)

Q. A7AR PROGRAM EXCHANGE
Joel Gluck

fun-FORTH

Sound and graphics commands for use with EXTENDED fig-FORTH

Diskette: 24K (APX-20146)

—~ User-Written Software for ATARI Home Computers

Joel Gluck

fun-FORTH

Sound and graphics commands for use with EXTENDED fig-FORTH

Diskette: 24K (APX-20146)

oy~ F O T -
Dy

Joel Gluchk

Frogram and Marnuasl Contents © 1982 Joel Gluck

‘Cogyright notice. On receipt of this computer program and associated documentation (the
software), the author grants you a nonexclusive license to execute the enclosed software. This

software is copyrighted. You are prohibited from reproducing, translating, or distributing
this software in any unauthorized manner,

Distributed By

The ATAR! Program Exchange
P.O. Box 3705
Santa Clara. CA 95055

To request an APX Product Catalog, write to the address above. or call toli-free:

800/538-1862 (outside California)
800/672-1850 (within California)

-Qr call our Sales number, 408/727-5603

Trademarks of Atari
The following are trademarks of Atari, Inc.

ATAR!®

ATARI 400™ Home Computer
ATARI 800™ Home Computer
ATARI! 410™ Program Recorder
ATAR! 810™ Disk Drive

ATAR! 820™ 40-Column Printer
ATARI 822™ Thermal Printer
ATARI 825™ 80-Coiumn Printer
ATARI 830™ Acoustic Modem
ATARI! 850™ Interface Module

Printed in U.S.A.

TAELE OF CONTENTS

INTRODUCTION __ 1
Overview __ 1
Required accessories __ 1
Optional accessories __ 1
Comtacting the author __ 1
GETTING STARTED __ 2
Loading furn-FORTH __ 2
Creating Your own versions of FORTH __ 3
Setting uwp 8 diskette to proaram __ 3
Using the various FORTH diskettes __ 4
fun—-FORTH WORDS __ 5
Introduction __ 5
Word descriptions __ 5
Screen *¥1 __ 6
L.OADS __ 6
ARRAY __ 6
RND __ 7
DELAY __. 7
Screen #2 - Joystick Words __ 8
STICK __ 8
STRIG __ 8
X8TK __ 8
YSTK __ 9
Screen #3 - Faddle Words __ 10
FADDLE __ 10
FTRIG __. 10
Screen ¥4 - Kegyboard Words __ 11
KEYINIT __ 11
KEYED? __ 11
FAKTC __ 11
Y/N __ 12
Screen #% - Console Words __ 13
CONSQLE? __ 13
START? __ 13
SELECT? __ 13
OFTION? __ 14
Screen 6 - Time Words __ 15
SECONDS 15

SETIME __. 15

Screen 20 - Sound
FILTER! __ 16
SINIT __ 16
SOFF __ 16
ASOFF __ 17
SND __ 17
FREQ __ 17

Screern #21 - Sound
EQOF __ 18
BUZZ __ 18
EBELL __ 18
EXFLODE _._ 19
CLICK __ 19
SFOF __ 19

Screen #22Z - Sound
SINIT1s __. 20
SND1é6 __ 20
FREQ16 __ 21

Screern #23 - Sound
SFXAlL 22
SFXaz _. 22

Screen #24 - Sound
SFXE1l __ 24
SXFEZ __ 24

Screen #2595 - Sound
WARF __ 26

Screern #30 - Grfx
FGR __ 27
SGR .. 27
SCR? _. 28

Screen #31 - Grfu
TCOL __ 29
TCOL? __ 29
CFPLOT __ 29
CDRAW __ 30

Screen #32 - Grf
TXY? __ 31
TFLOT __ 31
TF .. 31
TFWD __ 32
TMOVE __ 32

Screen #33 ~ Grfx
TDIR 33

4+
L

I

*
*

IT

IXI:

*
+

IV

Vi

VI

*
+

I

*
+

II

IIX:

Iv:

Easics

Easics

Noises

16 bit

EffectA

EffectE

Warp

Color

Turtlel

Turtle?2

s

1

6

18

2

22

2

4

- 31

33

0

TDIR? _. 33
TTN ... 33
TURN __ 34
TGO ... 34
Screen #34 -~ Grfx Vi Turtleld __
TSCR? __ 35
TAHD? __. 39
TDRAW _. 35
GR? __ 39
HOME __ 36
Usimg the turtle words __ 3
Screen #3% - Grfi VI! Boxes __ 3
CEOX __ 37
CHEOX _._. 37
Screen #36 - Grfx VII! Gr. 182 _
GSFACE _ . 38
GSFACES __ 38
GD.R __ 38
G.R __ 38
GD __ 39
Ge __ 39
GCR __ 39
Screen #40 - Specisls Words I __
MTSELF __ 40
FICK __ 40
CVARIABLE __ 41
CARRAY __ 41
Screen #41 - Special Words IXI __
ATTRON __ 42
ATTROFF __ 42
CURSON __ 42
CURSOFF __ 42
ANTON __ 43
ANTOFF __. 43
TROUEBLESHOOTING __ 44
Drifting of time value __ 44
Readjusting sound problems 44

Moving the turtle off the screen

Computer lockup __ 44

ADVANCED TECHNICAL INFORMATION
Maskimg out words __ 45
Creating amn automatically loaded

45

AUTHOR’S COMMENTS 46

3

6

7

3

38

40

44

PTogQram

4

S

AFFENDIX: QUADRASKETCH 47

INDEX TO WORDS __ 57

INTRODUCTION

OVERVIEW

Fun-FORTH is a special collection of FORTH words (commands) for use with EXTENDED
fig-FORTH (APX-20029) by Patrick L, Mullarky. The programming (especially game
programming) tools in fun~FORTH include words facilitating advanced sound generation,
simple turtle graphics, use of the Joystick and Paddle Controllers, and use of the
console keys and the keyboard. It also contains words supporting timekeeping, random
number generation, creation of arrays, recursion, and other useful functions.

Fun-FORTH also contains QuadraSketch, a small drawing program demonstrating use of
various fun-FORTH waords,
REQUIRED ACCESSORIES
24K RAM
ATARI 810 Disk Drive
EXTENDED fig-FORTH (APX-20029)
OPTIONAL ACCESSORIES
One ATARI Joystick Controller
One set of ATARI Paddle Controllers
CONTACTING THE AUTHOR
Users wishing to contact the author about fun-FORTH may write to him at!

10946 George Court
Merriclk, NY 11544

GETTING STARTED

LOADING fun-FORTH
1. Remove any cartridge from the cartridae slot of your computer.

Z, Turn on vour disk drives When the BUSY light qoes out, place the EXTENDED fig-FORTH
diskette in the drive and turn on vour computer,

3+ The program will load into memory and the prompt "fiqg-FORTH 1.1" will display when the
load is complete: Press the RETURN key to display the standard FORTH prompt "ok",

4. Now vou may load any of the following packages from diskette, Use the appropriate
number before the LOAD command and press RETURN after typing each command.

39 LOAD (ASSEMELER)

27 LOAD - (EDITOR)

50 LOAD (GRAFHICS)

21 LOAD (DEEUG)

81 LOAD (OFERATING SYS.)
60 LOAD (FLOATING-FOINT)

S To use fun-FORTH, load the ASSEMBLER and GRAPHICS packages. If vyou plan to program,
the EDITOR is necessary and the DEBUG package is very useful. :

Notes.

a. In loading the packaqes, ignore any "isn’t unique" messaqes. These are supposed
to appear.

b« Once you start loading screens, don‘t press the SYSTEM RESET button. It will
erase what you’ve loaded.

6. When you finish loading in the packages you want from EXTENDED fiq-FORTH, remove the
diskette and insert the fun-FORTH diskette.

7. Type

S0 LOAD

and press RETURN. An introductory message will appear, followed by a request to type I to
display an index of the names of all the screens available in fun-FORTH, or type anvthing
else to exit fun—-FORTH. (To display the screen index at other times, type 1 42 INDEX)
The screen index looks as follows!

furn-FORTH by Joel Gluck 1982

)
Joystick HWHords furn—-FORTH)
Fzddle Words fun—-FORTH)
{eybhoard Words furn—=FORTH)
Console Words fun—-FORTH)
Time Words furn-FORTH)

UNUSED screens 7-13)

oNO>CADdIDWBNHFO
NSNS SN SN SN~

SN SN SN SN N AN S

PN SN SN SN SN SN SN SN

PN SN N N AN NS

ERROR MESSAGES
ERROR MESSAGES
UNUSED screens 16-19)

Sound
Sourd
Sound
Sound
Souwnd
Sound

I
II:

Iv:
v
VI

UNUSED screens

Grfx I3

Grfx II
Grfx IIX:
Grf IV
Grfx VI

Grfyx VI
Grfx VII?

