‘

ATARI® PROGRAI\/I EXCHANGE

i
v
PN

Cassette: 16K (APX-10026) Diskette: 24K (APX-20026)

Harry Stewart

EXTENDED WSFN

An educational graphics language
for beginning programmers

— User-Written Software for ATARI Home Computers

Harry Stewart

EXTENDED WSFN

An educational graphics language
for beginning programmers

Cassette: 16K (APX-10026) Diskette: 24K (APX-20026)

EXTERNDED MRMSFMN
by

Harry Stewart

Froaram and Manual Contents © 1982 ATARI, Irnc.

Copyright notice. On receipt of this computer program and associated documentation (the
software), ATARI, Inc, grants you a nonexclusive license to execute the enclosed software.
This software is copyrighted. You are prohibited from reproducing, translating, or
distributing this software in any unauthorized manner.

Distributed By

The ATARI Program Exchange
P.O. Box 3705
Santa Clara. CA 95055

To request an APX Product Catalog, write to the address above. or call toil-free:

800/538-1862 (outside California)
800/672-1850 (within California)

.Or call our Sales number, 408/727-5603

Trademarks of Atari
The following are trademarks of Atari, inc.

ATARI®

ATARI| 400™ Home Computer

ATARI! 800™ Home Computer

ATARI! 410™ Program Recorder

ATARI 810™ Disk DOrive

ATARI 820™ 4Q-Column Printer .
ATARI 822™ Thermal Printer .

ATARI| 825™ 80-Column Printer

ATARI! 830™ Acoustic Modem

ATARI| 850™ Interface Moduie

Printed in U.S.A.

IMFORTANT!

DUFLICATE
THIS
DISKETTE
EEFORE
USING
THIS
FPROGRAM !

This APX diskette is unnotched to protect the software against
accidental erasure. However, this protection also prevents a program
from storing information on the diskette. The program you’ve
purchased involves storing information, Therefore, before you can use
the program, you must duplicate the contents of the diskette onto a

notched diskette that doesn’t have a write-protect tab covering the
notch.

To duplicate the diskette, call the Disk Operating System (DOS) menu
and select option J, Duplicate Disk. You can use this option with a
single disk drive by manually swapping source (the APX diskette) and
destination (a notched diskette) until the duplication process is
complete, You can also use this option with multiple disk drive
systems by inserting source and destination diskettes in two separate
drives and letting the duplication process proceed automatically.
(Note. This option copies sector by sector. Therefore, when the
duplication is complete, any files previously stored on the

destination diskette will have been destroyed.)

PREFACE

WSFN (TURTLE) was originally planned for release in cartridge form. This version is either on
diskette or cassette, Therefore, please substitute the word applying to the version you have
whenever you read the word "cartridge" in these instructions.

Two documents accompany TURTLE. ATARI WSFN (TURTLE) is a tutorials EXTENDED WSFN (TURTLE)
is a reference manual.

REQUIRED ACCESSORIES
16K RAM for cassette version
24K RAM for diskette version

ATARI 410 Program Recorder for cassette
ATARI 810 Disk Drive for diskette

GETTING STARTED.
If vou have the cassette version of TURTLE!
1, Have your computer turned OFF,
2, Insert the TURTLE cassette in the program recorder, press REWIND, and then press FLAY,
3+ Turn on your computer while holding down the START key.

4. When you hear the beep, release the START key and press the RETURN key. TURTLE will
load into RAM and you’ll see the TURTLE display screen.

If you have the diskette version of TURTLE!

1. Turn on your disk drive, insert the TURTLE diskette, and power up your computer.
2, When the READY prompt displays, type DOS to call up the menu.

3. Enter menu selection L (Binary Load).

4, To the LOAD FROM WHAT FILE? prompt, enter TURTLE and press the RETURN key. TURTLE
will load into RAM and you’ll see the TURTLE display screen.

TABLE OF CONTENTS

1. Turtle overview

e
NPHPWwMNE

Turtle's domain
Drawing

Control of turtle
Keyboard control.
User defined commands

Command forms

2.1

[ASEAS N S N AN N
L] L] L] . .
O LW

.
—

WWWLWWLWWWWwwwww
. L] . . L] [] . .
WO~V BWRN

1

4,
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.1

Single letter
Testing commands
Iteration
Nesting
Command/value
Definition

. Specifié commands

Turtle position & orientation
Turtle "senses"

Turtle manifestations

Turtle world

Turtle arithmetic

Iteration

Nesting commands & clauses

User defined commands & variables
Random test

.10 Mode control & options
.11 No-ops

. Examples

Set ACC
Set ACC
Set ACC
Set ACC
Set ACC

9
23
ACC *2
ACC *7
ACC /7

Set pen color to 1 without altering ACC

Find upper right corner of screen
Recurse by number in ACC
Sierpinski Curve

Hilbert Curve

0 Trinary tree structure

TABLE OF CONTENTS (cont.)

4. Examples (continued)

4,11 Spirals

4,12 Super spirals

4.13 Diagonal plaid

4.14 Random pattern #1

4.15 Random pattern #2

4,16 Random pattern #3

4,17 Koch Curve

4.18 Hilbert Cruve (written in Pascal)
APPENDICES

Appendix A - List of commands

Appendix B - Error status codes

Appendix D - Pen selects (by screen mode)

Appendix E - Color register values

Appendix F - Joystick trigger tests

Appendix G - ROM resident user commands

Appendix H - Audio select options

1. TURTLE OVERVIEW

The turtle package provides the user with the ability to generate
screen graphics using a few simpie keyboard commands. The drawing
element is called a turtle, which may move around the screen leaving
"tracks" (or not, at the usér's discretion). His motion and direction
are controlled with five commands, each of which is a single keystroke:

H - Place turtle on home position (center of screeﬁ).

N - Point turtle north (up).
R - Rotate turtle 45° clockwise.
L - Rotate turtle 45o counterclockwise.

n

- Move turtle forward one unit.
These commands are sufficient to draw pictures of any degree of com-
plexity, when coupled with other commands and capabilities. Beyond
. thg command set provided by the turtle package, the user may define
‘additional commands which are conglomerations of other system or user
commands. Nested and/or recursive command structures may be defined

which behave very much like programs in more procedure-oriented lang-

uages.

1.1 TURTLE'S DOMAIN

The turtle's domain consists of two regions: (1) the visible region and
(2) the invisible region. The domain is fixed in size as a 65536 by

65536 "sphere" with the visible region being variable in size, depending
on the current display mode and resolution. The turtle may be confined

to the visible region or not, at the user's discretion.

THE TURTLE

TURTLE'S DOMAIN

/FNORTH

N
32768
Units
Vs s, HOME
st
WEST ﬁ50§291Qn |
22768 Invisible
Units Region
v
<3768 units 32768 units >
SOUTH

EAST

Note that the domain is "spherical". in that the East & West

edges are joined as are the North & South edges.

PAGE 2

1.2

THE TURTLE PAGE 3

The turtle is always defined by his position and orientation. From
his position, he may move to any of 8 adjacent "cells" based upon his

orientation, as shown below.

7

b

In addition to moving to an adjacent cell, the turtle may also "sense"

whether a cell is in the visible region or not, and detect the presence

of a "track" in an adjacent cell.

CRAWING
The turtle draws by leaving "tracks" with a magic marker which is con-
trolled with three commands. -
U--which stands for pen up; this allows the turtle to move without
leaving tracks.
P--is the pen select command; this selects one of three colors for
the pen, or erase (which removes tracks that the turtle crosses).
D--which stands for pen down; this causes the turtle to leave

tracks of the current pen color.

1.3

THE TURTLE PAGE 4

The turtle can also detect tracks that are already in his region with the

"S" (sense) command.

CONTROL OF THE TURTLE

The turtle is controlled by keyboard commands, which are executed as

they are entered. Command execution may be deferred, however, by using
the nesting capability provided by the () and € J matched sets. Thus, if
(CHNR999F) is entered, none of the commands within the parens will be exe-
cuted until the matching right paren is entered--at which time the string
of commands will be executed at full speed. The cémmand string above does

the following:

C - Clear the screen

H - Home the turtle)
N - Face him North |

R - Rotate him to the right (now facing NE)

999F - Move forward 999 times (each time 1leaving a track, if
the pen is down).
This example illustrates another feature, that of repetition (or iteration);
a number preceding a command indicates that the command is to be executed
as many times as indicated by the number. This feature also applies to the
nesting brackets; thus, the example below includes nested iterations:
4(2R 4(10F2R))
W
Draws a square
I

N\
Draws 4 squares with a common corner:

1.4 KEYPOARD COMTROL

The keyboard is monitored at all times, even while a command is being executed; if a key
is pressed, the current command is tempararily suspended, the newly entered command is
executed, and then the prior command is resumed. This command interruption may actually

be accomplished to any number of levels (commands interrupting commands interrupting

commands, etc.).

The BREAK key stops all command activity and puts the turtle into an idle state.
CTRL-<key> and lower-case {key> are equivalent.

USER DEFINED COMMAMNDS

The user may define unused keys to be "macro”" commands——conglomerates of intrinsic and/or
user defined commands. These commands may recurse, if desired, and may alsg, in turn,

define other commands or redefine themselves,

n

THE TURTLE PAGE 6

2. COMMAND FORMS

Turtle commands fall into one of six forms, as will be described in

the paragraphs that follow.

2.1 SINGLE LETTER

LcommandY ::= <name)

Many commands are of this form, where a single key stroke
(the name) is the command. Examples are: H (Home), C (Clear),

F (Forward).

2.2 TESTING COMMANDS

Lcommand) ::= name> <then) <else)

There are four commands of this form, where a test is made and
either the (thend clause or the (elsed> clause is executed, (but
not both. Examples are: T (Test Acc.), E (Edge test) and ? (Ran-

dom test).

2.3 ITERATION

Lcommand) ::= value) claused

There are three commands of this form, where a numeric value is
used to iterate a following clause. Examples are: A (Iterate by

ACC), #v (Iterate by variable), and n (Iterate by number).

