Q. ATAR’ PROGRAM EXCHANGE

Y
Bob Fraser
SUPERSORT, Rev.3

Y A high-speed sorting subroutine
usable in BASIC programs

' Diskette: 24K (APX-20030)

~ User-Written Software for ATARI Home Computers

Bob Fraser

SUPERSORT, Rev.3

A high-speed sorting subroutine
usable in BASIC programs

Diskette: 24K (APX-20030)

SUFERSORT
by

Eob Fraser

Froaram and Marnual Contents © 1982 ATARI, Irc.

Copyright notice. On receipt of this computer program and associated documentation (the
software), ATARI, Inc. grants you a nonexclusive license to execute the enclosed software.

This software is copyrighted. You are prohibited from reproducing, translating, or
distributing this software in any unauthorized manner.

Distributed By

The ATARI Program Exchange
P.O. Box 3705
Santa Clara, CA 95055

To request an APX Product Catalog, write to the address above. or call toll-free:

800/538-1862 (outside California)
800/672-1850 (within California)

-Qr call our Sales number, 408/727-5603

Trademarks of Atari
The following are trademarks of Atari, Inc.

ATARI®

ATARI 400™ Home Computer
ATARI 800™ Home Computer
ATARI 410™ Program Recorder
ATARI 810™ Disk Drive

ATARI 820™ 40-Column Printer
ATARI 822™ Thermal Printer
ATARI 825™ 80-Column Printer
ATARI 830™ Acoustic Modem
ATARI! 850™ Interface Module

Printed in U.S:A.

CONTENTS

INTRODUCTION __ 1
Overview __ 1
Required accessaories __ 1
Optional accessories __ 1
Preliminary steps __ 1
GETTTNG STARTED __ 2
USING SUPERSORT __ 3
Preparing your BASIC program __ 3
Record length __ 2
Number of keys __ 3
Starting and ending locations of each sort key ___ 4
The USRcall __ 4
Starting location of SUPERSORT __ 4
Starting location of sort string __ 4
Starting location of last record in sort string __ 4
Incorporating these variables into your calling routine __ S
Formatting your sort string in your BASIC program __ 5
TROUBLESHOQOTING __ ¢4
Error codes and messages _ 6
Program operation limitations and warnings __ &
Using vs. not using MEM,SAV __ 4
Pressing SYSTEM RESET or calling DOS __ 4
ADVANCED TECHNICAL INFORMATION __ 7
Using double-byte records __ 7
Saving memory space __ 7

SAMPLE APPLICATIONS __ &

A calling routine __ &

LEGAIL NOTICE

You are granted a license to use this
program for your personal use only.

If you want to incorporate SUPERSORT
into software you plan to sell or
otherwise distribute, please call the
ATARI Program Exchange for license
information.

INTRODUCTION

OVERVIEW

"LOOK! It’s a bubblesort!"

"ND!"

"It’'s a mergesort?"

"Wrong again! It’s SUPERSORT!

SUPERSORT is an ultra high-speed sorting routine written in machine language. You
incorporate it into your BASIC programs according to your needs. It takes up less than

1000 bytes of memory, yet it can sort a thousand 30-byte names in less than 3.9 seconds
and a thousand 1-byte items in less than one second. SUPERSORT supports records as large
as 256 bytes, and it can process as many as 10,000 records, depending on your memory size.

The diskette contains a number of files to meet several needs. You can’t use SUPERSORT

with DOS I because SUPERSORT uses an autoload feature, However, the diskette contains DOS
II, The AUTORUN.SYS file on the SUPERSORT diskette is the autoload. Don’t confuse this
file with ATARI's normal AUTORUN.SYS, which loads the RS-232C handler. The SUPERSORT
diskette also includes the assembler editor source code to allow you to modify the

program to fit you needs. Other files on the diskette are mentioned in the

Troubleshooting and Advanced Technical Information sections, ‘

SUFPERSORT combines C. Hoare’s QUICKSORT with a standard insertion sort, For a more
thorough discussion of SUPERSORT and sort routines in general, see Knuth, Donald E., The
Art of Computer Programming, Vol. 3, 723 pp., Addison-Wesley, 1973, (Page 114 contains

a discussion of C. Hoare’s QUICKSORT.) ’