IIT:

fiq-FORTH
fia-FORTH

Basics furn—-FORTH
Noises fun-FORTH
16 hits furn—-FORTH
EffectA fun-FORTH
EffectE fur-FORTH
Warp furn—-FORTH
26—29)
EBasics fun—-FORTH
Color furn—-FORTH
Turtlel Ffurn—-FORTH
Turtle2 furm—-FORTH
Turtled fun-FORTH
Eoxes Ffun-FORTH
Gr.l1&2 furn-FORTH

UNUSED screerns 37-39)

Special Words I
Special Words II
UNUSED screens 42-49)

furn-FORTH
furn-FORTH

fun-FORTH intro screen

QuadraSketen QSK

8K
QSK
QASK
QSK
QsK
QAsK

page
paqge
page
page
page
page

N bW

JaJuUN82
JaJdUNg2
JaJUNBZ
JaJUN82
JaJuUNg2
JjaJuNg2
JaJuUN82

R S " " I L

(WS E A A 2 g

N N

8. Type
1 LOAD

and press RETURN to load in the first screen of fun-FORTH, The screen contains, amang
other things, the word LOADS (see the word description later in this manual), which lets
you load multiple screens.

9. Start your use of fun-FORTH by loading all its screens. Type the following commands
and press RETURN after each one!

2 6 LOADS (joystick, paddle, keyboard, comsole, anmd time words:

20 25 L0ADS (sound words)
38 36 LOADS (araphics and turtle words)
40 41 L.OADRS (special words)

Note. You may load parts of fun-FORTH, if you wish, Before loading a screen {using n

LOAD where "n" is a screen number), list the screen (using n LIST). If the second
line of the listing contains the message

xxx NEEDS SCREEN(S)

you must load in the required screen(s) first.

CREATING YOUR OWN VERSIONS OF FORTH

Follow the loading instructions above to load in the FORTH kernel and the desired
packages from EXTENDED fig-FORTH and fun-FORTH. To save this custom collection on
diskette for future use, insert a DOS-II formatted diskette into disk drive 1, type!

SAVE

and press RETURN,. This new copy of FORTH, like the original diskette, will load
automatically. You might want to label this version "MYFORTH",

You may want to make different versions of the MYFORTH diskette later on (by loading
different screens from EXTENDED fig-FORTH and fun-FORTH) for different purposes. You can

copy the MYFORTH diskette by loading it into memory and then saving it on a new dikette
(using the SAVE command).

SETTING UP A DISKETTE TO PROGRAM

You might want to set up a diskette for programming purposes, especially if you plan to
use the EDITOR, Follow the loading instructions above and, with the fun-FORTH diskette
inserted in disk drive 1, type!

14 LIST MARK 15 LIST MARK

and press RETURN, Then insert a different DOS-II formatted diskette in disk drive 1 and
type!l

- FLUSH

and press RETURN, These steps save two screens of error messages to the new diskette,
You might want to label this diskette "MYSCREENS",

Note. You can copy the MYSCREENS diskette by using the DISKCOPY utility in fig-FORTH.

USING THE VARIOUS FORTH DISKETTES

During a normal programming session, you would load the MYFORTH diskette into memory,
then insert the MYSCREENS diskette, and do your programming using the EDITOR, In this
way, all screens are free, except for 14 and 15, where the error messages are,

fun—FORTH WORDS

INTRODUCTION

This section describes all the fun-FORTH screens and words, It also includes some

examples of correct usage., The explanations are in the order they appear on fun-FORTH
screens,

The explanations consist of the screen listing, a general explanation about the screen’s
contents, and the word descriptions for that screen,

Word Descriptions
The word descriptions contain the following sections!

1, The name of the word and its standard FORTH stack diagram. For example, in the
diagram

nl n2 -- n3

"--" represents the word, "n1" and "n2" are parameters on the stack prior to
execution of the word, and "n3" is a parameter returned by the word after its
execution: The rightmost parameters are on top of the stack, The parameters in the
stack diagram usually have meaningful names, such as "joystick#", instead of "ni",
If a word has no parameters, the stack diagramis " —— ",

2, An example of a simple, standard use of the word, with values that correspond to
the parameters in the stack diagram. For words that return values, like STICK (a
joystick word), a period (.) followed by a number and the prompt "ok" are used to
represent the printing of the returned value. If a word has no parameters, the
example line contains the phrase "no parameters".

3. A description of the word,
4, Warnings and comments that may help debugging and program design.

S+ An additional example of word usage. Use these examples as a starting point for
your own experimentation. Remember to load the screen on which the word appears.

SCREEN #1

143}
0

NONOCCUDIDWONEEOID

1

furn-FORTH by Joel Gluck 1982)

Type 50 LOAD for intro.)

LOADS 1+ SWAF DO I LOAD LOOF

firstscreen lastscreen —--)

ARRAY <BUILDS 1+ DUF + ALLOT

DOES> SWAF DUF + +

to create! size —-- XXX)

to store! val index XXX ')
)
)

-

L A Y e el

to retrieve! indesx XXX @

to primt? index XXX 7

rarnge? 0 <= index <= size)
RND —11766 CR -117466 CR 256 x
12 + SWAF MOD AES

range —- random¥)

DELAY < DO 10 0 DO LOOFP LOOF
lerngth --) 8§

C® NN SN SN AN

[y
.
NS N

Screen #1 contains some of the most frequently used words in fun-FORTH.

LOADS firstscreen lastscreen ——
Example! 20 25 LOADS

Loads multiple FORTH screens from diskette, starting with firstscreen and ending
with lastscreen,

Warning. Don’t use on EXTENDED fig~FORTH screens connected to one another by
"==2>", Just load the first one in those cases.

ARRAY
Example! S ARRAY MYGRADES
Creates an array named MYGRADES capable of storing é values (0-5),
To create an array! size ARRAY XXX
To store a value! value index XXX !
To retrieve a value! index XXX @

To print a value! index XXX ? (where index ranges from 0 to size.)

RND range -- randomd#
Example! SRND. 2ok
Returns a random number from O to range minus 1.

Comment. If a random byte is needed (0-255), use -11766 C@ . It’s faster,

DELAY length --
Example! 900 DELAY

Produces a pause in execution for a time proportional to length,

Comment. 10000 DELAY equals about 13 seconds,

SCREEN #2

SCR % 2

0 (Joystick HWords fun-FORTH)
1 ¢ STICK 432 + C@

2 (joystick® -- value <XBASICX)
3 ! STRIG 644 + Ce

4 (joystick$ -- 0/1 LXBASICx)
S

é 0 VARIAELE JOYXY -2 ALLOT 1 ,
7—1,0’091’-1'0,09
819"1’0’1,1’1,0,
9"'1""1’"190’0'0909
10 ¢ XSTK STICHK 6 + DUF +
11 JOYXY + @
12 ¢ joystick® -- -1/0/1)
13 ! YSTK STICK S - DUF +
14 JOYXY + @
15 ¢ joystick® -- -1/0/1) S

Screen #2 contains all four joystick words.

STICK joystick# -- value

Example! 0 STICK . 150k

Similar to the STICK() function in ATARI BASIC, this word returns the value of the
specified joystick. Refer to page 60 of the BASIC Reference Manual for the
directional meaning of the value,

STRIG joystick# -- 0/1
Example! 3S8TRIG. 1ok

Similar to the STRIG(function in ATARI BASIC, this word returns the trigger value
of the specified joystick. Trigger down returns 0, and trigger up returns 1.

Additional example, The following word waits until the trigger of the leftmost
joystick is pressed:

¢ TRIGWAIT BEGIN 0 STRIG 0= UNTIL ; (—-)
TRIGWAIT
XSTK joystick# -- -1/0/1
Example! 1 XSTK . -1 ok

Returns a value representing the horizontal component of the direction in which the
specified joystick is being pulled. Left=-1, middle=0, and right=1,

Comments, In combination with YSTK, this word is every game programmer’s (and
most other programmers’) dream come true. In the past (especially in ATARI BASIC), a
routine had to be written that either looked up the directional information in an

array or figured it out with a series of IF/THEN statements, But with these
fun-FORTH words, writing a simple joystick drawing program is really simple,

Also notice that the directional values returned do match the direction of X-Y
coordinate growth on the screen.

Another advantage of using XSTK instead of STICK in a program needing only

horizontal values is that XSTK also translates any accidental diagonals into the
correct direction.

YSTK joystick# -- -1/0/1
Example! 2 YSTK . 0ok
The vertical counterpart to XSTK, this word returns the vertical component of the
direction in which the specified joystick is being pulled. Up=-1, middle=0, and

down=1,

Comment. See the comments under XSTK,

SCREEN #3

SCR # 3
0 (Paddle Words furn—-FORTH)
1
2 ¢ PADDLE 624 + C@
3 (paddled -- value <XBEASICx)
4
S { FTRIG 636 + C@
6 (paddled ~- 0/1 <XBASICx)
7
8 +S
9
10
i1
12
i3
i4
15

Screen #3 contains the two paddle words.

PADDLE paddle# -- value
Example! 0 PADDLE., 210 0ok
Similar to the PADDLE() function in ATARI BASIC, this word returns the value of the

specified paddle. This value ranges from 1 to 228 . For more information about this
function, see page 59 of the BASIC Reference Manual,

PTRIG paddle# -- 0/1
Example! 7 PTRIG. Ook

Similar to the PTRIG() function in ATARI BASIC, this word returns the trigger value
of the specified paddle. Trigger down returns 0, and trigger up returns 1.

-10~

SCREEN #4

4
Kegyboard Words fun-FORTH)

143
0
pa
~ i

VONGCCADIWN-O

>

KEYINIT 295 764 C!
(== “clears l-key buffer)

>

KEYED? 764 C@ 255 «
(== 0/1)

*e

FAKTC KEYINIT EBEGIN KEYED?
UNTIL KEYINIT
10 ¢ ~-~ “Fush Any Key To Cormt.)