THE TURTLE PAGE 7

2.4 NESTING

Lcommangd> ::= <nesting bracke§<c1ause>..(cTauseXmatching bracket)

There are two nesting bracket sets: (...) and [:J .

2.5 COMMAND/VALUE

&omand> ::= <pamed (value)

2.6 DEFINITION

named [<o aused

d ::
{command} B (el

THE TURTLE PAGE 8

3.

SPECIFIC COMMANDS

3.1

3.2

Home Turtle - H

TURTLE POSITION & ORIENTATION

Puts turtle to the center of the screen and leaves his "track"

if the pen is down; does not alter turtle orijentation.

Point Turtle North - N

Faces the turtle towards the top of the screen without altering

his position.

Turtle Forward - F

Moves the turtle forward one unit and leaves his "track" if the
pen is down; does not alter turtle orientation unless the screen

edge is hit in reflect mode.

Rotate Turtle Right - | R

Rotates the turtle clockwise 450. - -

Rotate Turtle Left - L

Rotates the turtle counterclockwise 450.

TURTLE "SENSES"

Sense Color Value - | S

Reads the color of the square in front of the turtle and puts it
into the turtle accumulator (ACC). Background is read as zero,
turtle tracks are read just as they were written, and squares

beyond the screen edge are read as zero.

THE TURTLE PAGE 9

3.2 TURTLE “SENSES" (continued)

- Joystick/Trigger Sense - | $<Lselectdond HFE

Tests the selected joystick position, joystick trigger and
executes either the <on> clause or <off> clause, based
upon the result of the test. See Appendix F for a list of

the select codes for the various sensible items.

Joystick position and triggers are continuously sensed;

there is no edge detection or reset logic.

- Pot Controller Read - %~<§e1ec€>

Reads the selected pot controller and puts its value in the
accumulator; the controller range is from @ (full counter-
clockwise) to 228 (full clockwise). The selectd values

range from @ to 7 corresponding to the 8 pot controllers.

- Orijentation Sense - :

Sets the accumulator to one of the values shown below, based

on the current orientation:

o - N
1 - NE

7 @ 1
2 - \T/
3 - SE o< >
PR

3

5 - SW h
6 - W

7 - NW

THE TURTLE PAGE 10

3.2

3.3

TURTLE "SENSES" (continued)

- Edge Test - | E <true> <falsé>

Tests to see if the square in front of the turtle is at or beyond

the screen edge; if so, the < true)> clause is executed; otherwise,

the {falsed clause is executed.

TURTLE MANIFESTATIONS

- Beep - B

Generates an audible tone using the television sound system.

-PenlU -] U

Allows the turtle to move without leaving tracks; this command

is countermanded by the "D" command described below.

- Pen Down - | D

Lowers the pen, which means that the turtle will leave tracks

(or erase), depending upon the current pen color selected.

- Audio Control - |CTRL-A J<letter>

Allows sounds to be generated as manifestations of internal

registers of the turtle program, as shown in Appendix H.

- Wait - W

Causes the turtle to wait for the next 30 HZ clock tick before
resuming execution of turtle commands. See also 3.10 for a

description of the speed control command.

THE TURTLE

3.3

3.4

PAGE 11

TURTLE MANIFESTATIONS (continued)

- Pen Select -

P

The value of the turtle accumulator modulo 128 is used as

the color select for turtle tracks, until changed. Zero is

background (erase) and is not the same as issuing a "PEN UP"

command.

- Turtle Representation - |CTRL-T <number>

Selects or de-selects a turtle overlay that nondestructively

shows turtle position and orientation at all times.

<number) =
<{numberd =
<number>
<numbe> =

TURTLE WORLD

- Ciear Screen

2,

de-selects the overlay;
selects an arrow overlay;
selects a turtle overlay;

selects a point overlay.

C

Clears all turtle tracks from the screen without altering the

turtle position or orientation.

- Edge Rule Select

CTRL-E <number)

Selects one of four rules to follow when the turtle encounters

the edge of the

number =
number =
number =

number =

screen.

@, turtle stops;

1, turtle wraps to opposing edge;

2, turtle bounces (reflects) off edge;

3, turtle goes off edge but does not Teave

tracks until he gets back in screen boundary.

2.4 TURTLE WORLD (continued)

If the turtle isn’t in the screen boundaries when an edge rule is selected, he’ll be put
to the home position.

- Display Mode Select - | CTRL-D {number> |

Preselects one of the eight display modes available (see Appendix C for descriptions of

each mode), The mode change takes place with the next operating mode select (CTRL-M, see
3.10)

- Color Register Values - | & {select> I
Allows the hardware color register selected to be updated with the value in the turtle

accumulator. See Appendix D for the utilization of the color registers for each screen

mode and see Appendix E for color register values to use to get the desired colors and
luminescence.

2,5 TURTLE ARITHMETIC
- Increment Turtle Accumulator -
Adds one to the four-digit ACC} won't increment it past all nines,
- Decrement Turtle Accumulator - [=]
Subtracts one from the four-digit ACC; will not decrement it past zero.
- TestAACC for = Zerp - [T<true><{falser | |

Tests to see if the ACC is greatef than zerb: if so, the <true> clause is executed;
otherwise, the {false> clause is executed,

- Set ACC toZero - [@]

Sets the ACC to zero.

- Eet ACC to Number - | <constant> (3 |

Sets the ACC to the value of the constant,

- Set ACC to Variable - | #<variable> @ |

Sets the ACC to the value of the variable,

THE TURTLE PAGE 13

3.6 [ITERATION

- Iterate by Constant - |{constant) (clause)

[terates the <c'lause> by the number indicated in the constant.
If the constant is zero, the claused is not executed at all.
If <:constanﬂ> exceeds four digits in length, the last four

digits are used.

- Iterate by Variable - |# <variab1é>'<c1ausé>

Same as above, except current value of the indicated variable

is used instead of a constant.

- Iterate by Turtle Accumulator -| A claused

Same as for CONSTANT, except current value of the ACC is used
instead of a constant. The {clause) may'modify the ACC without

changing the iteration count.

- Stop Iteration - !

When executed, makes the current iteration the last iteration
(set the iteration count to zero) within the current iteration

level. This command will not affect outer level iteration counts.

= Increment Iteratijon Count - A

When executed, increments the current .iteration count. Has

no effect if not executed within an iteration.

3.7 NESTING COMMANDS & CLAUSES
- Basic Nest - (<clause) ... {clause))
Any number (including zero) of <(c1ause§> may be nested together
creating a single new clause, using matched parentheses. Parens

may exist within other parens to any level desired.

THE TURTLE PAGE 14

3.7

3.8

NESTING COMMANDS & CLAUSES (Continued)

- Accumulator Save/Restore Nest - C...]

Behaves the same as above except that the turtle accumulator

is saved and restored by the [and] commands.

USER DEFIMNED COMMANDS & VARIABLES
- Define User Command -| = <named {clause>
= *¢name »claused -

Creates a definition in memory whereby the < clause> may be

invoked merely be using the <name); the optional * allows
¢name>to be the same as one of the turtle intrinsic commands.

If the (clause > consists of a blank character (NOP), the (name>

will be removed from the user command directory.

- Invoke User Command -| <name)

*L name>

Once defined, a user command may be used exactly as an intrinsic

command is used; however, if <name) is the same as an intrinsic
command, the * must be used, as intrinsic commands have a higher

priority in the name search.

- Get User Command Definitions - | CTRL-G "< name) "

This command clears the current set of user commands and reads in
a new set from the indicated device. The device name is in the

standard format, e.g., "C:", "D:HILBERT", etc.

- Put User Command Definitions - | CTRL-P " name) "

This command writes the current set of user commands to the indi-
cated device. The device name is in the standard format, e.g.,

“C:", "P:", "D:HILBERT", etc.

THE TURTLE PAGE 15

2.8 USER DEFINED COMMANDS & VARIABLES

- Load ROM Resident Command Definitions - | CTRL-L {character)

This command clears the current set of user commands and reads
a new set from ROM. The character following the command indi-
cates which of several sets to load. See Appendix G for a list

of command sets and their content.

- Run ROM Resident Command - | CTRL-R {character)>

This command performs all of the functions of the LOAD command
described above, and in addition, executes one of the commands

loaded. See Appendix G for more information.

- Clear User Variables -] CTRL-C

Removes all user variables from memory.

- Define User Variable - |= # ¢name)

Creates a definition in memory whereby the current value of the
turtle accumulator is assigned to the indicated <<name:> . Any
character may be used as a <fname§>. See section 3.6 for the

use of variables.

2.2 RANMDCM TEST

- Random Test - | ' <then:<else: |

Randaomly executes either the <then> or the {else> clause, using a hardware random bit
generator,

2.10 MODE COMTROL & OPTIONS
- Reset - [CTRL-T]
Restores WSFN environment to the same as after an initial start.
- Edge Rule -
CTRL-E 0 = Stop at edge;
CTRL-E 1 = Wrap at edge;
CTRL-E 2 = Reflect at edge}
CTRL-E 2 = Disappear at edge.*
- Speed Control - [CTRL-E <number> |
CTRL-S 0 = Run full speed;#
CTRL-5 1 = Single step (press CTRL-4 to step);
CTRL-S 2-7 = Run with delays!
2 = 20 commands/sec,
3 = 15 commands/sec.
Ta

=~1 command/sec.

* power-up default

-1&-

THE TURTLE PAGE 17

3.70 MODE CONTROL & OPTIONS (continued)

- Operating Mode -| CTRL-M < number
CTRL-M ® = Draw mode (full screen graphics) ;
CTRL-M 1 = Debug mode (full screen text);
CTRL-M 2 = $lit screen with internal registers;
CTRL-M 3 = Normal mode (Split screen with input echo only).

DRAW MODE: In draw mode, the entire screen is dedicated to
turtle graphics. Commands are executed as they are entered
and the user is typing "blind" (the commands are executed,

but there is no echoing of the command name to the screen).

DEBUG MODE: In debug mode, the entire screen is dedicated to
text data. Commands to be executed must be entered using the
RETURN KEY and line editing may be performed upon input com-
mand lines. The screen shows the internal workings of the -
turtle and also shows all user defined variables and command

definitions.