REQUIRED ACCESSORIES

16K RAM
ATARIT 310 Disk Drive
ATARI BASIC Language Cartridge

OPTIONAL ACCESSORIES

ATARI Assembler Editor Cartridge

PRELIMINARY STEPS

Using SUPERSORT is easy. First, duplicate AUTORUN.SYS from the SUPERSORT diskette onto
the diskette containing the BASIC program with data you want to sort, Next, add several

lines of code to your BASIC program to set up SUPERSORT. (1) You add a calling routine
specifying several parameters, such as record and number of keys, by which SUPERSORT

sorts your data. (2) You store in one long string the items you want sorted. (3)

Optionally, you code an output format for your sorted records. A calling routine appears

in the Sample Applications section. Lines 1000-1100 set up the parameters to call
SUPERSORT,

When you‘re ready to run your program, SUPERSORT loads itself into memory as an
AUTORUN.SYS file when you boot up your diskette. It installs itself below BASIC in
location $1DO0A but remains invisible until your program calls it. To sort your data, run

your BASIC program as usual. SUPERSORT sorts the entire string in ascending order by your
specified key.

GETTING STARTED

1. Insert the ATARI BASIC Language Cartridge in the (Left Cartridge) slot of your
computer,

2. Turn on your disk drive.

3+ When the BUSY light goes out, open the disk drive door and insert the SUPERSORT
diskette with the label in the lawer right-hand corner nearest to you.

4, Turn on your computer and TV set,

5. SUPERSORT will install itself below BASIC in RAM when you boot the DOS. To verify its
presence, either compare your FRE(0) memory before writing any code (you should be about
857 bytes short), or PEEK at location 7434, where you should find the number 104, If you
can’t verify the presence of SUPERSORT, turn off your computer and start again.

USING SUPERSORT

PREPARING YOUR BASIC PROGRAM

However you code SUPERSORT into your program, your calling routine must include seven
parameters: (1) record length, (2) number of keys, (3) starting location of the SUPERSORT
subroutine, (4) starting location of the sort string, (5) starting location of the last
record in the sort string, (6) starting location of each sort key and (7) ending location

of each sort key. A brief discussion of each parameter appears below, followed by
suggestions for incorporating these variables into your calling routine.

Record length

This parameter specifies the fixed length of your records. POKE this length into location
$600 (1536), (Line 1000 of the sample routine shows one way to code this.) All the
records must be the same length, and corresponding data fields must be the same length
across records. Make your data fixed-length by padding data shorter than its field length
with trailing blanks. A data record is one set of fields to be sorted as a unit. For
example, a record for a mailing list might comprise fields for a name, address, and zip
code. Figure 1 shows a schematic of two records. :

————————— Record 1 --===-=-we —eceemmee——Recorg 2 ————————
| Field 1 | Field 2 | Field 3 | Field 1 | Field 2 | Field 3 |
(10) (135 (10) (10> (15) (10)

L —— 35 characters————-— - em———— 35 characters —----- -

Figure 1. Sample Data Records

Any of these fields can also be the keys by which SUPERSORT sorts your records, (A key is
the criteria used to sort records,) SUPERSORT can sort on any key, and it can sort on as
many as 8% keys. In the mailing list example, suppose we want to sort by two keys, first
by zip code and then by name. We would specify the zip code field as our primary key and
the name field as our secondary key, SUPERSORT would therefore sort numerically by zip
code and withinin zip code alphabetically by name. If we set the name field at 10 bytes,

we would pad any name less than 10 bytes with trailing blanks. (Assuming zip codes are

all 5 bytes long, padding isn‘t necessary in this field,) An example of how to pad a
field is shown in line 710,

Number of keys

This parameter specifies the number of keys by which you want to sort your file. POKE

this value into location $64C (1612), (Line 1010 of the sample routine shows one way to
code this.)