[y
)
.o

Y/N KEYINIT 0 EBEGIN DROF
13 KEY DUF 89 = DUF ROT 78 =
14 OR UNTIL
15 ¢ —— 0/1) 38

Screen #4 contains four useful words to aid in keyboard 170,

KEYINIT -
no parameters

Used in conjunction with KEYBD? , this word clears the one-key buffer,

KEYBD? --0/1
Example! KEYBD?. 1ok
Returns a 1 (true) if a key was pressed or a 0 (false) if a key wasn‘t pressed,

Comments. It’'s sometimes useful to execute KEYINIT before and after using KEYBD?
to clear the buffer.

Note that KEYBD? operates "on the fly". That is, it won‘t delay further execution,

PAKTC -

no parameters

This word waits until any key (excluding SHIFT, CNTRL, BREAK, and the console keys)
is pressed and then allows execution to continue,

Comments. The difference between PAKTC and KEY DROP is that PAKTC is silent (that
is, no key click is produced).

11

PAKTC stands for Push Any Key To Continue.

Y/N --0/1
Example! Y/N., Ook

This word waits until 2 "Y" or an "N" is pressed. A "Y" returns a 1 (true), and an
"N" returns a 0 (false). Any other key pressed has no effect.

Comment, Use of this ward usually follows a "yes/no" question posed on the screen.
Note that this word doesn’t echo the typed character on the screen.

-17-

SCREEN #5

142]
0
o

¢ # 5

(Comnsole Words furn—-FORTH)

>

CONSOLE? 53279 Ce
(== value)

START? CONSOLE? 2 MOD 0= 3

NMONOGPUMDIWNEO
>

¢ -— 0/1)
¢+ SELECT? CONSOLE? 2 / 2 MOD 0= 3
(== 0/1)
10
11 ¢ OFTION? CONSOLE? 4 / 2 MOD 0=
12 ¢ == 0/1) 38
13
14
15

Screen #3 contains the four words affecting the yellow console keys on the far right-hand
side of the ATARI Computer keyboard,

CONSQLE? -- value
Example! CONSOLE? ., 7ok

Returns the value of the CONSOL byte (location 53279),

START? --0/1
Example! START?. 1 ok
Returns a 1 if the START key is being pressed, and a 0 if it isn‘t,

Additional example. The following word waits until the START key is pressed!

¢ STWAIT BEGIN START? UNTIL } (--)
STWAIT

SELECT? --0/1
Example! SELECT?. 0ok

Returns a 1 if the SELECT key is being pressed, and a 0 if it isn’t,

-13-

OPTION? -—-0/1
Example! OPTION?. 1ok

Returns a 1 if the OPTION key is being pressed, and a 0 if it isn‘t,

-14-

SCREEN #6

15y
O

NMONSCUTDIWUONE oD
”~~

£ 6
(Time Words fur~-FORTH)

SECONDS 20 C@ S-xD 19 Ce 256
Mx D+ 60 M/ SWAF DROF ¢
- fgecy)

.o

>

SETIME 40 x 256 /MOD 19 C!
20 C! 3
(¥secs --) 15

Screen #6 contains two useful words to perform timing (in seconds).

SECONDS -- ¥seconds
Example! SECONDS . 59 ok

Returns the current time (originally set by SETIME) in seconds.

SETIME #seconds --
Example! 0 SETIME
Sets the current time (in seconds).

Comment. The most common use of SETIME is 0 SETIME, although other values are
useful to continue timing after some break in the action.

Additional example. The following word pauses for the supplied number of seconds!

+ TPAWZ 0 SETIME BEGIN DUP SECONDS = UNTIL DROP ; (sec -)
10 TPAWI

SCREEN #20

133
0

NONOCUDIDONP,ORD

20

Sound I} Essics furn—=FORTH)
FILTER! 53768 C! 3 ¢ nn —=)
SINIT 3 S3775 C! 3 562 C!

0 FILTER! 3

- “initializes for sound)
SOFF DUP + 0 SWAF 53761 + C!'
voe -=-)

ASOFF 4 0 DO I SOFF LOOF

- “shuts off 23ll voices)

e oo A~ uk

L TR L I W 2 I

[y
o
.o

SND SWAF 16 x + ROT DUF +
11 53760 + ROT OVER C! 1+ C! 3

12 (voc frq tim vol --)

13 (called SOUND in xXBASICXx)

14 3 FREQ SHWAF DUF + 53760 + C!
15 (voec frq -~) $8

Screen #20 contains the basic sound words, These take the place of the original sound
words supplied with EXTENDED fig-FORTH, which you shouldn’t load.

FILTER! n--
Example! 0 FILTER!

Pokes a value into the AUDCTL (audio-control) byte. For more information about
AUDCTL, see page 7-9 of De Re ATARI (APX-%00083),

Comment. FILTER! is originally from EXTENDED fig-FORTH and is transcribed here for
convenience. :

SINIT -
no parameters

Initializes for sound use. Re-execute after any external 1/0, including diskette
access.

SOFF voc —-
Example! 1 SOFF
Shuts off the specified sound voice.
Comment, SOFF is faster than SND in turning off sound. SOFF shuts off only the

AUDC byte, leaving AUDF intact. For more information about AUDC and AUDF, see pages
7-2 and 7-3 of De Re ATARI,

16

ASOFF -
no parameters
Shuts off all of the sound voices,

Comment. ASOFF can be a great relief!

SND voc frq tim vol —

Example! 0100 10 8 SND
Similar to the SOUND command in ATARI BASIC, this word creates and sustains a sound

based on the specified voice (0-3), frequency (pitch) (0-255), timbre (distortion)

(0-14 even), and volume (0-15), For more information about SND, see page 57 of the
BASIC Reference Manual,

Comment, SND takes the place of the sound command in EXTENDED fig-FORTH.

FREQ voc frq —
Example! 1 255 FREQ

Changes the frequency of the specified voice to a new specified frequency., It
doesn’t effect the timbre or volume.

Comment. FREQ is significantly faster than SND for changing just the frequency.
Additional example, The following word makes an "alien attack” type sound effect.

¢ ALIEN 0 0 10 15 SND 10 0 DO 2546 0 DO 0 I FREQ LOOP LOOP 0 SOFF }
ALIEN

-{7-

SCREEN #21

0
O
P

SONOGUDIWON P oA

14

15

>

*e

> S+ /N

*e o~ dh

21

Sound ITI:{ Noises furn—FORTH
*xXx NEEDS SCREENS: 1,20)
EOOF 0 SWAF 10 8 SND S50 DELAY
0 SOFF 3 ¢ frq ==)

BUZZ 0 0 4 15 SND 125 DELAY
0 SOFF ;3 (==)

EELL 0 15 DO DUF 0 SWAF 10 I
SND 30 DELAY -1 +LO0OF DROF

0 SOFF § (frq ==)

EXFLODE SWAF 0 15 DO 2DUF

0 SHWAF 8 I SND DELAY -1
+L.O0F ZDROF 0 SOFF

frq dur -=-)

CLICK 0 33279 C! § ¢ --=)
SFOF 31 53761 C! 5 0 DO LOOF
0 83761 C!' 3 ¢ -—) 3§

)

Screen #21 contains six useful and interesting noise effects that can make any program
{game or serious) more enjoyable to use.

BOOP frq —

Example! 150 BOOP

Produces a short, pure tone at the desired frequency.

Warning, BOOP essentially performs a 0 SOFF. It interferes with use of voice zero.

Comment, You can use BOOP for anything--a ball bouncing against a wall, a unique
keyboard feedback, you name it,

BUZZ —

no parameters

Produces a sharp, loud, beep noise (BEEP is a different, EXTENDED fig-FORTH word
using the console speaker).

HWarning, See the warning under BOOP,

Comment, BUZZ is great for error warnings and the like.

BELL frq--

Examplet 100 BELL

Produces a bell-like sound of the desired frequency.

Warning, See the warning under BOOP,

-18-

Comment, BELL is useful for acknowledging good input.

EXFLODE frq dur —-
Example! S0 120 EXPLODE

Produces an explosion noise at the desired frequency for a length of time
proportional to dur.

Warning, See the warning under BOOP.

Comment, You could write a more useful word to produce the sound and a desired
graphic effect simultaneously,

CLICK --
no parameters
Produces a small click from the console speaker,
Comment, Many clicks in rapid succession produce an interesting buzz.

Additional example. The following word produces a buzz from the console speaker
for the desired length.

+ BUZZ2 0 DO CLICK LOOP { (n =)
2000 BUZZ2

SPOP --
no parameters
Produces a single "pop" from the TV speaker.
Warning. SPOP interrupts use of voice zero,

Comment. Many pops in succession with different small pauses in between can

produce a wide range of unique noises. For more informationm see page 7-8 of De
Re ATARI,

Additional example, The following word produces a noise based on the supplied
pause length.

+ NOIZ 300 0 DO DUP SPOF 0 DO LOOP LOOP § (dur —-)
10 NOIZ

1?