SPLIT-DEBUG MODE: In split-debug mode, the upper portion of

the screen is dedicated to turtle graphics and the lower por-
tion contains four text lines. The first two text lines show
the turtle registers as in debug mode and the other two text

lines are for command entry.

*

power-up default

*

THE TURTLE PAGE 18

NORMAL MODE: Normal mode is similar to split-debug except
that the text portion of the screen is used solely for com-
mand entry. When one cqmplete command has been entered, the
cursor will move to the beginning of the next line (this may
cause the text to scroll); when the command has finished the
execution, the cursor will move to the beginning of the next

line.

DRAW MODE SCREEN (MODE 9):

Graphics data

J

Turtle accepts inputs as typed without echoing them to the

screen; na line editing is allowed.

THE TURTLE PAGE 19

DEBUG MODE SCREEN (MODE 1)

ACC=0pPPP@ NUMBER=00P® LEVEL=0000 |l c ;
(1) {Frfrer EEROR= Execution data
(2) = }User input line
_(CHNA-44F) Previous command line
ASOPPl X=PPez Z=P0@> User defined variables
G=4F
[=4(10FZR)
Z=A-
~ >User defined commands
(1) AcCC = Turtle accumulator value
NUMBER = Iteration counter value
LEVEL = User defined command "call" level
CHAR = Current (or last) executed command
ERROR = Command error code (see Appendix B)

(2) Turtie accepts inputs when "> " is present; " >" disappears
while a command is executing. Input lines must be termin-

ated by the RETURN key; line editing is allowed.

THE TURTLE PAGE 20

SPLIT-DEBUG MODE SCREEN (MODE 2)

\r Graphics data

(1) [LACC=0pP@@ NUMBER=0PP@ LEVEL=0000 Execution data
CHAR=F ERROR=

(2) > _ User input line

(1) See prior page for explanation.
(2) Turtle accepts inputs when "D" is present; "> disappears
while a command is executing. Commands are executed as

input and no line editing is allowed.

THE TURTLE PAGE 21

3.11

NORMAL MODE SCREEN (MODE 3)

;r Graphics data

User input area

(1) Commands are scanned as input and no line editing is
allowed. The cursor moves to the beginning of the
line below the input line (or the input line srolls"
upward) when a command is accepted and does the same

again when command execution is complete.

- Display Mode - |CTRL-D <&number)>

CTRL-D 9 - 7 = Map to 0.S. display modes
1-8, where higher numbers
represent increasingly
higher resolution display.
The system defaults to CTRL-D 6 (Display Mode 7).
This command acts as a pre-select; the mode change actually

occurs at the next CTRL-M command.

NO-0PS
Blank, underscore, and all unassigned keys are treated as no-

operation codes.

THE TURTLE PAGE 22

4. EXAMPLES

4.1 Set Acc = 9
2

4.1 Set Acc = 23

A-23+

4.2 Set Acc = Acc * 2

A+

4.3 Set Acc = Acc * 7

A(6+)

4.4 Set Acc = Acc / 7 4

=IT(7-1+)
(+Z-)

4.5 Set pen color to 1 without altering Acc

CA-+0]

4.6 Find upper right corner of screen

=XE_(FX)
(UNX2RX D)

4.7 Recurse by number in Acc

THE TURTLE PAGE 23

4.8 Sierpinski Curve

=IT(-12FI3LG3LI2FI+)2R
=G4F
=Y (HNU44F2R44FRC[A-+PJ4(2F1))

After these are defined, one sets the accumulator to the
desired order and types "Y" to draw the curve. Again, "G"
can be redefined to a smaller number of "F"s to draw the
higher order "Y"s. For "DGOF," the accumulator can be

set to 5.

The‘Sierpinski curve is closed and consists of four iden-
tical sides arranged in different directions and connected
by a short line "2F." The sides are defined (recursively
again) in the macro "I" and the closed curve itself is de-

fined in the last part of the macro "Y," namely: "4(2FI)."

N

A]

Siecpinski curve of (A) order 1, and (8) order 3.

THE TURTLE PAGE 24

4.9 Hilbert Curve

=7T(-VG2LZ2RGZG2LV+)2L

=VT(-Z2RGVG2LVZRGZ+)2R

=G4F
=J(HNU44F2R44FC2RDZ)

After these are defined, one sets the accumulator to the
desired order and types "J" to draw the curve. "G" can
be redefined to a smaller number of "F"s to draw higher

order curves.

Hiloeet curve of (A) ecder 1, snd (B) ocder .

THE TURTLE

4.10 Trinary Tree Structure

T(++Z-AF2R3(G2R)AFA+) (+4R))
(2-7+)_
CHNA-4%99 (4 (G2R)A+))

G(-
T
J(

Type "J" to Start drawing; press the BREAK key to stop.

4.17 Spirals

I(T(--2(2LAF)Z))
V(++2(2RAF))
=J (#1Y4RU2FD4RZ]

ll ll

To run: Set accumulator = @, (Type "A-").
Set #I to spiral iteration count.
(Type "(n+=#1]" -- try n=13 first)
Type "Q".

PAGE 25

THE TURTLE PAGE 26

4.1

Spirals (continued)

n
~

#1

4.12 Super Spiral

4.13

Q (2RIT(LIT(LIT(LIT(LITZ_)_))_)_)
(UFA-2LSTR(SR)RTFD4R)
(B2LY)--initiate backtrack
(2RJT (LJT(LJT(LJT(LJTSB_)_)__)_)_)
(ST (FY)I) -

woannnu
Co < N +—

To run: Put obstacles on screen.

Type (HN9999Q)

The command will produce a clockwise spiral figure which
avoids all obstacles‘in its path. It is basically an edge
follower with a backtrack algorithm which is invoked when

there are no forward moves possible.

Diagnonal Plaid

(NR99I9(10F+P)]

THE TURTLE PAGE 27

4.14 Random Pattern #1

(100(87R2F10F))

4.15 Random Pattern #2

9997RF

4.16 Random Pattern #3

100(872R_107F_)

4.17 A Koch Curve

=ZT(-764L3(2RGZG)3(GZG2L)4RGZ+)_
=G2F
=J4(6ZG2R)

After those are defined, one sets the accumulator to the desired
order and types "J" to draw the curve. "G" can be redefined to

a smaller number of "F"s to draw higher order curves.
0 }‘
A = 2 (part of)

— L

>
1]

THE TURTLE

Hilbert Curve (written in Pascal)

PROGRAM HILBERT;
VAR SIZE,DELTA,N:INTEGER;
ORDER: INTEGER'
PROCEDURE HIL(I: INTEGER),
VAR A,B:INTEGER;
PROCEDURE HIL1;
BEGIN
TURN(A); HIL(-B); TURN(A);
END (®*HIL1%); .
PROCEDURE HILZ2;
BEGIN
MOVE(SIZE);
HIL(B);
TURN(=A); MOVE(SIZE); TURN(-A);
. HIL(B);
MOVE(SIZE);
END (*HIL2%);
BEGIN (*HIL®)
IF I=0 THEN TURN(180)

ELSE
BEGIN
IF I>0 THEN
BEGIN
A:=90; B:=I-1;
END
ELSE
BEGIN
A:=-90; B:=I+1;
END;
HIL1; HIL2; HIL1;
END;

END (®HIL®);
BEGIN (®*MAIN PROGRAM®);
WRITE('SIZE:');

READLN(SIZE); (‘ENTER SIZE FOR YOUR SCREEN®)

WRITE('ORDER:'); READLN(ORDER);
PENCOLOR(NONE);

N:=ORDER-1;

DELTA:=SIZE;

WHILE N>0 DO

BEGIN (*COMPUTE STARTING (X,Y) POSITION *)

DELTA:=DELTA*2;
N:=N-1; .
END;
MOVETO(-DELTA,-DELTA);
PENCOLOR(WHITE);
HIL(ORDER);
END.

PAGE 28

APPENDIX A - LIST OF COMMANDS

“rnumber @ Set ACC to rumber

! Command | Command | Command Semantics |Fara-|
|Character| Syntax | laraph|
e et e |
| | | i
! 1) | A<commands |Tterate command by value of ACC |
| | | |
| 3 |B |Beep |
| | | | .
| c iCc IClear screen |
D 1D	FPen down	
E lE<then>telsel	Tests for turtle a3t screen edqe	
]		
F	F [Turtle forward ome unit	
l H	H [Turtle to home position	
]	
L L	Rotate turtle left 45 deqgrees	
N N	Foint turtle north	
]		
P P IValue inm ACC is pen color select		
		-]
] R IR	[Rotate turtle right 45 degrees]	
])]	
S 18 IColor select in fromt of turtle to ACC		
I]		
T	Tothen»<elsel	Test ACC for rion—-zero
U iU [Fern up		
W W [Wait for mext 30 HZ CLOCK TICK		
]		
<blanmk>	<blank>	No-op
] ‘	
!	t	Stop imnermost iteration
*	¥<variabler<command:>	Iterate command by value of variable
]		
%+	$<select>“then 7 elser	Test selected joystick position
]
%	Zvselect	Read selected pot controller to ACC
] ;	
&	& select: IValue in ACC qoes to selected	
	lcolor reqister	
((“command.s..)	Binds command as a unit
l		
@ 1@	Set ACC to zero	
	l	

Fivarizblak@ Set ACC to varizsble value

T S e e oemm ceem coan e 600 Some SSee Cain e Sees Sem Sa0% Coas Soet e e Ceu Sewe Seae Sese oS Sewe Seme Sows Geas Seee Som Geee Seme Seee S S4eS Sewe Seee e Sees S Sews Seme eSS Sae Seme Sewe Seas Ss See Seu% Seme SESS Gee Sag Seve Seee Sees CEES Sem SeaS e Gee Se Se%S Sewe W Sem Sem Seme FHSN S Sas deem Swee Sewe Sove Seme dmse

e
-
tr
]
t3
o}
-
>
]
t-‘
-
wm
3
O
o)]
(@]
a
2
4
>
[an]
t3
[47]
8
3
o4
5
C
M
°

459 S o e e o e e Gt G S e i3 SRS Geem SSe e e CHee Soem Samm Team e e Ceem Seee e Gues G Sem CHep S eee Ges Same Cese Sewm Gere Gaem Seme Seoe Geee ves Saee Seve Sese Gmis Gee Sous Sa06 Seee S GHS Sere Seve Sece e Same Seee Sees Sems Gess Sese Sewe Seee S Sem Seve Smee e Seme Sove Sove e em S cuse semm mese