LR 2R 2N

~—

Starting and ending locations of each sort key

You need to POKE the starting and ending character number within the string of each key
by which you want to sort your data. POKE the starting location of your primary key into
1613, and the ending location into 1702, POKE the starting location of each additional
key into 1614, 1615, and so on, and the ending location of each additional key into 1703,
1704, and so on. Lines 1020-1100 of the sample calling routine contain the POKEs.
Characters are counted starting with O for the first character of a record, to a maximum
specified by record length, which is POKEd at location 1536~1,

THE USR CALL
A call of SUPERSORT consists of three values!

JUNK = USR(7434,START,LAST)

. Starting location of SUPERSORT

Code a USR function containing three values--starting location of SUPERSORT, starting
location of the sort string, and starting location of the last record in the sort string.
(Line 1270 of the sample routine shows one way to code this.) The first value, starting
location of SUPERSORT, calls the program and is always the value 7434,

Starting location of sort string

This second value in the USR function tells SUPERSORT where to begin sorting, Use an ADR
function to specify this value and place this code before the line of code for your USR
function, (Line 1270 of the sample routine contains the ADR function.) For example, to

sort string BUF$, the value ADR(BUF$) indicates its starting location,

Starting location of last record in sort string

This third value in the USR function lets SUPERSORT determine the end of the sort string.
Be espedially careful in specifying this number. Using the wrong number could cause
SUFERSORT to continue sorting past your string and rearrange your program code or the
Operating System RAM! Before using SUPERSORT, check that the starting location of the
last record in the sort string is a valid value. You can do this by including the

following two lines of BASIC code in your program before your USR call!

X=(LAST-START)/RLENG
IF X<HINT(X) THEN FRINT "ERROR IN ADDRESS CALCULATIONS":STOF

The formula to calculate the address of the starting location of the last record in the
sort string is!

ADR(BUF$) + LEN(BUF$%) - Z#RLENG

where ADR(BUF$) is the starting location of your sort string, LEN (BUF$) is the total

length of your sort string, and RLENG is your record length, You subtract two RLENGs
because SUPERSORT requires you to include an empty record -at the beginning and at the end
of your sort string, Place this code before the line of code for your USR function. (Line

1210 of the sample routine contains the function.)

INCORPORATING THESE VARIABLES INTO YOUR CALLING ROUTINE

A calling routine appears in the Sample Applications section and also on the diskette
(the file name is DEMO.BAS) so that you can try it out,

Remember to include an empty record at the beginning and the end of your sort string.
Failure to start your sort string with an empty record causes the first real record to be
overwritten, and so you’ll lose data. Failure to end your sort string with an empty

record causes SUPERSORT to overwrite the bytes following your last record——either you’ll
just lose some data or the whole program coulc crash,

FORMATTING YOUR SORT STRING IN YOUR BASIC FROGRAM

For SUPERSORT to sort your string correctly, you’ll have to format it first, A field must
be the same length across records. Therefore, all the values for a field will always be
as long as the longest value for that field.

DATA "JOHNSON 121 0AK WAY ANYTOWN"
DATA “SMITH 1310 MAIN ST. ANYTOWN"

These strings each contain one record having three fields, JOHNSON and SMITH are the
first field, padded with trailing blanks te lengthen the data to 10 bytes each. The
second field in each record is padded to lengthen its data to 15 bytes each, and the

third to 10 bytes each. To sort this string, we would first need to add an empty record
at the beginning and at the end.

After SUPERSORT completes its sorting, it stores the results back in the original string,
Therefore, save your original, unsorted data string somewhere else (in your program or in
another file, depending on the size of your sort string) if you want to preserve it.