SCREEN #22

SCR # 22
¢ (Sound III! 16 bits furn-FORTH)
1 (xxx NEEDS SCREEN: 20)
2 ¢ SINIT1é6 SINIT 120 FILTER!
3 ASOFF ¢
4 (—- <init. for 1é6~-bit snd)
S
6 ¢ SND16 SWAF 16 x + ROT DUF 4 x
7 33763 + ROT SWAF C! SWAF 256
8 /7M0D ROT 4 x 537462 + DUF ROT
9 SHWAF C! 2 - C'
10 ¢ vocOorl frqlé tim vol --)
11
12 ¢ FREQ1é 256 /MOD ROT 4 x

13 53762 + DUF ROT SWAF C!
14 2 - C!' 3
15 (vocOorl frqlé --) 8

Screen #22 supplies you with a much wider sound range. In normal sound, frequency is
defined by 8 bits (1 byte). The words on this screen allow a frequency defined by 16 bits
(2 bytes). The advantages are much lower and higher frequencies than previously available
and much finer increments between frequencies. The only disadvantage is that you can work
with only two voices instead of four. For more information, see pages 7-10 and 7-11 of
De Re ATARI,
SINITi6 -—-

no parameters

Initializes for 146-bit sound.

Warning, SINIT14 interrupts normal sound use,

SND1é vocOori frgqié tim vol —-
Example! 0 3000 10 3 SND16

Similar to SND except for two differences!
1) There are only 2 voices (0 and 1).
2) Frequency (frql4) ranges from 0 to 65220,

Warning, SINIT1é must be executed at least once before using SND16 or FREQ14,

Additional examples.

0 20000 10 15 SND16 (very low pure tone)
008 15 SND14 (very fine white noise)
ASQFF (to shut it off)

FREQ146 vocOorl frqié —-
Example! 0 3200 FREQ16
Similar to FREQ but with cml_y two voices and a 14-bit frequency range.
Warning, See the warning under SND14.
Additional example. The following word loops from 1000 to 1500 as frequencies.

¢ TEST16 0 0 10 8 SND14 1500 1000 DO 0 I FREQ16 LOOP § (—)
SINIT1é 16 TEST ASOFF

SCREEN #23

w
O
o
i

NONOUMDIWNE oM@

23
(Sound IV?! EffectA furn-FORTH)
(xx% NEEDS SCREENS 20)

! SFXAl 24 FILTER! 160 +
93768 537461 DO DUFRP I C!
2 +L0O0OF DROF

{ vol —-- “inmit. effect A)

! SFXAZ 53760 C! S3764 C!

93762 C' 53766 C!'
10 ¢ frq frq frq frq ——) S

Screen #23 contains the two SFXA (sound effect A) words. Using them, you can reproduce a
wide range of sound effects (about 4.3 billion different ones!) that are all rhythmic and
unusual. An extra advantage over normal methods is that the effect requires no
maintenance; turn it on and it keeps going (until you shut it off). For a more detailed

look at the method used, see page 7-1Z of De Re ATARI,

SFXA1 vol —
Example! 10 SFXA1

Initializes for sound effect A using the specified volume.

SFXAZ frq frq frq frq —-
Example! 10 9 255 50 SFXA2
Produces unusual sound effects based on the four frequencies provided.

Warning. SFXA1 must be executed at least once before using SFXAZ2. Also, use of
these words interrupts naormal sound.

Comment, You can easily shut off any SFX with an ASOFF or SINIT followed by new
sounds,

Additional examples. The following examples only scratch the surface of what this
word can do.

SINIT 12 SFXAl (execute these first)
8 8 254 255 SFXA2
4500SFXA2

|
9
d
I

" 301155 0 SFXAZ
11254 255 SFXA2
438 43 155 154 SFXAZ
S4 55 100 99 SFX A2
49 50 0 0 SFXA2

1 any# 0 255 SFXAZ2
ASQFTF (shuts it off)

SCREEN #24

w
O
s
L.

24
(Souwnd V¢ EffectE fumn-FORTH)
(xX%xx NEEDS SCREEN: 20)

¢ SFXELl 4 FILTER! ASOFF 1460 +
DUF 53761 C! 53765 C!

VONGGUDWNHO
”~~

vol —- “imit. effect B)
! SFXEZ2 53760 C! 537464 C' 3
{ frq frq --) 85
10
11
12
13
14
15

Screen #24 contains the two SFXB words (sound effect B), These produce simpler (as
compared to SFXA), yet quite unique, sounds.

SFXB1 val --
Example! 10 SFXB1

Initializes for sound effect B using the specified volume.

SFXB2 frq frq -—-
Example! 255 254 SFXB2
Produces unusual sound effects based on the two frequencies provided.

Warning. SFXB1 must be executed at least once before using SFXB2. Alsa, use of
these words interrupts normal sound.

Comment. You can easily shut off any SFX with an ASOFF or SINIT followed by new
sounds.

Additional examples. The following examples are a few of the more interesting
SFXB2 combinations.

SINIT 12 SFXB1 (execute these first)
254 255 SFXB2

150 151 SFXB2

24 101 SFXB2

100 200 SFXB2

S1 101 SFXB2

. 82 98 SFXB2Z
ASQOFF (shuts it off)

-25-

- SCREEN #2535

SCR # 23
0 (Sound VI: Warp fun-FORTH)
1 (xxx NEEDS SCREENSS 1,20)
2
3 ¢ WARF SWAF 16 %X + 53761 C! SWAF
4 Z2DUF - 0« IF -1 ELSE 1 ENDIF
9 ROT ROT DO 0 I FREQ@ SWAF DUF
é DELAY SWAF DUF +LOOF 2DROF !
7 (dur fraql frq2 tim vol —-—)
8
Q? 1S
i0
11
12
13
14
15

Screen #23 contains the word WARP, WARP is neither very fast nor very useful, but it does
show a simple, general purpose example of sound use.
WARP dur frql frq2Z tim vol —-

Example! 50 255 10 15 WARP

Produces a sound using the specified timbre and volume, which loops from frql to

frqZ at a rate inversely proportional to dur (that is, 0 is fastest for dur). The

last frequency remains on after execution and may be shut off with a 0 SOFF .

Warning, WARP interrupts use of voice zero. Also, see the warning under SINIT,

Comments, The operand frql may be higher or lower than frq2, which gives the word
greater versatility,

The last sound remains on to allow continuity with another WARP or other sounds.

A faster version of WARP dedicated to producing one warp-like sound can easily be
written.

Additional example. The following word repeats a certain WARP the specified number
of times.,

+ RED-ALERT 0 DO 10 120 100 10 15 WARP LOOP 0 SOFF | RTN
SINIT 10 RED-ALERT

-26-

SCREEN #30

SCR % 30
0 ¢ Grf I Easics fun~-FORTH)
1 (xxx NEEDS: araphics screens
2 (from fig-FORTH!S50~-55see doc.)
3
4 ¢ FGR &GR 12 MASK ' GR.
S (mode =-- “<full-screen GR.)
6 ¢ SGR &GR 28 MASK ' GR. !
7 (mode == <Zuse instead of GR.)
8 HEX CODE CGET XSAVE STX, # 30
9 LDX, ¥ 7 LDA, IDCX 2 + ,X STA,

10 TYA, I0OCX 8 + ,X STA, IOCX 9 +
11 +X 8TA, CIO JSR, XSAVE LDX,

12 FUSHOA JMF, DECIMAL (—--)

13 ¢ SCR? FOS CGET ¢

14 (v gy -~ color#/asciit)

15 (called LOCATE in XBASICXx) S

Screen #30 contains some of the basic graphics words. These words let you get a full

screen of graphics in FORTH (using FGR). Also, you no longer have to exit a graphics mode
using EXTENDED fig-FORTH’s XGR word) before going into a different mode} FGR and SGR
take care of the details for you. In addition, with SCR? you can do the equivalent of an

ATARI BASIC LOCATE command, which "looks" at the screen and returns color numbers or
ASCII numbers.

FGR mode --

Example! S FGR

Similar to the GR. command in ATARI BASIC and EXTENDED fig-FORTH, this word sets up
the full-screen version of the desired mode.

Warning, Don’t add 16 to the mode number as you gould in ATARI BASIC for a full
screen.

Comment, A 0 FGR lets you plot and draw on the mode 0 screen. An XGR does not.

8GR mode —-
Example! Z SGR

Similar to FGR, this word sets up the split-screen version of the desired maode, with
four lines of graphics mode zero on the bottom.

Comment. This word is preferred to GR. because it can always get you out of the
current mode and into a new one,

-27-

SCR? - xy --color#/ascii#
Example! 22 15 S5CR?. 2ok
Similar to the LOCATE command in ATARI BASIC, this word returns the color# (in modes

2 and up) or the ascii# (in modes 0, 1, & 2) of the specified coordinates on the
screen,

Warning, Using this word in mode zero may affect the display and move the cursor.
Comment, Here’s an analogy for those who don’t know what LOCATE does!

SCR? is to PLOT as @ is to!