! Command | Commanrd | Command Semantics ‘FPara—|
‘Character! Suntau | lgraphl|
] 1
T e e coom e come e rme caae e 00 e 2ame o e 2o im0 e Gane comt cace e e e e e Saem Seee S Sewe Geme Seee S Sewt SaeS S Seen Seae ot S Seme Semw Soea e Save Smve e Feve Seme Soce b Soms $a0e S0 Samn Saan S Seee See0 Sowe Feve Sove Se0w Sove Seme Sons S0 Somm Seee Soen S oot Soee o e e coem oo]
M ’ iSernse orientation to ACC
|
+ + {ACC = ACC + 1
|
- - |ACC = ACC - 1
!
Lnumber> | Ynumber><command: |Iterates <command> by value of <number:>
|
= =4namerLcommands |Defines user command
| .
= ¥ <namer IDefines wuser variable = ACC value
|
? ?othernselsel |Randon test
|
C Cocommand=e.,...] |Same a3s () esicept ACC saved & restored
|
- - |No-op
|
A A

| Increment current iteration count
]

! |
| |
! |
' !
’ |
x |
| |
| :
| z
| |
! |
’ |
! :
, l
| |
| |
| |
1 |
! !
' !
| 1
! | N |
| l
l |
' |
! |
‘ =
! |
| !
| !
! |
| !
| l
| |
| |
| l
| 1
| |
| |
| |
| |
| |
’ !

- —— — — — — — —— o —
— - o — o — — — — — — — T— — — —— o — — — —— — — o — —

CTRL-A |<option> lAudio select
CTRL-C |IClear (remove) all user variables
CTRL-D |“model :Select display mode
CTRL-E |<rulel :Select edge rule

1
CTRL-GC |"“devicex" ;Get wser defimitions from device
CTRL-L |<namel iLDad user defimitions from ROM
CTRL-¥ |<model lSelect operating mode
CTRL-P |"<device:" | :Put user definmitions to device
CTRL-R l<namel §Load and run user command from ROM
CTRL-E |<option> :Connand execution speed select
CTRL-T |<option> :Select turtle representation
CTRL-Z §Reset

T o 70 0m 50m0 0 5100 (00 7m0 10 00 SRS e S S fan s e = Saae e e a6 s Same e Seee Geee e aee e @up Seme s Seee Seus Sea6 Geum TS Sewe S e e e Same Gem Saaw Cewe SIS SSHO S SHS SHES Ge Seeb GHE Sewe SeeS SHe SSRGS SO Seee Gee 0% SHes S Seee s seve eee Sewe wevs Some Seme

THE TURTLE

APPENDIX B - ERROR STATUS CODES

Operator Abort (BREAK key)

Device name error

User command definition area full
Systems I/0 error

Load/Run argument undefinéd

Nesting error (unmatched right bracket)
Overlength command line input
Incomplate (partial) line input
Reserved name for user command

Stack overflow

Undefined user variable name used

PAGE 31

THE TURTLE PAGE 32

APPENDIX D - PEN SELECTS (BY SCREEN MODE)

Mode Pen Range Color Registers Used
0 0 -127
1 0-127
2 0-3 0 = background
1 = PFO
2 = PF1
3 = PF2
3 0-1 0 = background
= PFO
4 0 -3 0 = background
1 =PFO
2 = PF1
3 = PF2
5 0-1 0 = background
1 = PFO
6 0-3 0 = background
1 = PFO
2 = PF1
3 = PF2
7 0-1 0 = PF2
1 PFl (luminescence only)
&0 = PFO
&l = PF1
&2 = PF2
&3 = PF3
(&4 = background -- someday)

THE TURTLE

Range

16
32
48
64
80
96
112
128
144

160

176
192
208
224
240

- 15

- 31

- 47

- 63

- 79

- 95
- 111
- 127
- 143
- 159
- 175
- 191
- 207
- 223
- 239
- 255

APPENDIX E - COLOR REGISTER VALUES

Mid-Bright

8
24
40
56
72
88

104

120

136

152

168

184

200 -

216

232

248

PAGE 33

THE TURTLE PAGE 34
APPENDIX F - JOYSTICK TRIGGER TESTS

Select Direction* Select Direction

Code Trigger Device Code Trigger Device
A F JOYSTICK O U T POT
B R JOYSTICK 0 v T POT
C B JOYSTICK O W T POT
D L JOYSTICK O X T POT
E F JOYSTICK 1 Y T JOYSTICK
F R JOYSTICK 1 JA T JOYSTICK
G B JOYSTICK 1 (T JOYSTICK
H L - JOYSTICK 1 \ T JOYSTICK
I F JOYSTICK 2‘ F = Forward
J R JOYSTICK 2 R = Right
K B JOYSTICK 2 B = Backward
L L JOYSTICK 2 L = Left

T = Trigger

M F JOYSTICK 3
N R JOYSTICK 3
0 B JOYSTICK 3 @)
P L JOYSTICK 3 L @ R
Q T POT O
R T POT 1
S T POT 2
T T POT 3

APPENDIX G - ROM RESIDENT USER COMMANDS
(See page 15)

| Load/Run | Content | Runs | Reference |
| Name |] | |
e e e e e o e e e e e e s o e e S e S0 e o e e e . o S S e e S e e S S e e et S S o o e e o o e e |
| 1 | Y = SIERFINSKI CURVE] Y | See 4.8, 4.9 |
l | J = HILBERT CURVE | | |
| e £ e S S e £ 2 e e e e e e e e 2 e o e e e e e o e e e |
| 2 | Y = TRINARY TREE | Y | See 4,10, 4.11 |
| | J = SIMPLE SFIRAL | | |
| e 2 2 e e |
| 3] K = SUFER SFIRAL] K | See 4.12 |
e e e e e e e e e e e e e e e e e e e B e e e e e e e e e e e e e e e e e 2 e e e e e e e e e |
| 4 | Y = DRAW (CARTESIAN)] Y | |
| | J = DRAW (FOLAR) |] |
| e e e e e e e e e e e e e et e e e e e e o o e |
I 5 | Y = WALL EBANGER | Y | ' |
| | J = BREAKOUT |] |
| e S e e e e e e e e e e e ot e e e e e e 2 e e e e e e e 2 e e e |
] 6 | J = HOLLYWOOD SQUARES | J oo |
| e e e e e e e e e e e e e e o e e et B e e e e e e e e e e o e o e e 2 e e e e e e e o e o e et e e e e |
| 7 | Y = KOCH CURVE | Y | See 4.17 |
e |
| 8 | Y = THE ZAFFER LY K |
S SR | FROM]
| 4] Y = DRAW | Y |]
e | "ATARI |
| A | Y = FOSIES | Y | |
e] WSFN" i
| E | J = SUPERTURTLE | Jood |
e | MANUAL |
| Cc | COLORFOWER | | |
| e |
] D] Y = MAGIC CARFET | Y | |

WSFN/TURTLE BUILT IN PROGRAMS

You can access several programs (user commands) built into the Atari WSFN/TURTLE
cartridge by using the CTRL-L or the CTRL-R commands. These programs are itemized in

Appendix G of the language/system specification, The paragraphs that follow elaborate
on the information in Appendix G,

1. The column labeled "Load/Run Name" contains the one character name of the program
group that’s loaded by CTRL-L or CTRL-R. See page 15 of the specification for the
semantics of CTRL-L and CTRL-R.

2, The column labeled "Content" specifies the command name(s) and description(s) of the
top level command(s) in each group. Note that, in general, each group contains many

low-level user command definitions, and one or two top-level commands,

3+ The column labeled "Runs" indicates which of the loaded commands are executed when you
invoke the CTRL-L command. For example, CTRL-R 1 is the same as CTRL-L 1 Y.

4, The column labeled "Reference" points out supporting narrative information, when it’s
available,

The remaining paragraphs give more information about the built-in programs themselves.
Note also that you can examine the content of the groups by loading them in the debug
mode (CTRL-M 2) or by putting the loaded definitions to the printer (CTRL-P "P!"),
SIERPINSKI CURVE -- no additional information required

HILBERT CURVE -- no additional information required

TRINARY TREE -- no additional informaton required

SIMPLE SPIRAL -- no additional information required

SUPER SPIRAL -- first draw a complex, nen-closed figure on the screen using DRAW
(CARTESIAN), and then invoke SUPER SPIRAL.

DRAW (CARTESIAN) — joystick O is used to produce line drawings; the stick controls the
cursor motion and the trigger controls pen up/down.

DRAW (POLAR) —- similar to DRAW (CARTESIAN) but uses spaceship type control} it‘s very
difficult to use.

WALL BANGER -- first draw a complex, closed, maze-like figure on the screen using DRAW
(CARTESIAN), and then invoke WALL BANGER.

HOLLYWOOD SQUARES -- no additional information required

KOCH CURVE -- no additional information required.

THE ZAPPER through COLORPOWER —— see "ATARI WSFN, an introduction.e.",

Note that you can invoke the audio select command (CTRL-A) while another command is

executing, without affecting the operation of that command. The same holds true for the
turtle representation selection (CTRL-T).

Note also that you can store additional demonstration programs and load them from a mass

storage peripheral such as cassette or diskette using the get (CTRL-G) and put (CTRL-P)
commands,

-3¢~

THE TURTLE PAGE 37

APPENDIX H - AUDIO SELECT OPTIONS

=
]

audio off
A - f hori it

LSB of horizontal pos1t1on'} relative to upper left corner
B - LSB of vertical position

C - MSB of software stack pointer

Pot controller @

o
]

E - Pot controller 1

-n
[}

value in CHAR (current command)
G - (internal)- TEMP

H - (internal)- TEMP + 1

I - (internal)- COUNT

J - hardware stack pointer

K - MSB of horizontal position?} relative to screen center
L - MSB of vertical position

M - LSB of software stack pointer

N - (internal) - INPT +2

0 - LSB of turtle accumulator

ATARI
~ WSFN

(TURTLE)

i

ATAR! WSFN INTRODUCTORY MANUAL
Prepared byf Gregory Yob

PREFACE (General remarks that are unlikely to appear in the final
version of this manual.)