TROUBLESHOOTING

ERROR CODES AND MESSAGES

Because you create your own calling and formatting program, every BASIC error is
possible. You’ll need to track down these problems yourself. SUPERSORT does no
error-checking and it contains no special error codes or messages. If you enter bad
values, you could get one of three results, You might run SUPERSORT but get your data
back unsorted. Or, with a more severe error, you might get back a jumbled sort. Or, in

the worst case, the program will crash and you‘ll need to turn off your computer. To

guard against such an event, save your BASIC program before calling SUPERSORT. Then, -

should something go wrong, simply reload your program and look over your variables befare
rerunning the program.

PROGRAM OPERATION LIMITATIONS AND WARNINGS
Using vs not using MEM.SAV

The SUPERSORT diskette contains the utility MEM\SAV, which prevents your program from

being destroyed when you call DOS II and prevents SUPERSORT from being lost in RAM,

However, MEM.SAV slows disk-operations since it saves and reloads a portion of RAM each

time you call DOS II, and it reserves 45 sectors on the diskette for its own use., You can

omit this function by deleting the file on your disk (use the DOS II menu selection D to

-delete the file): You can reinstate it when you want to by using menu selection N (CREATE

MEM.SAV), Remember, though, that whenever you omit MEM.SAV from a diskette, calling DOS -
will destroy SUPERSORT. If you later run your BASIC program calling SUPERSORT, the system

will crash and you will have lost your BASIC program as well!

Pressing SYSTEM RESET or calling DOS
Pressing the SYSTEM RESET key has no ill effect on SUPERSORT,

'If you call DOS and you haven‘t included MEM.SAV on your diskette, then DOS will

overwrite SUPERSORT in RAM. If MEM.SAV is in effect, it reloads SUPERSORT once DOS has
reloaded into RAM.

ADVANCED TECHNICAL INFORMATION

The following modifications are recommended for advanced hobbyists only. The first
modification tends to slow down SUPERSORT.

USING DOUBLE-BYTE RECORDS

As written, SUPERSORT accepts only single-byte record lengths, even if you move TREC,
However, you can force SUPERSORT to accept double-byte records since the record length
(RLENG) is used only during additions, Because the addition is already double-byte (to
support propagation), you need only change hi byte additions from ADC #0 to ADC RLENGHI,

SAVING MEMORY SPACE

SUPERSORT currently has no subroutines because parameter passing is time-consuming.
However, if you need more memory, you can reduce the size of the routine as much as
one-third to one-half by rewriting to include subroutines. You can also eliminate 155

~ bytes by removing the insertion sort (labels @9 - L21A), If you choose to eliminate the

insertion sort, you must assign label M to one and then reassemble the program. The
partition size is normally set to 9.

SAMPLE APPLICATIONS

SAMPLE CALLING ROUTINE

10

20

30

40

S0

60

70

80

?0

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420

Below is an example of a calling routine you could include in your BASIC program to set
up the conditions for using SUPERSORT. This is the listing for the same calling routine
on the diskette with the file name DEMO.BAS,

REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
REM
FRI
FRI
FRI
INF
FRI
INF
RLE
FRI
INF
REM
REM
REM

SUFERSORT REV 3.0 DEMO FROGRAM
D. YOCUM, 11/19/81

THIS FROGRAM ALLOWS THE USER TO DEFINE THE NUMEER .

OF FIELDS, FIELD SIZE AND NUMEER OF RECORDS FOR SORTING.
YOU THEN SFECIFY WHICH FIELDS TO SORT EY.s.

SUFERSORT DOES THE REST. ALL FIELDS ARE THE

SAME SIZE IN THIS EXAMFLE, THIS IS NOT

REQUIRED EY SUFERSORT, HOWEVER.

KK KKK K KK K 3K K 3K K K 9K 3K K K KK K K K KK K K 3K K 3K 2K K 3K 2K K 3K 3K 3K 3K 3K 2K 3K 3K 3K 3K 2K 3K 3K 3K 3K 3K 3K 3K K 3K 3K XK K
MAJOR VARIAELES!?

EUF4$ +++ MAIN SORT EBUFFER. ALL RECORDS ARE STORED HERE.
TEMF$ ++s TEMF., INFUT STRING FOR FIELDS

ELANK$... FILLED WITH ELANKS. USED TO FAD FIELDS.