SCREEN #31

16
0

NOoONOGGUIDLIONROD

¥ 31
¢ Grfy IXI! Color fum-FORTH)
{ xXxX NEEDS SCREEN! 30

1 VARIAELE COL
¢ TCOL COL ' 3 (color ==)
(called COLOR irn XBASICx)
s TCOL? COL @ 3 ¢ -- color)
¢ CFLOT TCOL? ROT ROT FLOT
(0 ¥ ==)
{ called FLOT in XBASICx)

¢ CDRAW TCOL? ROT ROT DRAW !
13 ¢ 3y ==)

(called DRAWTO in xXBASICx) S

Screen #31 contains the basis for the color words! the variable COL (plus TCOL and TCOL? ’
. which access it), Using COL , words have been written that use the stored color. Among
these are CPLOT and CDRAW (on this screen), CBOX and CHBOX (on screen #30), and all of
the turtle words that do any drawing (see screens #32-#34),

TCOL color# --
Example! 2 TCOL
Store the specified color for later use, Similar to COLOR in ATARI BASIC,

Comment. If you're in a text mode, you should specify an asdi# instead of a
color#,

TCOL? —— color#
Example! TCOL?. 2ok

Returns the current color being stored for use with the turtle and color words
(CPLOT, etc.). See TCOL.

CPLOT =xy--
Example! 22 15 CPLOT

Similar to PLOT in ATARI BASIC, this word plots a point at the specified coordinates
using the stored color (see TCOL),

Comment. In most cases, this word, in combination with TCOL, is more convenient

-29-

than PLOT (which requires the color parameter each time).

CDRAW xy--
Example! 32 25 CDRAW

Draws a line from the last two coordinates to the specified coordinates using the
stored color,

Comment, See the comment under CPLOT,

-30-

SCREEN #32

SCR # 32
0 ¢ Grfx ITII! Turtlel furm—-FORTH)
1 (xxx NEEDS SCREEN! 31)
2 10 VARIAELE TX 10 VARIAELE TY
3 0 VARIAELE XD -1 VARIAELE YD
4 1 VARIAELE DIR
S 0 VARIAELE TURTD -2 ALLOT
60,"191,"1,190,1,
7190’1,“'1’1’"1909
8 -1, -1,
P TXY? TX @B TY 8 3 ¢ == tx ty)
10 ¢ TPLOT TXY? CPLOT 3 (—-=)
11 ¢ TF TPLOT YD @ TY +!' XD @
12 TX +! 3 (==)
13 ¢ TFWD 0 DO TF LOOF 3 (n -=)
14 3 TMOVE TY ' TX ! § (s g ==)
15 + 8

Screen #32 is the first "turtle graphics" screen. The simplified turtle presented on this
and the following two screens is reminiscent of the turtle in WSFN (APX-20026). It, too,
can’t handle any angles, but instead only 45-degree increments (vertical, horizontal, and
the four diagonals). The fun~FORTH turtle is even more simple in that it never appears on
the screen; you have to keep track of its direction and coordinates.

The turtle has a direction (1-8, see TDIR on the next screen), x and y coordinates, and a
color to draw with (stored by TCOL). Using the commands on these three screens, you can

make the turtle do whatever your heart desires! draw lines, turn around, draw simple

shapes, jump around the screen, or even play "Breakout” (although that one takes a little
work),

TXY? —txty
Example! TXY? .., 20 40 ok

Returns the current coordinates of the turtle,

TPLOT -
no parameters
Flots a point directly underneath the turtle using the stored color.

Comment. TPLOT is a quick way to determine where the turtle is during
experimentation.

no parameters

Moves the turtle one pixel in the stored direction (see TDIR) and plots a point
where it used to be using the stored color.

Comment, No point is plotted at the turtle’s new paosition.

TFWD n--
Example! S TFWD

Moves the turtle n pixels in the stored direction, each time plotting a point where
it has been, using the stored color.

Comment. No point is plotted at the turtle’s final position.

TMOVE xy --
Example! 45 25 TMOVE
Jumps the turtle to the specified coordinates.

Comment. This word doesn’t plot any points or change the display in any way.

-32-

SCREEN #33

SCR % 33
0 ¢ Grfi IVY Turtle2 furn-FORTH)
1 ¢ xxx NEEDS SCREEN: 32)
2
3 ¢ TDIR DUF DIR ' DUF DUF + 2
4 - DUF + TURTD + @ XD ' DUF
S + 1 - DUF + TURTD + @ YD ' 3
6 (direction --)
7 ¢ TDIR? DIR @
8 (-— direction)
2 ¢ TTN TDIR? 1+ DUF TDIR 9 =

10 IF 1 TDIR ENDIF

11 ¢ <one turn clockuwise)
12 ¢ TURN 0 DO TTN LOOP

i3 (-~ “<n turns clockwise)
14 ¢ TGO DUF YD @ x TY +! XD @

15 X TX +!' 3 (m -=) 38

Screen #33 is the second screen of turtle graphics words,

TDIR direction# --
Example! S TDIR

Stores the specified direction (from 1 to 8) for use in turtle movement (TF, TFWD,
and TGO). Directions go clockwise from 1 (north) to 8 (northwest).

Comment. Here’s a diagram of turtle directions!
Ur
8 1 2
N7
7——%-=3
/1 N\
6 5 4
TDIR? -- tdirection#
Example! TDIR? . 4 ok

Returns the current turtle direction number.

TTN --

no parameters

Rotates the turtle one direction# clockwise (for example, from 4 to 5),

TURN n --
Example! 3 TURN
Rotates the turtle n direction numbers clockwise.

Comment. A 2 TURN is a 90-degree (clockwise) turn.

TGO n —
Example! 5 TGO

Moves the turtle n pixels in the stored direction but doesn’t plot any points.

=34~

SCR * 34

0 ¢ Grfe V Turtle3 fur-FORTH)

1 (xxx NEEDS SCREENS: 33)

2 ¢ TSCR? TX @ TY @ SCR? ¢

3 (== colar)

4 ¢ TAHD? TX @ XD @ + TY @ YD @

) + 8CR? 3 (== color)

6 ¢ TDRAW TFLOT ZDUFP CDRAW

7 THMOVE ;3 (s gy ==)

8 ¢ GR? 87 C@ ; (-- mode)

? ¢ HOME 1 TCOL 1 TDIR GR? >R
10 R 3 = IF 20 10 TMOVE ENDIF
11 R 3 > IF 40 20 TMOVE ENDIF
12 R S > IF 80 40 TMOVE ENDIF
13 R 7 > IF 160 80 TMOVE ENDIF
14 R> DROF 3}

15 ¢ —- <homes turtle) 38

Screen #34 is the last of the three turtle screens, Unlike the other two screens, the
words on this screen are turtle conveniences, not turtle essentials.

TSCR? —- color#
Example! TSCR? .1 ok

Returns the color# of the point directly beneath the turtle,

TAHD? -- color#
Example! TAHD? .3 ok

Returns the color# of the pixel directly ahead of the turtle, that is, one pixel
forward in the stored direction.

TDRAW xy —
Example! 10 15 TDRAW

Draws a line using the stored color from the turtle’s position to the specified
coordinates, and moves the turtle to those coordinates.

GR? -- mode
Example! GR? .7 ok

Return the current mode number.,

35

Warning, This word may have no practical use at all, except that (1) it’s great
for amnesiac programmers and (2) it was used in defining the word HOME.

HOME --
no parameters

Moves the turtle to the appropriate center of the screen, sets its direction to 1
(up) and its color to 1,

Warning. This word isn’t for modes 0, 1, 2, or greater than 8 (available with the
GTIA chip)

Comment. It’s convenient to execute HOME upon entering a mode befare playing with
the turtle,

USING THE TURTLE WORDS

One nice way to play with the turtle words is to go into mode 5 or 7 with SGR, do a
HOME, and do a few direct turtle commands to get the hang of it. Then, start to
define simple words (while you’re still in the text window) that make the turtle
draw simple shapes and patterns. Finally, you’ll find that you’re defining larger
words that draw beautiful multicolored pictures or patterns on the screen. Not only
is this approach fun, but it’s a great way to introduce children to FORTH.

-34-

SCREEN #35

wm
3
-

VONOCCMDWUN- oI
~~

35
Grfx VI! Eoxes furn-FORTH)
XXX NEEDS SCREENS: 31)

~ o~ i

*e

CEOX 1+ SWAF DO ZDUF I CFLOT
I CDRAW LOOF 2DROP ¢
®low #hi ylow ghi --)

*e

CHEOX *»R »R DUPF CFLOT SWAF
DUFF R CDRAW R ROT ROT R
CDRAW DUF R CDRAW SWAF

10 CDRAW

11 (xlow xhi ylow ghi --)

12 (CHEBOX is a hollow box) S
13 ’

14

15

Screen #35 contains two very useful words! one draws a filled box, and the other draws a
hollow box. These words can be as much fun to play with as the turtle words, (Note.

When you experiment with these words, use graphics mode 3 or greater by executing, for
example, 3 5GR)

CBOX xlow xhi ylow yhi ——
Example! 12 26 5 10 CBOX

Draws a solid box using the stored color (see TCOL) whose corners have the following
coordinates: (xlow,ylow) (xhi,ylow)xhi,yhi) and (xlow,yhi).