1) ATAR! WSFN is subject to changes which may require changes
to this manual- for example, the representation of the
turtle might change.

2) It is assumed that the user is familiar with the ATARI
keyboard, and knows how to manipulate the SHIFT and CTRL
keys.

3) Entry of keys will be as typed with these exceptions:

c

Letter means CTRL-Letter

Letter ° means SHIFT-Letter
For example, MC2TC1HCN is equivalent to:

CTRL-M 2 CTRL-T 1 H C N

WHAT'S WSFN 77717

Have you ever tried to build a house out of toothpicks? Or
to bail out a battleship with a teaspoon? That's the situation
that the first computer hobbyists were faced with......

Back in the '"old days'' of personal computers, you would buy
some kits through the mail, and with a soldering iron, a lot of
patience, and even more luck, you would end up with your very own
personal computer! However, that was only half the story - for
a computer without a program is like a car out of gas = or your
ATAR! 400 (or ATAR! 800) without any cartridges. You could turn
your computer on = and it would sit there and do nothing.........

Deep inside every computer is the electronic equivalent of a
blackboard, and written on the blackboard is a series of instructions
for the computer to follow. You might imagine an ordinary blackboard
with a gridwork of 1/2 inch squares on it - if you filled some squares
with chalk, and erased others, you can draw letters - and then
words and sentences. Of course it takes hundreds of little squares
to write a3 short sentence......

When a computer Is turned on, it looks at its memory (that's
the blackboard), and the pattern of ones and zerces (white or black
squares) contains the instructions that tell it to do something. Sfnce
it is easier and cheaper to build computers that recognize “"binary
patterns'' that to make computers that understand English sentences,
the computer's memory will look very strange to you and me.

Now, back in the ''old days'', the people with big computers had
already solved this problem - patterns of ones and zeroes were made
which let humans use typewriters and English-like sentences to tell
the computer what to do. (This is called programming.) But!! The
poor fellow with his personal computer didn't have these computer
languages - and his personal computer's memory was very small. In
fact, the memory was too small to hold the languages that big
computers were used to.

Computer hobbyists soon got tired of flipping switches
thousands of times to make their programs = sO "tiny' languages
were invented. A tiny language couldn't do as much as the
languages on big comuters, but you can still do a lot more in

a tiny language, and do it a lot faster, than making up the
ones and zeroces by hand.

In 1977, Lichen Wang, who had already made a Tiny BASIC,
decided to make a tiny language for controlling robots with his
computer. When he shared it with his friends, they started to
call it different things - since Lichen hadn't given the language
a name. When Lichen was asked what to call the language, he
said: '"If everything has to have an acronym, | would rather
call it WSFN (Which Stands For Nothing)."

When Lichen had WSFN ready, he didn't have a robot - but
he did have a TV set, and WSFN could be made to draw pictures
with the Turtle. (You can think of the Turtle as a video robot
if you want to.) Well, lets plug in our ATARI 400 (or ATARI 800),

put in the WSFN cartridge, and see what turtles can do.

THE TURTLE

Getting Started

Plug in the WSFN cartridge, and turn on the TV and your ATARI
L0oo (or ATARI 800). The TV should look like this:

Turtle area (black)

Entry area (blue)

WSFN when the power is turned on.

The top part of the screen will be black, with a bright dot in
the center. The bottom part will be light blue, with a bright square
near the left side.

The top half is the world of the turtle, and here is where pictures
can be made. To draw pictures, you must enter commands with the keyboard,
and the blue are2 will show your last entry and the line you are entering.
(Nothing is shown when you start since nothing has been entered.)

How to See the Turtle

When WSFN starts up, the turtle is the bright dot - which doesn't
look like a turtle! To see a better turtle, enter on the keyboard:

CTRL-T 2

Press the CTRL key, and while it is down, press the T key. Then press
the 2 key (after releasing the CTRL key.)

NOTE: Instead of spelling SHIFT or CTRL for keystrokes, we will
use s or ¢ like this: MS VS = these mean SHIFT-M and CTRL-V. The
turtle command shown above becomes TC 2.

Now the screen will look like this:

Turtle

You entered T€2

o2
=

Making the Turtle appear.

The little animal on the screen is the turtle. If you look in the
blue area, you will see a ® 2. The TC is a graphics character,Q, so
this represents the command you just typed in.

(1f you have used a computer before, an unusual thing is goung on
here: WSFN DOES A COMMAND AS SOON AS IT RECOGNIZES IT. You don't have’

to press RETURN - WSFN is awares of what you type in as each key is
pressed.)

All About Turtles

, and you put him in the living

Suppose you had a trained turtle
room on a piece of paper:

A Turtle
in your living room.

The pen is up.

c

If the turtle walked forward, the felt pen would drag along the floor,
leaving a mark on the paper:

Mark made by
pen

Turtle goes for a walk with the
pen down.

No mark would be made if the turtle was told to lift its head first.

Since turtles aren't too smart, you can only make him turn to
the right or the left by half- turns like this:

\' 4

How a Turtle changes directions.

Sometimes the turtle might walk off the paper - and you'll have to
pick him up and put him back in the middle. If you want, you can tell
the turtle to point towards the living room window......

And, of course, when a drawing is finished, it's time to put a
clean sheet of paper on the floor.

The WSFN turtle can do all of these things. The commands are:

v

N

c

uP

DOWN
FORWARD
RIGHT
LEFT
HOME
NORTH

CLEAR

Lift the pen off the floor.

Put the pen on the floor.

Move one step forward.

Turn right one half-turn.

Turn left one half-turn.

Put the turtle in the middle of the screen.
Point the turtle North (up on the screen).

Clear the screen.

Using the WSFN Turtle

- Press the F key (FORWARD) a few times - if you do it enough,
the turtle will move upward and a line appears beneath him:

(Here you entered FFFFFFFFFFFFFFF.)

|f you hold the F key down for a while, the ATARI will repeat
the key (with beeps for each repeat.). The turtle will travel up the
screen and disappear off the top edge.

<— Home is here

an

The Turtle walked off the top of the screen.

To get him back, use H (HOME) - and the turtle will reappear in
the center again.

(Each time you press a turtle command key, WSFN does it immediately.
This leaves only one letter as the last command shown in the bottom

area on the screen.)

Now press R (RIGHT). The turtle will rotate a Balf-turn to the
right. If you hold R down, the turtle will spin like a top! (Try it
and see.)

Pressing L (LEFT) turns the turtle to the left by a half-turn.

Here is a challenge for you: See if you can draw the picture shown
below:

w4 v’
s %“Q?‘b

Can you draw this picture?

o

(Note: Diagonal lines will look like " g° on the
screen.) "

(When the turtle goes into the blue area, the turtle is visible,
but the line it draws isn't shown.)

To erase the screen, press C (CLEAR). The picture goes away,
with the turtle remaining where it was before Clear the screen and
see if you can draw this picture:

Another challenge for the drawing expert =
and a small mystery.

How did the turtle get away from the drawing without a 1ine??
Simple! He lifted his pen up = if you press U (UP), the turtle can
be moved without making a line. Now see if you can do the drawing and
leave the turtle in the spot shown.

(Hint: I|f you have a hard time making the lines meet in the center,
just count the number of F's you entered - and then it's easy. Counting
is very important in WSFN.)

To make the turtle draw again, use D (DOWN), and the pen will now
make a line on the screen.

Make the turtle spin around by holding down the R key. Then press
N (NORTH) and see. what happens. Try this several times.

Some Optional Exercises

If you have 3 few moments, and want to really know your WSFN,
try the exercises in this section. Some of them aren't easy, SO
feel free to skip them if you want to go on.

1) Draw a border around the edge of the screen. Keep count so you
know how many "footsteps' high and wide the screen is.

2) Draw a square 15 steps on a side, and fill it in by walking
around inside in a spiral.

3) Draw this figure:

Spend some time making pictures with the turtle, and then go
on with the next section.

- 10 -

GETTING FANCIER

Suppose you wanted to draw a checkerboard on the screen. If you
draw it one step at a time by pressing F, R and L, it will take a lot
of effort! WSFN has several ways to save effort - so let's look at
a few of these.

Repetition °

If you enter a number before any WSFN command, WSFN will repeat
the command. For example, clear the screen, home the turtle, point
north, and enter:

25F

The turtle will move 25 units forward. (Be sure not to put a blank
between the 25 and the F. A blank is a WSFN command to do nothing,
and if you enter 25(blank), WSFN will do nothing = 25 times!)

Making a sduare is easy! Try entering:

HCN25F2R25F2R25F2R25F

If you did that right, you will see:

g]

To twifl the turtle, enter:

9999R

(NOTE: 9999 is the largest number that WSFN understands. |f you enter
a bigger number, WSFN will take the four rightmost digits as the
repetition value.)

- 11 -

Parenthesis

When you drew the square, did you notice that a square could be .
made by repeating this command four times?

four of: 25F2R

In WSFN, groups of commands can be put inside pairs of parenthesis
and then repeated just like one command. Let's draw that square again:

HCN (set up the screen)
4(25F2R) (make the square)

If you look carefully at the screen, the turtle is now pointed
up instead of pointing to the left. Why? (Hint: The first time you
made the square, was there a 2R at the end?)

The blue area has another surprise - the entire sequence was
entered, and then WSFN did the command. WSFN didn't do each step as
you typed them in.

When you enter a parenthesis, WSFN will wait until you enter ;;:—’—W
other parenthesis before doing the command. When you are doing a long
set of commands, a parenthesis will let you see the entire line before
WSFN executes it - if you make a mistake, the BACK S key can be used
to erase letters. Let's try an example: -

(The object is to make a rectangle 20 units high and 10 units
wide.)

