direct mode activity can be as simple as a PEEK, or as complicated as merging and using
another program. In the latter case, be careful not to reinitialize DSEMBLER or to clear
variables accidentally with a RUN statement.

Diskette users may actively access and use the DOS MENU if a MEM.SAV file has first been
created, In that case, you can use DSEMBLER, then press the BREAK key and call DOS. Do
your DOS activity (probably a BINARY LOAD or SAVE) and return to DSEMBLER through DOS
option B (Run Cartridge). When the READY prompt appears, type the direct mode GOTO MENU
command. The disadvantage of this technique is that calls to and from DOS are very slow.
Cassette users with the Assembler/Editor Cartridge need to go through a specdial step.
With orginal ROM configurations, the Assembler/Editor Cartridge produces cassette object
files that BASIC can’t load without the assistance of a special loader program. Listed
below is such a program espedially designed for use with DSEMBLER!

1 OFEN #5,4,0,"C"!GET #5,K:GET #5,K:TRAF 5

2 GET #5,KIGET #5,J!AD=256XJ+KIGET #5,K!GET #5,J!R8=2546%J+K

3 GET #5,K!{FOKE AD,K:AD=AD+1:IF AD«<=R8 THEN 3

4 GOTO 2

S CLOSE #5:G0TO MENU

To use this utility, carefully copy the five lines and make a LISTed version. Then, to

load a cassette object file while using DESMBLER, press the BREAK key and ENTER the
utility program. Then use a direct mode GOTO 1 command to load the object file, After the
load is complete, the MENU redisplays.

You may wish to go a step further and CSAVE a version of DSEMBLER which includes this
utility. In that case, add the line

0 GOTO S000

CSAVE the DSEMBLER program with the six added lines. You can then CLOAD and RUN as
normal, and BREAK and GOTO 1 everytime you need an object file load.

EXAMINING USR FUNCTIONS CONTAINED IN STRINGS

Atari BASIC moves strings around a great deal. This movement causes problems when
examining USR functions whose codes are stored in strings. It's therefore necessary to

11

copy the code into fixed RAM locations before disassembling. Page é is an excellent place
to recopy, if the string is not too long. To copy, for example, MACH$, onto page &, press
the BREAK key and enter the following direct command:

FOR J=1 TO LEN(MACH$)(FOKE 1535+J,ASC(MACHS$(J)) INEXT J

MERGING PROGRAMS

You can merge DSEMBLER with other programs to study USR functions. To merge programs,
make a LISTed version of one program, LOAD the other program into RAM, and then ENTER the
first program. The following problems may arise, however!

1. Insuffident RAM

2. Too many variable names

3. Conflict between variables

4, Conflict between BASIC lines

S+ DSEMBLER will run more slowly if there are lower numbered lines.

Paring the program to be studied down to those lines essential to the USR functions helps
alleviate these problems.

DSEMBLER uses a large number (about 75) of variable names, You may inspect these by
leafing through memory with task P (Page displayer) until you find the variable name
table. The last character of each variable name appears in inverse video, Remember that
ATARI BASIC allows only 128 different variable names,

If necessary for merging, you may renumber DSEMBLER.,

HOW TO RENUMBER DSEMBLER

DSEMBLER occupies BASIC lines 5000 to 9999. You can’t shorten this S000-line span, but
you can renumber DSEMBLER to start anywhere from 0 to 27000 by following these directions!

1, RUN the program and press the BREAK key.
2. Enter the folowing lines!
32000 INFUT LINE1:K=5000~-LINE1:AD=FEEK(136)+FEEK(137)%X256
32010 J=FEEK(AD)+N2S6XFEEK(AD+N1)$IF J»=32000 THEN LIST LINE1:END

32020 J=J-KIR4=INT(J/N256) tR8=J-N256XR4:FOKE AD,R8:FOKE AD+N1,
R4:AD=AD+FEEK(AD+N2) {1GOTO 32010

3, Do a direct mode GOTO 32000 command.

4, A question mark will appear. Give the line number with which DSEMBLER is to start.

S+ After a few seconds, a BASIC line with the new line number will appear. The first
statement should read "LINE1=5000", Change this number to reflect the new line number.

6. Now do a direct mode RUN command. The menu should display. Test several tasks to make
sure everything is ok.

7. Delete the three utility lines and SAVE,

SUNDRY NOTES ABOUT DSEMBELER
1. Sound channel 3 is used for audible cueing.

2, IOCB#5 is used for communicating to the cassette or diskette, IOCB#4 is used for the
printer.

3. The Menu contains a conditional GRAPHICS statement, the idea being to avoid clearing
the screen.

4, DSEMBLER uses no DATA statements or tab spacing.