Warning, xhi must be greater than xlow and yhi must be greater than ylow,

CHROX xlow xhi ylow yhi —
Example! 12 26 5 10 CHBOX

Draws a hollow box using the stored color whose corners have the specified
coordinates (as with CBOX)

-37-

(63
0
o

NMONGCARDIWN-OD
. L e el ;]

[y
RN
P L L I P T R TS

36

Grfx VII! Gr.182 fur—-FORTH)
XXX NEEDS SCREENS: 30)

GSFACE EBL CPUT

GSFACES 0 MAX ~-DUF IF 0 DO
GSFACE LOOFP ENDIF § (1 —-=)
GD.R *R SWAF OVER DAES <%

¥S SIGN #» R>» OVER -

GSFACES GTYFE 3 (d fldwth -)
G+R *R 8-=D Rx GD.R }

n fieldwidth —--)
GD. 0 GD.R §} (d ==)
G. 85-3D GDs § ¢ ==)

« for modes 1 & 2. Note! G,
doesn’t follow #s with blanks)
GCR 195 CFPUT § (¢ -=)

CR for modes 1 & 2) S

Screen #36 conains words that aid in printing on the graphics mode 1 and 2 screens, The
most needed of the words are G. (which prints the top of the stack onto the screen) and
GCR (which does a carriage return to the next line).

GSPACE --

no parameters

QOutputs a space to the mode 1 or 2 screen.

GSPACES n --

Example! 4 GSPACES

Qutputs n spaces to the mode 1 or 2 screen.

GD.R d fieldwidth -~

Example! 294,863 7 GD.R

Outputs the double-precision number, right-justified in the specified field width,
to the mode 1 or 2 screen,

GR n fieldwidth ——

Example! 12155 G.R

Outputs the number, right-justified in the specified field width, to the mode 1 or 2

screen.

-38-

Comment, G.R is a useful word for printing scores or times on the screen.

GD, d--
Example! 294,862 GD.

Qutputs the double-precision number to the mode 1 or 2 screen.

G, n -
Example! 1215 G,
Qutputs the number to the mode 1 or 2 screen.

Comment. This is essentially a period (.) for theilarge text modes, the major
difference being that it doesn’t follow the number with a space.

GCR -—-
no parameters
Qutputs a carriage return to the mode 1 or 2 screen,

Comment, GCR is a carriage return (CR) for the large text modes.

-39=

SCREEN #40

[43)
0
o

NN DIDWN-O

e o~ s

" SN e N

L L B W W

(
(
(

40

Special Words I Ffun~FORTH)
MYSELF LATEST FFA CFaA

s+ 3+ IMMEDIATE

—— “recursive word)

FICK 1+ DUF + SFE + @

stackdepth -- corntents)
CVARIAEBLE <BUILDS 1 ALLOT
DOES: ¢

to create! CUVARIABLE XXX)
rnote! mo initial value rmec.)
vuse C!' CP arnd C? with XXX)
CARRAY <“EUILDS 1+ ALLOT

DOES:> + } (size CARRAY XXX)
to store! val index XXX C!)

to retrieve! index XXX C@)
range { 0 <= index <= size) 8

Screen #40 is the first of two spedial words screens, containing miscellaneous useful
words, The words on Screen #40 screen have appeared in various FORTH sources (such as
FORTH Dimensions, the FORTH Interest Group publication, See the EXTENDED fig FORTH

bibliography).

MYSELF --

no parameters

Permits recursion in FORTH. Use MYSELF in a definition when you want to call the
word you're defining,

Warning, If you’re not familiar with recursion, don‘t use MYSELF; it easily bombs

the system,

°
Additional example. The following word prints items from the stack until it
encounters a zero!

¢+ MYTEST DUP 0= IF ." done!" ELSE CR . MYSELF ENDIF H
(Onnnnn--0)

0 233 -5 1290 771 MYTEST

PICK stackdepth - contents

Example! 431929 ZPICK., 430k

Returns the number from the desired depth of the stack,

Warning. Stack depth should not exceed the actual depth of the stack] if it does,
the result is garbage.

40~

Comment. A 0 FICK is the same thing as a DUP, A 1 PICK is the same thing as an
OVER.

CVARIABLE -- XXX
Example! CVARIABLE MYVAR

Defines a one-byte variable with the specified name, and no initial value, Use C!,
C@, and C with the created variable.

CARRAY
Example! S CARRAY MYBYTES

Creates a one-byte-per-element array named MYBYTES capable of storing six values
(0-3), Use C', C@, and C? with the created array. See ARRAY (screen #1) for more
information.

-41-

SCREEN #41

SCR + 41
0 (Special Words IIX fun-FORTH)
1
2 ¢ ATTRON 128 77 C!' § (==)
3 ¢ ATTROFF 0 77 C!' § ¢ -=)
4 (turn attract mode on & off)
S
6 2 CURSON 0 782 C! § (==)
7 ¢ CURSOFF 1 752 C!' § (——)
8 (turn cursor on & off)
Q?
10 ¢ ANTON 34 S59 C! 3 (——)
11 ¢ ANTOFF 0 559 €' § (-)
12 ¢ twrn antic on & off) 18
13
14
1S

Screen #41 contains six words that turn things on and off with a single poke. These are
nice for programmers who can never seem to remember the right addresses or values.

ATTRON --
no parameters

Turns the "attract mode" on.

ATTROFF --
no parameters

Turns the "attract mode" off and ensures that it will stay off for about nine
minutes.

Comment, ATTROFF is useful for applications in which the keyboard is not in use,

CURSON --
no parameters

Turns the mode 0 cursor (white box) on.

CURSOFF --

no parameters

Turns the mode O cursor (white box) off.

Comment. CURSOFF makes output in mode 0 look more graceful (no racing cursor).

ANTON -
no parameters

Turns the ANTIC chip (the display chip) "on".

ANTOFF -
no parameters
Turns the ANTIC chip "off". The screen goes black, but all else is normal.

Comment, Turning ANTIC off can increase operational speed approximately 30 percent
over the operational speed while ANTIC is on and you‘re in mode 0, because ANTIC
isn’t stealing cycles from the 6502 microprocessor,

~-43-

TROUEL ESHOOTING

DRIFTING OF TIME VALUE

When using SECONDS (which has a ceiling of about 18 minutes), after about the 550th
second the value will be off by four seconds. If you find a fix to this, please send it
along.

READJUSTING SOUND PROBLEMS

When using sound words, if anything doesn’t sound quite right (including the SFX’s), try
executing SINIT again (or SINIT16, for 16-bit sound), and re~execute your sound code,
This usually works.

MOVING THE TURTLE OFF THE SCREEN

When using turtle graphics, moving offscreen doesn’t cause errors. However, if you go far
enough off the screen, the turtle wraps around back onto the screen again.

COMPUTER LOCKUP

If the computer locks up while you're testing a new word, the chances are good the word
was overflowing the stack. Try pushing the SYSTEM RESET button. If this doesn’t work,
shut off the system and reload the FORTH diskette,

V.

ADVANCED TECHNICAL INFORMATION

MASKING OUT WORDS

Sometimes you’ll want to use only some of the words from a particular fun-FORTH screen.
In these instances, you can mask out all the unwanted words on a screen. However, before
doing so, make sure any other words you plan to load don‘t depend on any words you intend
to mask out, For example, suppose you don’t want the SND command on Screen #20 but you
do want BUZZ and BELL on Screen #21. Checking the definitions of BUZZ and BELL, you’ll

see they both need the SND command. Therefore, you must load SND if you want BUZZ and
BELL.

Some words are even trickier in that they don‘t contain the words they depend on. An
example of this is the SINIT word; almost all sound words need SINIT before they can be
used, but these words do not necessarily contain SINIT in their definitions,

To mask out unwanted words, go into the EDITOR and enclose in parentheses the lines in
which the words are contained, Every line containing the definition of an unwanted word
should be enclosed, (If you don’t know how to use the EDITOR, see the EXTENDED fig-FORTH
manual.) Then FLUSH the modified screens. Now load the screen in the usual way. A ward
followed by a "?" will appear if you edited the screen(s) incorrectly.

To reverse the process, and reinstate these words, just remove the parentheses and FLUSH
the screens again,

CREATING AN AUTOMATICALLY LOADED PROGRAM

Once you’ve written a FORTH program, you may wish to set it up so that it can be loaded

and run easily, even by someone who doesn’t know FORTH. One nice way is to make your
program autoloading using the following method?

1, Load your entire program (all of the words and variables) into computer memory.
Now, suppose MYGAME is the word you execute to run the program. You would then type
in the following (and press RETURN)!

* MYGAME CFA “ AEBORT 6 + !

(Make sure you type in the two apostrophes around MYGAME CFA. This line replaces a
CR word in the ABORT code so that execution transfers to MYGAME upon use of the word
COLD, which includes initially loading the program into memory or pressing the

SYSTEM RESET button.)

2. Now insert a formatted diskette, type SAVE , and press the RETURN key. Note that
once you do this, you can’t use the diskette for anything else.
3. Now you have a diskette that will automatically load into memary and start when

you turn on your computer, Also, pressing SYSTEM RESET will cause your program to
restart automatically,

AUTHOR S COMMENTS

I would like to extend my most sincere thanks to Pat Mullarky for helping me with this
package (especially with methods used in the words FGR, SGR, SCR? , and also the
autoload method described in the Advanced Technical Information section) and for writing
his excellent version of fig-FORTH. Fun-FORTH may smooth out some of the rough spots in -
EXTENDED fig~FORTH, but there weren’t many to begin with, thanks to Pat,

I would also like to thank my father, David Gluck, M.D., for his help and endless
encouragement throughout the whole process.

I encourage you to send me news of any bugs you find in fun-FORTH {along with some
solutions, if possible)s And, in the hope that I get around to writing fun-FORTH II, I
would appreciate any suggestions you have for words to include in the package along the
lines of player/ missile graphics, character set redefinition, and other techniques, plus
non-graphics vocabulary, such as string-handling words.