KEY () +++ HOLDS NUMEERS OF FIELDS TO SORT EY.

FIELDS ... NUMEER OF FIELDS FER RECORD.

FLENG +++ NUMEBER OF CHARS PER FIELD.

NREC +++ NUMBER OF RECORDS

RLENG +++ NUMEER OF CHARACTERS FER RECORD

NKEYS +++ NUMEER OF SORT KEYS IN ARRAY KEY()

BUFSIZE ... TOTAL LENGTH OF EUF$

KEYSTART... STARTING LOCATION IN EUF$ OF A KEY.

C +++ FOINTER TO START OF NEXT FIELD ON OQUTFUT.

LAST +++ ADDRESS OF START OF LAST RECORD IN BUF%$.

KK KK KK K KK 3K K K KKK K K KK K 3K 3K 3K K 3K 35 3K 3K 35 3K 3K 3K 3K 3K K 3K 3K 3K 3K K 3K 3K 3K K 3K 3K 3K 9K 3K 3K K 3K 3K 3¢

KKK KK K K K K 2K 3K K 30K 3K K KKK KKK 3K K 3K K 3K K 3K K K 3K 3K 3K 3K
INFUT FIELD NUMEER, SIZE AND RECORD COUNT
KKK K K 3K 3K 3K 3K 3K KKK XK K 3K K 3K 3 9K 4 K 3K K 5K 3K K K 3K 3K 3 3K 3K 3K K 3K 3K 3K 3K 3K 3K 3K 3K 5K 3K 3K 3K 3K 3K 3K 3K 3K K X K

NT CHR$(125)3" SUFERSORT REV 3.0 DEMO FROGRAM "
NT $FRINT

NT "HOW MANY FIELDS FER RECORD":

UT FIELDS

NT "HOW MANY CHARACTERS FER FIELD":

UT FLENG

NG=FIELDSXFLENG

NT "HOW MANY RECORDS TO INFUT":

UT NREC

KK 34K IO XK KK K KK 5K 7 K35 K K KK K 3K K DK K 2K 3K 3K 3 %€ 343K K 3 K 3K 3K 3K 3K 3K 3K 3K 3K 3 K 3K 3K 3 30 3K 3K K XK K
COMFUTE SIZE REQUIRED FOR EBUF$ INCLUDING 2 ELANK RECORDS

430
440
450
460
470
480
4940
S00
510
520
530
540
S50
960
570
580
390
600
610
620
630
640
650
660
670
680
690
700
710
720
730
740
750
760
770
780
720
800
810

820

830
840
850
860
870
880
890
?00
210
920
730
®40

REM xxxxxxxxxxxxxxxxxmxxxxxxmxxxxxxmxxxxxxxxxxxxxxxxxxxxxxmmxx
REM

BUFSIZE=(NREC+2)XRLENG

DIM EBUF$(EUFSIZE), TEMF$(FLENG),ELANKS$ (FLENG),KEY(FIELDS
REM '
REM BELANK$ IS FILLED WITH ELANKS FOR FADDING

REM

BEUF$="" :

FOR I=1 TO FLENG!ELANKS$(I)=" "INEXT I

REM

REM STICK A ELANK RECORD AT THE EEGINNING OF EUF$

REM

GOSUE 1470

REM

FEM 5K K 3K K K 3K 3K X K 3 K M 3K MK K K XK K X XK X

REM INFUT DATA FOR EACH RECORD

FOEM 20 K 3K K KK K 3K 3K K 3K K K 2 0K 3K K 3K K K K X K X

REM

FOR RECNT=1 TO NREC
FRINT

FOR FCNT=1 TO FIELDS

FRINT "INFUT RECORD "3RECNT;'" FIELD "3FCNT

INFUT TEMP4$

BUFS (LEN(BUF$)+1)=TEMF$

REM

REM FAD WITH ELANKS IF THIS FIELD IS TOO SHORT

REM

IF LEN(TEMF$)<FLENG THEN EBEUF$(LEN(EUF$)+1)=ELANK$(1,FLENG~-LEN(TEMF$))
NEXT FCNT

NEXT RECNT

REM

REM STICK A ELANK RECORD AT THE END OF EUFs$
REM

GOSUE 1470

REM

REM KKK KK K 2K K K KK 2K K K XK K K 5K K 3K K K KK K K 5K 3K 3K K K K K K K K K 3K K K K K K 3K K K K 3K KK KKK KKK XK
REM INFUT THE FRECEDENCE OF THE FIELDS FOR SORTING