HCN

(20F2R10F2R20F3R10F oops! you want 2R last time
f .

enter 5 BACK-S , and then enter:
2R10F)

(As an exercise, take a look at the picture that would result if
you didn't correct the error - that's a mighty strange rectangle!)

Nesting Parenthesis

Pairs of parenthesis can be used to build bigger and better
commands out of smaller ones. WSFN will wait until all the
parenthesis are ''balanced" - that is, the number of 1 matches
the number of (. For example, try:

CCCCCCCCC2omNNIMN
The 20F won't be done until the last) is entered.

Here is a nicer kind of square:

8(4(20F2R)R)

Once this picture is on your screen (You have to actually do
this one - we won't put the picture in this manual!), let's see if
it can be figured.out.

The way to -understand lines with parenthesis is to work from the
inside out, starting with the innermost pair. In this case, this is:

(20F2R)

This draws one side of a square, and turns the turtle 90° to the
right. Now lets build up the next layer:

L (20F2R)R

The first part draws the four sides of the square. Then the turtle
is turned once to the right. This means that the next time a square is
drawn, it will be tilted diagonally.

Now, the entire thing is done eight times:

8 (4 (20F2R)R)

If you trace this out by hand, the turtle ends up at the Home
spot after each square - but the turtle is turned once to the right
each time. When the square was drawn the first time, the home spot
is the lower left corner.....

WSFN tends to draw its pictures rather rapidly - to see how a
picture is constructed maeans you have to slow WSFN down in some
manner. The W command tells WSFN to wait for 1/30 second. Let's
add this to the fancy square and see how the square is made:

8 (4 (20F2R30W)R)

After each side of a square is drawn, the turtle waits for one
second - and it's much easier to see how the picture is made!

- 13 —

Just for fun, try these lines, and see if you can figure out
how they work. |f they go too fast, insert a 30W inside the innermost
parenthesis (like we did with the fancy square).

8 (8 (10FR)R) (stained glass window)

8 (8 (5FR) 20FR) (super eight)

8 (8 (5FR)20FL) (different for such a small change!)
8(6(5FR)R)

8(7(5FR)R)

You can see that small changes can make big differences! Here is
a really long line to try:

8(8(8(6(SFR)10FL)15FR)20FL)

Some Optional Exercises

Try the first few of these to see how complicated shapes can
be made from simpler ones. It is quite difficult to type all of
these in correctly, so feel free to quit when you get frustrated.

The series of entries shown below shows how to construct
a checkerboard by making a square, and then adding more and more
until a checkerboard is drawn. In the process, some mistakes (which
computer programmers call bugs) will appear - and then they will
be fixed. |f you try to make complicated pictures of your own,
you will make mistakes too.

The new parts of each entry will be underlined.
1) 4(8F2R) ' This draws a square

2) Lﬁ(BFZR)BF) Once a square is made, move the
turtle to start a new square.

3) 8(u4(8F2R)8F) Do eight squares in a row.

4) (HCNLOFLR8(4(8F2R)8F))

The eight squares ran off the top of
the screen, so put the turtle near the
top and point him downward. Then do the
row of squares.

5) (HCN&OF&RB(A(8F2R)8F)2R16F2R6hF)

After doing a row of squares, put the
turtle in position to start a new row.

6) (HCN&OF2R32F2R8(4(8F2R)8F)2R16F2RSAF)
Just putting the turtle over to the

right to center the checkerboard on the
screen.

1 h -

7) (iﬁcngﬁ0F2R32Fzggl§(u(8F2R)8F)£g;k1epzasqpo))

When the turtle is being put into position,
it shouldn't draw a line. The pen is lifted
before a move and put down afterward. The
new parenthesis separate the positioning

moves from the square drawing and help make
the entry easier to read.

(Note: If you have got this far, your entry will appear on two

lines of the screen's lower area. WSFN can accept up to
character lines.)

8) ((chu40F2R3zF2Ro)§i§(A(BFZR)SF)(uzaierashFoxL)

To make a checkerbcard, just repeat the
row of squares and the move to the next
row eight times - but it doesn't work!

(When a row is started, the turtle must
point down, and we left it pointing up.)

9) ((HCNULOF2R32F2RD)8(8 (4 (8F2R)8F) (U2R16F2R6LFLRD)))

With the turtle's direction fixed, we
get a checkerboard, but with the rows

too far apart - a new row starts 8 steps
to the left instead of 16. Let's fix
this and try again.

10) ((HCNULOF2R32F2RD)8 (8 (4 (8F2R)8F) (U2R8F2RE4F4RD)))

Wow! It works this time!!!!

MAKING YOUR OWN COMMANDS

Each time you want to draw a small picture, you have to enter
the commands for the turtle - for example, to make three squares
means you have to repeat:

4 (12F2R) (draw the square)
------- (move the turtle to the next spot)

three times = once for each time the square is drawn. A design with
a lot of squares could take a ot of typing!

WSFN lets you make new commands - and it will remember the
command as long as the ATAR! is turned on (or until you change

the command's meaning). Here's how to make a '‘Square' command:

=#5L4 (12F2R)

The = tells WSFN that a new command is being named. The name of

the command is *S, and the meaning of the command is 4 (12F2R) which
draws a square. -

Drawing the square is easy now - just enter:

*S

and the square appears. You can also put your new command into
other WSFN lines = for example:

8 (*SR)
L4 (8(*SR)24F2R)

| f you have been doing the examples, Yyou surely have entered
this one a lot:

HCN

Why not make it a conmand as well - =C, for example:

=C (HCN)

You can include commands that you have invented into other
commands. Let's take that fancy design and turn it into a command:

—=F (*C4 (B (*SR) 24F2R))

Now by pressing just two keys, 2 complete picture is drawn!

1R —

. (Notes: 1) WSFN uses the * to tell if a command is already in
the 'canned" commands that It already knows or if yYou invented it.
2) An invented command will end in the same way a normal WSFN command
does - for example, if you want *Z to mean L4F3R, you should put some
Parenthesis around it like this: =*Z(4F3R) If you don't, WSFN wil]
think that *Z means 4F. 3) WSFN doesn't actually do the command
until you tell it to - the = is a command to record new commands.
Use the command (such as *S or *Z) to make WSFN perform.)

A Command That Lasts Forever (Almost)

Let's make *Q a command wijth its own name included (This should
drive WSFN nuts!):

=*Q(*SR4F%Q)

The turtle draws the design below, and then does it over, and over, and
over, and ' '

The command *Q tells WSFN to draw the square *S, move the turtle
and turn it a little » and then, do *Q again! This is called an
infinite loop - the same thing gets done forever....

(Note: Actually, WSFN will do *Q for several minutes, and then
quit. The reasons for this are beyond the scope of this manual. It is

possible to make true infinite loops in WSFN - again, using features
that aren't covered here.)

To make WSFN stop, press the BREAK key - BREAK will always stop
WSFN no matter what it is doing.

Enter *Q again, and while it Is going, press the R or L keys
now and then = the figure will move around. WSFN will stop in the
middle of a command to do one that you just typed in (in this case,
R or L), and then continue doing the old command.

Looking at Your Commands

Now that we have several new commands, how do we look at them
if changes are needed. Just enter:

MC1 (That's CTRL-M and 1)

The screen will change to:

ACC=ppPp MNUMBER=pp@@ LEVEL=pP90P
CHAR=1

[]
—

4(12F2R)

HCN)
*C4(8(*ST)24F2R))
SR4F*Q)

OO wm
nouwu
o~~~

The Debug Mode Screen

This is called the ''debugging mode'. The four lines in the
middle are the four commands you entered.

If you want to change a command, you can either type it in
again, or use the cursor movements & screen editor to change the
command's line directly. (This manual assumes that you know how
to use the screen editor.)

There is one big difference in debugging mode - to make WSFN
do a line, you must press the RETURN key.

To leave debugging mode, enter:
M®3 RETURN (CTRL-M, 3, and press RETURN)
(Note: WSFN's debugging mode has many features which won't be
discussed in this manual. For the present, just use debugging mode

to see your library of special commands, and to make changes to your
special commands.)

— 10 —

THE ACCUMULATOR

WSFN has an "accumulator' - which is a counter which can be
used to keep track of what you are doing. For example, suppose
you want to draw a spiral square like this:

Each side of the square is one step larger than the previous one.

If you try to do this with the WSFN you already know, it gets harder
and harder to do:

(3F2R) . (one side done)

((3F2R)F(3F2R)) (two sides done)

=*S5 (3F2R) (make a side a speéial
. command)

(*SF2S2F*S3F=S4LF) (once around)

(*SF*S2F*S3F*SLF*SSF*SEF*STF4SEF)
ete .u.n...

The azcumulator can be used to solve this problem. In WSFN,
the commands:

+ adds one to the accumulator.
subtracts one from the accumulator.

A repeats the next command as many times as indicated
by the number in the accumulator.

Let's see how this works in practice. Starting with the turtte
at home, and pointing north, enter:

A+ (press + ten times)

AF

The turtle will move up 10 steps - that's the number in the
accumulator. If you repeat:

AF
the turtle will move another 10 steps forward.

Try entering'several -, and then the AF. Now the turtle will
move a shorter distance. If you press - enough times, the accumulator
will have a zero in it. Now the turtle won't move at all.

The smallest number in the accumulator is zero (and the largest
is 9999). If you enter too many -, the accumulator will just stay

at zero. Try pressing - 15 times, and then AF - the turtle stays
still.

The commands + and - can be repeated like any others. For example,
15+ adds 15 to the accumulator
23- subtracts 23 from the accumulator
If you use A to tell how many + or - to use, you will get:
A- sets the accumulator to zero
A+ doubles the number in the accumulator
(Be sure you understand the A+ and A-. A- is used a lot to ''make
things ready'' - it is easy to enter a command which leaves some junk
in the accumulator - and when you try the command again, WSFN will
do something different! (and usually not very nice).)
If you want to see what's in the accumulator, go into debug mode
and play a bit with the + and - commands. The accumulator is shown
in the line that says:
ACC=g999
in the upper left corner. + and - will change this value, for example,
+++++++ RETURN
will make the accumulator look like this:
ACC=pg87

(Note: MS1 gets you into debug mode, and M®3 gets you out.)