Good luck, be FORTH-ful, arnd program!

iyl

AFFENDIX: QUADRASKETCH

OVERVIEW
QuadraSketch is a small drawing program that demonstrates the use of various words in
fun-FORTH. The program lets you paint colorful, symmetrical patterns in graphics modes 3,
3y and 7, and you can change any of the colors at any time,

You need a Jaystick Controller to use QuadraSketch.
GETTING STARTED

Loading QuadraSketch

To load QuadraSketch, first load the following screens from EXTENDED fig-FORTH and
fun-FORTH, using the method described under "Getting Started" at the start of the manual.
(Mote, You must load EXTENDED fig-FORTH to perform the following steps.)

1. From the fig-FORTH diskette!
39 LOAD S0 LOAD
2, From the fun-FORTH diskette!
1 LOAD 2 LOAD 4 LOAD
20 21 LOADS 24 LOAD
30 31 LOADS
3+ Then load all the screens necessary for QuadraSketch by typing
64 LOAD
with the fun~FORTH disk inserted in the disk drive.
4, To run QuadraSketch, type
QsK
and press RETURN.

S+ Plug a Joystick Controller into the leftmost controller jack at the front of the
computer.,

-7 -

~—

THE FIRST DISPLAY SCREEN
After fhe screen clears, this prompt displays:
Welcome to QuadraSketch.
Mode?
Choice of mode

Type the number of the graphics mode you want to draw in--3, S, or 7 {pressing the RETURN
key isn’t necessary). If you type any aother character, the program chooses a mode for you.

The screen then clears and a blinking gold dot displays in the center,

USING QUADRASKETCH
"Painting"

Pushing on the joystick, move the blinking dot diagonally upward and to the right, Notice
that 3 other dots appear and move in opposite directions. One goes up -and left, another
down and left, and the third moves down and to the right.

As the "brushes" move, each leaves a trail behind it. This is how you paint with
QuadraSketch. Also, notice that the brushes start out moving slowly and gradually speed
up. This feature gives you more control to do "touch-ups" but also lets you paint large
patterns quickly,

Locating your position

When you stop painting, the brush you were controlling begins to blink, letting you know
where you are. When you stand still, you hear no sounds. But when you mave, you hear a
clicking noise that speeds up into a low buzz. If you try to go off the screen, a BOOM!
alerts you as you hit the edge. (If you don‘t hear these sounds, turn up the volume on
your television sets)

Erasing or moving without painting
To erase what you've drawn, or to move the brushes without leaving a trail of paint, hold
down the red button on the joystick as you move. The sound changes to something like the
*hyperwarp" noise from Star Raiders (tm).

‘Using more than one color
Up until now, you've been drawing with color 1 and erasing by using the background color,
However, you have two more colors to draw with! colors 2 and 3. To use these, type the
number of the color you wish to draw with (for example, 3), You’ll hear a weird, cyclic
noise. Now push the red button. The noise stops and you re-enter normal drawing mode, You
may now draw with color 3.

The preset colors are as follows!

-48-

Qold (imitial brush)
bright green
blue

black (backaround; not 3 selectable paint color)

ENARNE

Tao change any of these colors (for example, to change color 1 from gold to purple), type
the number of the color you want to change. Next, move the joystick left or right. The
colar you have selected will cycle up or down the 128-color scale (starting with the
original color). If it reaches either end of the scale (black or bright yellow) it
automatically wraps around. When you reach the color you want, stop moving the joystick
and push the red button. You then return to normal drawing mode, with your brush color

set to the color you changed (unless you changed color 4, the background, in which case
your brush color stays what it was before your change).

Avoid changing a color before drawing with it on the screen. Unless you have a color

sample on the screen, when you change the color, you‘ll think nothing is happening
because you’ll see no visible change.

RESTARTING QUADRASKETCH

To leave QuadraSketch, press the ESC key while in normal drawing mode. You can‘t leave
the program while in the color-changing mode, After the screen clears, the prompt:

Finished? (Y/N)

displays. Type "N" to remain in QuadraSketch (the "Mode?" prompt then redisplays), Type
"Y*" to return to the standard FORTH prompt "ok".

ADVANCED TECHNICAL INFORMATION

The following is a screen-by-screen description of the words making up QuadraSketch.

SCREEN #6464

SCR + 64

0 (QuadraSketech QSK JaduUN82)
1

2 (if rnot already LOADed:)

3 (1 LOAD 2 LOAD 4 LOAD)

4 (20 21 LOADS 24 L0OAD)

S ¢ 30 31 LOADS)

6

7 ? VARIAELE XX 9 VARIAELE YY

8 38 VARIAELE XL 22 VARIAEBLE YL -
Q? 3 VARIAELE GMD 1 VARIAELE FCOL
10 0 VARIAELE DELC

11 e '

12

13

14

Screen #64 contains the "variables" used in QuadraSketch. XX and YY contain the x and y
coordinates of the blinking brush. XL and YL contain the x and y limits, which depend on
the selected mode. GMD contains the selected graphics mode number., PCOL contains the
current color number. DELC stores the current delay used when moving the brushes.

£
0
o
e

N ONOOCUDdDRONRODN

65
(QSK page 2 JaJuNgz >
DONE? 0 FGR CR CR

" Finished? (Y/N) " Y/N
(== 1/0) :

-

e

COLSWITCH 200 EBELL 4 SFXEl
171 172 SFXE2 48 ~ DUF

708 + DUF 712 < IF 1 - ENDIF
BEGIN 0 XSTK ~-DUF IF ASOFF
10 SWAF DUF Ce ROT + SWAF DUF
11 ROT SWAF C!' 50 DELAY 4 SFXE1
12 ENDIF 0 STRIG 0= UNTIL ASOFF
13 DROF DUF 4 < IF PFCOL ' ELSE
14 DROF ENDIF SINIT 100 BELL 3
13 ¢ ascol -=) ===

DONE? --1/0

This word, which is essentially the last word to be executed, asks if you're
finished, and returns the appropriate flag.

Comment, DONE? uses the ward Y/N, on screen #4.

COLSWITCH ascol --

This word receives the ASCII code of the color number (for example, 49 instead of 1)

from KINTERP (see below) It then lets you change the desired color as described
earlier,

Comment, COLSWITCH uses many fun-FORTH words, including SFXB! and SFXBZ , which
produce the "weird noise" described earlier in this section} BELL , which sounds

upon entering and exiting this word} XSTK , which returns values for the right or

left movements of the joystick} and ASOFF , which shuts off all the sound.

SCREEN #6464

SCR # 66
(QSK page 3 JaJUN82)

>

KINTERF KEY DUF DUF 48
SWAF 53 < AND IF COLSWITCH 0
ELSE 27 = ENDIF 3

-= 170)

*e

ELINK 0 SOFF 0 XX @ YY @ FLOT
10 DELAY PCOL @ XX @
YY @ FLOT 100 DELC ! 3

NNONOCCADIONHO

10 ¢ ——)
11
12 ¢ DSND 0 STRIG IF SFOF ELSE

13 0 DELC 2 2 / 8 4 SND ENDIF
14 DELC @ DUF DELAY 5 - DELC !
15 ¢ -~) —=»

KINTERP —1/0

Executed upon the press of a key, this word either enters the color-changing mode
(COLSWITCH) or sets the flag for exit from QuadraSketch,

BLINK no parameters

Executed if the brushes are not moving, this word blinks the direct-control brush,
and sets the movement delay to its slowest.

DSND no parameters

This word creates the noises heard during movement and decrements and executes the
delay (which controls the speed of the brush).

SCREEN #6467

SCR ¥ 67
0 (QSK paqge 4 JadUN82Z)
1
2 ¢ DIR+ 0 XSTK DUF XX @ + ¢
3 YSTK DUF YY @ + DUF 0 <
4 SWAF YL @ » OR ROT DUF 0 <
S SWAF XL @ » OR OR IF ZDROF
6 30 20 EXFLODE ELSE YY +!
7 XX +! ENDIF 3
8 (==)
K4
10 ¢ FLOT4 XX @ YY @ CPLOT

11 XL @ XX @ - YY @ CFLOT
12 XX @ YL @ Yy e - CFPLOT
13 XL @ XX e - YL @ Yy @ -
14 CFLOT

15 ¢ ==) —->

DIR+ no parameters

This word changes the x and y coordinates of the brush based on the direction of the
joystick. If the resulting coordinates are off-screen, it causes an audible
explosion and does not change the coordinates.

Comment, DIR+ makes use of XSTK , YSTK , and EXPLODE from fun-FORTH,
PFLOT4 no parameters

This word plots all four points using the color stored in COL.

Comment. CPLOT, from fun-FORTH, is used to perform each plot. COL is a variable
from fun-FORTH screen #31,

SCREEN #6%

SCR # 68
0 (QSK page 5 JQJUNBZ)
1
2 3 COLT PCOL @ 0 STRIG x TCOL
3 (==
q
S ¢ COLH PCOL @ TCOL
6 (=--)
7
8 ¢! BDRAW 0 STICK 15 - IF COLT
4 FLOT4 DIR+ COLH FLOT4 DSND
10 ELSE ELINK ENDIF
11 (==) —=i
12
i3
14
15

COLT no parameters

Sets the color for the next PLOT4 to either the current PCOL (for painting) or the
background (for erasing), based on the joystick trigger.