STRINGS USED IN DSEMBLER

General purpose strings
IN$ is the primary input/output string, JUNK$ is used for auxilary purposes.

Data strings
LBL$ contains the current file of regenerated labels. It is divided into 256 fields of 11
bytes each. The first two bytes of each field contain the value of the label, high byte
first, The third byte contains the length of the label name. The rest of the bytes hold
the given label name.
OPC$ holds all the 6502 opcodes, arranged in alphabetical order.
KEY$ is used in decoding the machine instructions. KEY$ is set up into 256 fields of two
bytes each, The first byte is a pointer into OPC$. The second byte determines the proper
mode of address.

Strings holding USR functions

DELAS% generates a time delay for the audible cues. It is used in place of an empty
FOR/NEXT loop to make it independent of the number of preceeding BASIC lines.

MAKES is used by task L to insert new labels,

KIL$ is used by task K to remove unwanted labels.

-13~

CK$ is used to check if a given value has been labeled.
FN$ is used by task F to find the specified sequence of bytes.

PR$ is a somewhat clumsy method of outputting to the printer. It reads the current screen
line, converts it to ATASCII, and dumps it into IN% for output.

JSR$, of course, is used to set up and make the jump to the specified section of code,
and then to catch the values of the registers upon the return.

Note. None of these USR functions uses any fixed RAM, except the floating point
registers $D4 to $F1, These registers get waltzed over by practically every BASIC
statement anyway. JSR$ uses these registers before and after the jump, but nothing is
held there for the duration of the subroutine,

-14-

LIMITED WARRANTY ON MEDIA AND HARDWARE ACCESSORIES.

We, Atari, Tic, guarantee to you, the original retail purchaser, that the medium on

which the APX program is recorded and any hardware accessories sold by APX are free from
defects for thirty days from the date of purchase. Any applicable implied warranties,
including warranties of merchantability and fitness for a particular purpose, are also
limited to thirty days from the date of purchase. Some states don‘t allow limitations on

a warranty’s period, so this limitation might not apply to you. If you discover such a

defect within the thirty-day period, call APX for a Return Authorization Mumber, and then
return the product along with proof of purchase date to APX, We will repair or replace

the product at our option,

You void this warranty if the APX product! (1) has been misused or shows signs of
excessive wear; (2) has been damaged by use with non-ATARI praducts; or (3) has been
serviced or modified by anyone other than an Authorized ATARI Service Center, Incidental
and consequential damages are not covered by this warranty or by any implied warranty,
Some states don’t allow exclusion of incidental or consequential damages, so this
exclusion might not apply to you.

DISCLAIMER OF WARRANTY AND LIABILITY ON COMPUTER PROGRAMS.

Most APX programs have been written by people not employed by Atari, Inc, The programs we
seiect for APX offer something of value that we want to make available to ATARI Home
Computer owners, To offer these programs to the widest number of people economically, we
don’‘t put APX products through rigorous testing. Therefore, APX produts are sold "as is",
and we do not guarantee them in any way. In particular, we make no warranty, express or
implied, including warranties of merchantability and fitness for a particular purpose, We

are not liable for any losses or damages of any kind that result from use of an APX
product,

ATAHBRT PROGEAM EXCHAMNMGE

REVIEW FORM

We’re interested in your experiences with APX programs and documentation, both favorable and
unfavorable, Many software authors are willing and eager to improve their programs if they know
what users want. And, of course, we want to know about any bugs that slipped by us, so that the
software author can fix them. We also want to know whether our documentation is meeting your needs.
You are our best source for suggesting improvements! Please help us by taking a moment to fill in
this review sheet, Fold the sheet in thirds and seal it so that the address on the bottom of the

back becomes the envelope front. Thank you for helping us!

1. Name and APX number of program

2, If you have problems using the program, please describe them here,

3+ What do you especially like about this program?

4, What do you think the program’s weaknesses are?

3+ How can the catalog description be more accurate and/or comprehensive?

&, On a scale of 1 to 10, 1 being "poor” and 10 being "excellent", please rate the following
aspects of this program?

Easy to use

User-oriented (e.g., menus, prompts, clear language)
Enjoyable

Self-instructive

Useful (non-game software)

Imaginative graphics and sound

7. Describe any technical errors you found in the user instructions {please give page numbers).

8. What did you espedally like about the user instructions?

7+ What revisions or additions would improve these instructions?

10, On a scale of 1 to 10, 1 representing "poor” and 10 representing "excellent”, how would you
rate the user instructions and why?

11, Other comments about the software or user instructions!

ATARI Program Exchange
Attn! Publications Dept,
P.O., Box S0047

&0 E. Plumeria Drive

San Jose, CA 93150

[seal herel