Now, back to the square spiral - each side is one unit longer
than the previous one, so:

(AF2R+) will draw a side A units long, and add one to
the accumulator.

Here Is the spiral:
HCNA-40 (AF2R+)

HCN sets up the screen, A- removes any leftover Junk, and 40(AF2R+)
draws 40 sides to the spiral.

To fill up the screen, enter:
120 (AF2R+)

Note that the spiral continues from where it stopped before - we didn'¢t
zero the accumulator or home the turtle!

Just for fun, try these variations on spirals - and see if you
understand what they do. (The really serious student is asked to
visualize the picture before trying them out.)

Squares:

4o (4 (AFRR)+)

Lo ((4(AFRR))+)

Lo ((4 (AFRR))++)
Lo ((4 (AFRR))++RR)

It is useful to define this command to set up the screen between
pictures: ’

‘-*R(HCNA-)
Octagons:

Lo((8(AFR))+)

Lo (AFR+)

Lo (7 (AFR)+)

Lo (6 (AFR)+R)

Remember that you can insert some delay if you put a 30W inside the
innermost parenthesis, for example,

Lo (L4 (AFRR30W)+)

—_ 277 —

Single Step Mode

Sometimes WSFN will do things much too fast, and you will need to
have a closer look at what's happening. (1f you are just learning WSFN,
skip this part until later.)

There are two commands that can help you look more closely:

MC2

scil

This puts the upper part of the debug mode display
into the blue area - if you try some of the previous
examples, you can see the value of the accumulator
change. The line called: '

CHAR=_

displays the current character that WSFN is looking at.

If you enter M€3 you will return to the usual mode.
(lf you want a screen without any blue area, use MCH.)

This is single-step mode. WSFN will do one action each
time you press CTRL-4. For example, enter:

10+ (get into debug mode first)

and the accumulator will increment by one each time you
press Lc. ~

SC has some other options also:

S¢9 returns WSFN to normal speed
sc7 makes WSFN do about 1 action per
second.

When you are in either debug mode (M2 or MC1), WSFN will run
more slowly - it has the job of writing the debug data on the screen,
and this takes some time to do.

Try some of the simpler examples that you al ready understand
with these new commands - and you will see how they can help you
understand complicated commands.

—_ 23 -

TESTING AND DECISIONS

WSFN has several commands which will select between two
commands. For example, if the accumulator is zero, one command
will be performed. If the accumulator isn't zero, the other
command will be done. These commands are known as tests, and
they all look like:

(test something) (if the result is true, do this one)
(if the result is false, do this one instead)

The test for the accumulator looks like this:
T(10F) (10R)
If the accumulator isn't zero, the first action (10F) is chosen. If

the accumulator is zero, the second action (10R) is done instead.
In both cases, the action that isn't chosen is ignored.

Let's look at some of these in more detail:

The Random Test (?7)

The command ? will select one of the two commands following it
with 1:1 odds (You can think of WSFN flipping a coin - if the coin
is heads, the first command is done, and if it is tails, the second
command is done.)

Try the following entry on your ATARI - do it several times.
Each time you enter this command, the turtle either moves forward
5 units or turns to the right: .

?5FR (Remember that T€2 sets up your turtle.)

Repeating this can make some nice squiggles:

1000?5FR

Note: If you can't get the 7 to work, remember that ? is a shifted
character - you must press SHIFT to get a ?.

Parenthesis can be used to build more complicated tests:

1007 (U525FR) (D8 (5FR))

Try it out, and then let's analyze what this expression does.
First, there is 100 repetitions of the expression:

71u575FR) (D8(5FR))
The first action is US?SFR which is selected ¥ of the time. This

lifts the pen, and moves the turtle randomly five times. (Just the
previous examples with the pen up.)

The other action is D8(5FR) which draws an octagon on the screen.

Here are a few other random patterns to play with:

1007 (10F7RL) (8 (3FL)2R)
1007 (H2075F?RL) (2R8 (2FR)2L)
1007(H20?5F7RL)(10?(2R8(hFL)2L)12F)

The Accumulator Test (T)

The command T checks the accumulator. If the accumulator is
not zero, the first action after the T is performed. |f the
accumulator is zero, the second action takes place.

By setting the accumulator, you can make your commands more
responsive - they can check the accumulator and select different
actions if the accumulator is zero.

Here is an example:
=*ET (20F2R) (4 (5F2R))

HCNA-

Entering *E will draw a small square (That's the L4(5F2R) when
the accumulator is zero.)

If you do a +, *E now moves the turtle 10 units and turns it
right - doing this four times makes a larger square.

Counting the nunber in the accumulator can be handy - let's
see what can be done with spirals:

=*xST (AF2R-*S) (sp) " (sp means SPACE)
If something is in the accumulator, draw part of the square
spiral. If the accumulator is empty, do the sp - space is WSFN for

"do nothing''. Here it means we are done with the spiral.

After the side of the square is drawn, subtract one, and then

call *S to do the next side - this will continue until the accumulator
is zero.

Try setting the accumulator to different values and see the
spirals that can be drawn.

— 25 -—

If you want to check if the accumulator is larger than 32,
use:

32-T(ete)

First, subtract 32, and then test the accumulator.

The Use of Brackets

If you enclose some WSFN commands in brackets [], an
interesting thing happens - the accumulator is saved, and
no matter what you do to the accumulator inside the brackets,
it will be restored to its old value when you come outside.
The brackets also work like parenthesis for grouping commands
together.

Here is an example = we will move the turtle forward by
the number in the accumulator, draw the spiral with *S, turn right,
subtract 5 from the accumulator, and repeat until the accumulator
is empty.

If we used parenthesis afound *S, only one spiral would be
drawn - why? - the command *S leaves the accumulator at zero. :
The cure is to put brackets around *S which preserves the accumulator
while #*S is performed. Let's try it:
(be sure *S is already entered)
=*QT (AF[*s]2R5-%Q) (sp)
To try this out, enter:

HCNA-30+*Q

It's fun to try different values of the accumulator and see what *Q
does.

Some Last Optional Exercises

1) Change *S to some of the other spirals and octagons
in the section on the accumulator.

2) Change *Q to move about randomly, and then to set the
accumulator at random (from 2 to 20) and call *S - and do
this 20 times.

3) Look at the optional exercises that draw a checkerboard.
Break the expressions down into several * commands which

A) draw the square, B) move the square one unit, C) draws
a row of squares, D) moves to the next row, and E) does
the entire board. Notice how much easier it is to check
each part and to fix bugs (mistakes that you made, being

a fallible human being).

— 7R —

SOME FINAL COMMENTS

Now that you have survived this introduction to WSFN, there's
a lot more to cover. (Get the reference manual for details.)
WSFN can:

1) Check the joysticks position and triggers.

2) Check the paddle pots and triggers.

3) Make sounds - both beeps and via the TV set.

4) Change the colors in the display.

5) Check if the square in front of the turtle has been
drawn on.

6) Save and load your commands from discs and tapes.

7) Load ''canned" commands from the cartridge ROM.

8) Control repetition in several other ways.

9) Represent the turtle - or make it go away in different
ways. : .

10) Control how.the turtle treats the edge of the display.

11) Save the accumulator in '"'variables' for later use.

12) Report some errors in debug mode.

SOME DEMONSTRATION PROGRAMS

The following demonstrations illustrate some of the extra
features in WSFN and are fun to play with.

Please take care to see that you have entered them correctly -
an error in entry usually means the program won't work. Each group
is separate unless stated otherwise.

The Zapger

The Zapper illustrates the use of sound and color options
in WSFN. Three procedures *A, *C, and *D are required.

-{EQMCQACGA-1(+P51 N

=2C(eB[A+£1][T (AREDE2-*0e3)H])
2 ”:§§(3R2F2R) ig? |

Start the Zapper with *A.

Variations of the Zapper involve changes to *D:

=%D (7 (3R2F2L) (3L2F3L))
=xD[77 (AFR-) (L)]
a*D[T(7(AF2R)FR-)Sp] sp means SPACE

Several of the shapes in the manual, such as the octagonal and square
spirals, can be used. Enclose these procedures in square brackets []
to preserve the accumulator.

Some Joystick Exercises

WSFN can look at the joysticks, and these examples show a few
possibilities. The joystick is to be plugged into Port 8 (the left-
most port in front.)

Each of these joystick programs are started with *J.

Draw Program

This makes the joystick like a turtle. UP moves the turtle
forward, RIGHT turns the turtle R, LEFT turns the turtle L, and
DOWN puts the turtle at home (H).

=xJ (MCBTC21 (*KA))
=*K (SP(FB) spSB(RB) spSP(LB) spSE(HSB) sp)

Planting Posies

=xJ (MCPTC2HNT (*KA))
.*K(usgsspSERsp$§Lsp$€1D*PB)SPZW)
=#P8 (8 (3FR) 3L6F)

G;Here, DOWN plants a ''posie', and‘the other controls move
the turtle around with the pen up. An alternate “posie' is:

‘fz;"’1f§(3(8(3FRACAN)3L6F2RACQ))

and each ''posie'’ makes a sound!

The Superturtle

Since the WSFN turtle has only 8 directions, here is a
"high resolution'' turtle with 24 directions. The commands
*F, *R, and *L perform the Superturtle equivalents of F,R, and
L. #*F will move the turtle about 4 units horizontially/vertically
and about 3 units diagonally. (Surely you have noticed that F
on the diagonal is longer than F off the diagonal. *F tries to
correct this distortion.)

The Superturtle commands will not change the accumulator and
can be substituted into other figures. (ie, change F to *F, etc.)

DS7MSP will set up a high resolution display (2 colors only)
in which Superturtle can be used nicely.

=*U4F

=*V (2FRFLF)

=%y (FR2FLF) % to *Z draw in each Superturtle
=*%X (R3FL) direction.