Comment, Uses STRIG and TCOL from fun-FORTH.
COLH no parameters

Sets the color for the next PLOT4 to the current PCOL.
GDRAW no parameters

If the joystick is being moved, this word performs a single paint-and-move or a
blink using previously defined words.

-54-

SCREEN #4%

SCR #* 69

0 (QSK paqe 6 JaJUNBZ)
i

2 ¢ QSETUP GMD @ FGR 1 TCOL XL @
3 2 /7 DUF XX ' YL @B 2 / DUF

4 YY ' CPLOT 1 PCOL '

3 ¢ --=

é

7 ¢ MODE? 0 FGR CR CR

8 +" Welcome to QuadraSketch."
Q@ CR CR +" Mode? " KEY 48 - 3
10 MAX 7 MIN DUF DUF 4 = SWAF &
11 = OR IF DROF S ENDIF DUF GMD
12 ' DUF 3 = IF 38 XL ! 22 YL
13 ! ENDIF DUF 5 = IF 78 XL !
14 46 YL ! ENDIF 7 = IF 158 XL
15 ' 94 YL ' ENDIF § —-=2

QSETUP no parameters

Sets up the screen for drawing by going into the selected mode, plotting the brush,
and setting the default color to 1,

MODE? no parameters

Prints the initial welcome and prompt and inputs the desired mode. It then finds the
correct screen limits for that mode.

SCREEN #70

143
0
-
e

N 70

0 (AGSK page 7 JjaduN82)
1

2 ¢ QSK BEGIN SINIT MODE?

3 EEGIN QSETUF

4 EBEGIN KEYINIT

S BEGIN QDRAW KEYED?
é UNTIL KINTERF

7 UNTIL 1

8 UNTIL DONE?

9 UNTIL 3
10
11 $S
12 '
13
14
15

QSK no parameters

This is the word that puts it all together. When executed, it runs QuadraSketch,

Comment. The outer BEGIN UNTIL loop lets you restart based on your response to
DONE?. The next loop sets QSETUP apart for execution. The next loop surrounds the
drawing loop so that KINTERP can re-enter normal drawing or exit. The innermost loop
performs the actual drawing until a key is pressed.

54—

INDEX TO WORDS

The followimng index comtaimns each Tun-FORTH word followed by it
stack diagram ("--" by itself mearns "no parameters") and the
screen where it is located.

XX A XX
ANTOFF (==) 41
ANTON (== 41
ARRAY (size —— XXX) 1
ASOFF (—-=) 20
ATTROFF (-=) 41
ATTRON (==) 41
XX B XX
BELL (frq --) 21
EBOOFP (frq --) 21
BUZZ (~=) 21
XX C Xx
CARRAY (size --— XXX) 40
CEOX (xlow xhi glow whi --) 35
CDRAW (¢ wy ==) 31
CHEOX (xlow xhi yvlow ghi -=) 335
CLICK (-=) 21
CONSOLE? (~- value) S
CRLOT (¢ 4 ==) 31
CURSOFF (~-) 41
CURSON (~=) 41
CVARTIABLE (—-—= XXX 40
XX D xXx
DELAY (lerngth --) 1
XX E XX
EXFLODE (fraq dur --) 21
XX F XX
FGR (mode --) 30
FILTER! {(rn —=) 20
FREQ (voec frq —--) 20
FREQ16 (voclorl frqlés --) 22
XX G XX
G. (n -—) 36
GeR (n fldwth == 36
GCR (==) | 36
GD. (3 —=) 36
GD.R (d fldwth =--) 36
GR? (=- mode) 34

XX

XX

XX

XX

XX

XX

XX

XX

XX

GSFACES (nn —-)

XX
HOME (==)

XX
KEYED? (-- 0/1)
KEYINIT (--)

XX
L.OADS (lastscrm lastsern -=)

XK
MYSELF (--)

XX
OFTION? (-- 0/1)

' XX

FADDLE (paddle® -- value)
FAKTC (==)

FICK (stackdepth ~- contents)
FTRIG (paddle# -- 0/1)

XX

RND (ranqge -- random*)

XK

SCR? ({y 4y == color$)

SECONDS (-~ #%secs)
SELECT? (-- 0/1)

SETIME (#secs —=)

SFXa1T (vol --)

SFXAZ2 (frq frq frq frq --)
SFXE1l (vol ~--)

SFXEZ2 (frq frq --)

SGR (mode --)

SINIT (==)

SINIT1é6 (--)

SND (voc frq tim vol --)

SND1é6 (vocl0/1 frqlé tim vol--)

SOFF (vaog -=)

SFOF (=-)

START? (--= 0/1)

STICK (joystick® —-~ value)
STRIG (joysticks -~ 0/1)
XX

TAHD? (== colord#)
TCOL (colorf --)
TCOL? (== colord)
TDIR (direction --)

36

34

40

wn

XX

XX

XX

TDIR?
TDRAW

(-— direction)
(g ==

TF (==)

TFWD
TGO
TMOVE
TFLOT
TSCR?
TTN
TURN
TXY?

XX
WARF

3
XSTK

XX
Y/N
YSTK

(re ==)
(ri =-=)

(3 4 =)

(—=)

(== color$)
(—=)

(n —=)

(== tx ty)

(dur frql frq2 tim vaol--)

(joystick¥ -- -1/0/1)

(-— 0/1)
(joystick® -- -1/0/1)

Limited Warranty on Media and Hardware Accessories. Atari, Inc. (“Atari") warrants to the original
consumer purchaser that the media on which APX Computer Programs are recorded and any
hardware accessories sold by APX shall be free from defects in material or workmanship for a
period of thirty (30) days from the date of purchase. If you discover such a defect within the 30-day
period, call APX for a return authorization number, and then return the product to APX along with
proof of purchase date. We will repair or replace the product at our option. If you ship an APX
product for in-warranty service, we suggest you package it securely with the problem indicated in
writing and insure it for value, as Atari assumes no liability for loss or damage incurred during
shipment.

This warranty shall not apply if the APX product has been damaged by accident, unreasonable
use, use with any non-ATARI products, unauthorized service, or by other causes unrelated to
defective materials or workmanship.

Any applicable implied warranties, including warranties of merchantability and fitness for a
particular purpose, are also limited to thirty (30) days from the date of purchase. Consequential or
incidental damages resulting from a breach of any applicable express or implied warranties are
hereby excluded.

The provisions of the foregoing warranty are valid in the U.S. only. This warranty gives you
specific legal rights and you may also have other rights which vary from state to state. Some states
do notallow limitations on how long an implied warranty lasts, and/or do not allow the exclusion of
incidental or consequential damages, so the above limitations and exclusions may not apply to
you.

Disclaimer of Warranty on APX Computer Programs. Most APX Computer Programs have been
written by people not employed by Atari. The programs we select for APX offer something of value
that we want to make available to ATARI Home Computer owners. In order to economically offer
these programs to the widest number of people, APX Computer Programs are not rigorously
tested by Atari and are sold on an “as is” basis without warranty of any kind. Any statements
concerning the capabilities or utility of APX Computer Programs are not to be construed as
express or implied warranties.

Atari shall have no liability or responsibility to the original consumer purchaser or any other
person or entity with respect to any claim, loss, liability, or damage caused or alleged to be caused
directly or indirectly by APX Computer Programs. This disclaimer includes, but is not limited to,
any interruption of services, loss of business or anticipatory profits, and/or incidental or

consequential damages resuiting from the purchase, use, or operation of APX Computer
Programs.

Some states do not allow the limitation or exclusion of implied warranties or of incidental or
consequential damages, so the above limitations or exclusions concerning APX Computer
Programs may not apply to you.

For the complete list of current
APX programs, ask your ATARI retailer
for the APX Product Catalog

N AR
PROGRAM
EXCHANGE

P.O. Box 3705
Sonta Clara, CA 95055

We're interested in your experiences with APX programs
and documentation. both favorable and unfavorable.
Many of our authors are eager to improve their programs
if they know what you want. And. of course. we want to
know about any bugs that slipped by us. so that the
author can fix them. We aiso want to know whether our

1. Name and APX number of program.

Review Form

instructions are meeting your needs. You are our best
source for suggesting improvements! Please help us by
taking a moment to fill in this review sheet. Foid the sheet
in thirds and seal it so that the address on the bottom of
the back becomes the envelope front. Thank you for
helping us!

2. If you have problems using the program, piease describe them here.

3. What do you especially like about this program?

4. What do you think the program’'s weaknesses are?

5. How can the catalog description be more accurate or comprehensive?

8. Onascaleof 110 10. 1 being “poor” and 10 being “excellent”. please rate the following aspects of this program:

Easy to use

User-oriented (e.g.. menus. prompts. clear language)

Enjoyable

Self-instructive

Useful (non-game programs)
imaginative graphics and sound

7. Describe any technical errors you found in the user instructions (please give page numbers).

8. What did you especiaily like about the user instructions?

8. What revisions or additions wouid improve these instructions?

10. On a scale of 1 to 10, 1 representing “poor” and 10 representing “excellent”, how would you rate the user
instructions and why?

11. Other comments about the program or user instructions:

~rom

STAMP

ATAR! Program Exchange
P.O. Box 3705
Santa Clara. CA 95055

[seal herej