=#Y (2RFL2FRF2L)

=*Z(2R2FLFRF2L)

wWhen the turtle is pointed North,
*U ay the procedures *U to *Z will
*W move as shown. The turtle
*X remains pointed North.
xY To move in the other
x7 directions Involves
using 2R or 2L to
= —— -3 2r*xy get into the next
T quadrant.

Superturtle Directions

The "individual directions should be checked by homing the /
turtle and entering 8 or 10 repetitions for each line. For
example, H8*V to check *V. Y

a2F[A=#Z+T (T (-T(-T(-T(-Tsp*Z) *Y) *X) #W) #v) #U] irég'
=*R[A-#2+4-T (A-=#Z2R) (#Z++=42)]
= [A-#Z+T (-=#2) (5+=#22L)] \>

If the six- direction primitives are correct, this expression
will draw a nice circle:

*U*V*N*X*Y*ZZR) (Be sure Turtle is not on a diagonal.)

Here are some pictures to do with Superturtle - most are
variations of the same idea: _ [sN
v

24 (H*R12%F) : Q&
24 (HL (*R3%F) 3%L) - Vet S
24 (H12 (*R*F) 11%L) ¢

24 (12%F11#R) . R
(A-30 (2L (A*F*R)+*R)) \

2k (24 (*FAL) *R) |

3 (24 (24 (#F=L) *R) 3%F) Ut
L(6(H12(*L*F)+P11#R))

The Superstick

If you have the Superturtle éntered, here is a superjoystick N
which does the Superturtle's version of the draw program. *J will
get things going. '

=*J (HCNMC@1 (SP{‘-'FspSE*Rs»pSg*LsQ!spA wa)]

\ 2
The Superstick can be ''flown' Jite nicely.

—_ 709 —

Colorpower Machine

Control of the color registers can create some nice effects.
The procedures offered here permit the use of two joysticks to
control the colors in a drawing.

=*A(A-#A++=HAE1)

=*B(A°#B++=#BSZ)

=%C (A-#A+-=FAE1) Note: If WSFN had @1 mean load acc
=%D (A-#B+-=7B¢& with color in color reg 1, these
=2E (A-#C++=4C ¥ procedures would be much shorter.
==F (A-#D++=#DEQ) (ie, =*A(@1+61) .)

=G (A-#C+-=#Cg3
=*H (A-#D+-=#D&P)

A nice test figure is drawn by invoking *M:

=2#M (MCPTCPHCNA-=FA=#B=#C=#D*N)
=#N8(3+P[32 (8(AFR)+)]R)

If you enter the joystick control, invoke *M and then *J, the
joysticks will change the cdlors. Opposite directions (UP - DOWN,
RIGHT-LEFT) change a single color.

=%J1($A*Asp$B*Bsp$C*Csp$D*DspSE*EspSF*Fsp$G*GspSH*Hsp3WA)

The color control routines can make some nice effects by being
included in other WSFN expressions. Change *N as follows, invoke with
*M, and then try: (You might want to use MC3 in *M instead)

=N (1507 (+PH) (20(3F7RL)))

1(7 (7%A%B) (2*C*D)Wa)
(A-1(A[*A]+A[*B]+A[=C]+A[*D]A))
1(22277777%A*B*C*D*E*XF*G*HspSPSPSPA)
1(a7 (2 (2%A%B) (2%C#D)) (2 (7%E*F) (75G*H)))
1(A2(2(16%A) (16%B)) (7(16=C) (16*D)6W))

NOTES FOR DEMONSTRATIONS

These brief notes will help explain how the various demonstrations
operate and the special features used.

The Zapper: *A sets up the screen in full graphic mode (M®8)
and turns on the sound (ASG) and zeroes the accumulator. It
then repetitively calls *C. The caret increments the iteration
counter. When this is inside a parenthesis preceded by 1 or
more,-the result is a true infinite loop. The command P sets
the turtle's pen color to the value in the accumulator - in

WSFN, this is the 4 values selected by the 2 LSB of the
accumul ator.

*C plays with the color registers ¢, &1, €2, and E€3.
The ¢ sets the indicated color register to the accumulator's
value. Each color register may have a value from 0 to 255, and
the color selected will appear on any lines drawn with the
corresponding pen selection (P). *C then moves the turtle
A units, invokes *D, and then invokes itself recursively. When

the accumulator zeroes, the turtle is homed, and *C is at last
finished.

*D is used to draw any convenient figure to embellish
the plot.

Joystick. Exercises *J sets up the screen with a turtle and
repeatedly calls *K with the caret trick.

%K tests each position of the joystick and then the
turtle is moved appropriately (ie, FB, RB, etc). The beep
is included to provide feedback, and to slow things down to
human speed. Home gives a longer beep.

In the posies, *J is a little better with setup of the
screen. *K l1ifts the pen and moves the turtle - except with
the DOWN option which puts the pen down and draws the posie.
The 2W is needed to slow things down.

The first *P is clear enough. The second one turns the
sound on, and then off. (A€ followed with A-P makes some “artifact"
sounds with the letter selecting the artifact. A®P turns the
sound off. Try it with other WSFN drawings.)

$ followed by a letter tests a joystick position and
does the first command if the joystick is moved, and the
second if it is not. For example, $EFH would move the turtle

if the joystick is UP, and home the turtle if the joystick
wasn't UP.

The joystick positions are:

up RIGHT DOWN LEFT
Gi F G __H Port @
(A~ B C D] Port |
L N 0 _P. Port 2
oy K }LJ Port 3

Superturtle: %) to *Z draw one of the 6 directions in each

quadrant. Turning the turtle 90 degrees permits re-use of these
procedures in the three other quadrants.

*F tests the value of a variable #Z which stores the
superturtle's ''direction' which is from § to 5. It then
calls the appropriate drawer from sy-*Z.

*R .checks #Z, and does one of:
If #Z is 5, set #Z to sero and turn the turtle
right 90 degrees. '
Else add 1 to #Z.

*L checks #Z, and does one of:

IF #Z is sero, set Z to 5 and turn the turtle
left 90 degrees.
Else subtract one from #Z.

WSFN permits thé storage of the accumulator's value
into variables, identified by # (#A to #Z). The two operations
on variables are:

=fvar Set var to value in accumulator
A-#var+ Set accumulator to variable's value

Variables can also be used for repetitions (as shown in setting
the accumulator above.)

Superstick: Done by substituting the Superturtle *F, #*R and *L

into the draw program and putting the loop & setup into *J also.

Colorpower Machine: Procedures *A through *H increment or
decrement the color registers. Variables #A to #D hold the
color register values.

*M is used to set up the screen - and! to initially define
the variables used. *N draws an abstract pattern which has many
textures.

*J is an extended version of the usual joystick text -
now handling two joysticks in Port @ and Port 1. When running,
three of the colors will be changed. One set is the background,
and cannot change (at present). As the values in #A to #D
increase, the program runs more slowly due to the #A+ (etc)
needed to set up the accumulator. The colors in the color registers
are arranged in a way that changes brightness faster than hue
which takes getting used to.

The various expressions randomly change the color values
by different ruses and will run indefinitely. *N was changed
for the heck of it.

— 37 -

Limited Warranty on Media and Hardware Accessories. We, Atari, Inc., guarantee to you, the original
retail purchaser, that the medium on which the APX program is recorded and any hardware
accessories sold by APX are free from defects for thirty days from the date of purchase. Any applicable
implied warranties, including warranties of merchantability and fitness for a particuiar purpose, are
also limited to thirty days from the date of purchase. Some states don't allow limitations on awarranty's
period, so this limitation might not apply to you. If you discover such a defect within the thirty-day
period, call APX for a Return Authorization Number, and then return the product along with proof of
purchase date to APX. We will repair or replace the product at our option.

You void this warranty if the APX product: (1) has been misused or shows signs of excessive wear;
(2) has been damaged by use with non-ATAR|I Home Computer products; or (3) has been serviced or
modified by anyone other than an Authorized ATARI Computer Service Center. Incidental and conse-
quential damages are not covered by this warranty or by any implied warranty. Some states don't aliow
exclusion of incidental or consequential damages, so this exclusion might not apply to you.

Disclaimer of Warranty and Liability on Computer Programs. Most APX programs have been written
by people not employed by Atari, Inc. The programs we select for APX offer something of value that we
want to make available to ATARI Home Computer owners. To offer these programs to the widest
number of people economicaily, we don't put APX products through rigorous testing. Therefore, APX
products are sold “as is,” and we do not guarantee them in any way. In particular, we make no warranty,
express or implied, including warranties of merchantability and fitness for a particular purpose. We are
not liable for any losses or damages of any kind that result from use of an APX product.

For the complete list of current
APX programs, ask your ATARI retailer
for the APX Product Catalog

N AR
PROGRAM
Q. ECHANGE

P.Q. Box 3705
Sorte Clara, CA 95055

Review Form

We're interested in your experiences with APX programs instructions are meeting your needs. You are our best
and documentation, both favorable and unfavorabie. source for suggesting improvements! Please heip us by
Many of our authors are eager to improve their programs taking a moment to fill in this review sheet. Foid the sheet
if they know what you want. And. of course. we want to in thirds and seal it so that the address on the bottom of
know about any bugs that slipped by us, so that the the back becomes the enveiope front. Thank you for
author can fix them. We also want to know whether our helping us!

1. Name and APX number of program.

2. If you have probiems using the program, please describe them here.

3. What do you especially like about this program?

4. What do you think the program’'s weaknesses are?

5. How can the catalog description be more accurate or comprehensive?

8. Onascaleof 110 10. 1 being "poor” and 10 being “excellent”. piease rate the following aspects of this program:

Easy to use

User-oriented (e.g.. menus. prompts. clear language)
Enjoyable

Self-instructive

Useful (non-game programs)

Imaginative graphics and sound

7. Describe any technical errors you found in the user instructions (please give page numbers).

8. What did you especially like about the user instructions?

9. What revisions or additions would improve these instructions?

10. On a scale of 1 to 10, 1 representing “poor” and 10 representing “exceilent”, how would you rate the user

instructions and why?

11. Other comments about the program or user.instructions:

From

ATARI| Program Exchange
P.Q. Box 3705
Santa Clara. CA 95053

{seal herej

STAMP

~—