FUETME 38 KK 040 3K 3K K K K K 3K 3K K 3K 9K 2K 3 3K 3K 3K 3K K 3K 3K 3K 3 3K 3K 3K K 3K 3K 3K 3K 3K 3K 3K 3K 3K 3K K 3 3K 9K 3% 3K K 3K 3K 3K 3K 3K 0K 3K K XK K
REM

FRINT $(FRINT

FRINT "SORT EY WHICH FIELD (1-"3FIELDS;")"}

FOR MKEYS=1 TO FIELDS

INFUT X

IF X=0 THEN FOF :GOTO 930

KEY (NKEYS)=X

IF NKEYS=FIELDS THEN 920

? (FRINT "IF THOSE FIELDS MATCH, WHICH SHOULD"

FRINT "I SORT EY NEXT (0 WHEN DONE)':

NEXT NKEYS

REM NHEYS NOW HAS NUMEER OF KEYS

REM DIMENSION STRINGS ACCORDINGLY
|
|

NHEYS=NKEYS-1

|
\

950
960

970

980

990

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200
1210
1220
1230
1240
1250
1260
1270
1280
1290
1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460

REM

FEETME 300K 3K K 3K 3 K 3K 3K 3% 3K K 3K 3 3 3K 3K 34 3K 3K K 3K K XK K X XK %K
REM SET UF SUFERSQRT

FUECD K D8 K300 0 D8 3% 3K K 3K 3K 2K D8 3K 35 3K 3K K 3K 3K 3 K 3K 3K 3K 3K 3 K
REM

FOKE 1536,RLENGIREM RECORD LENGTH

FOKE 1612,NKEYS$IREM NUMEER OF KEYS

FOR KCNT=1 TO NKEYS

REM

REM COMFUTE EEGINNING CHAR % OF KEY FIELD
REM

KEYSTART=(KEY(KCNT)-1)XFLENG

FOKE 1612+KCNT,KEYSTART!REM STARTING CHAR FOR KEY
REM FOKE ENDING CHAR%# OF KEY

FOKE 1701+KCNT,KEYSTART+FLENG!REM ENDING CHAR FOR KEY
NEXT HCNT

FEM KK KK 5K 5K 3K K 3K K 3 % 3K 3K K K 3K 3K X 3K 9K 3K XK 5K 3K 3 3K 3K 3K XK 3K XK K 3K K
REM DISFLAY UNSORTED RECORDS

REM 35K 5K 3K 5K 5 5 5 3K 3K K 5 K 3K XK K K 5K XK K 5K XK K 3K K K K 3K K XK K K XK K X K
FRINT $FRINT

FRINT "UNSORTED RECORDS"

GOSUE 1S5Z0!REM FRINT FORMATTER

REM

REM COMFUTE STARTING ADDRESS OF LAST RECORD IN EUF$
REM THIS SHOULD IMMEDIATELY FRECEED THE USR CALL.
REM

LAST=ADR(BUF$)+LEN(BUF$)-2XRLENG

REM

FEEIM KK K K 3K 3K XK K 3K 3K 3K K % 3K 3K 3K K X X 3K 3K X

REM CALL SUFERSORT!

REM 55K 5 5 K 3K % K % 5 K 3K 5K 5K X X 3 XK XK X XK X

REM

JUNK=USR (7434, ADR(EUF%$),LAST)

REM

REM 3K K K 3K % % K XK 3K K 3K 3K 3K K K K K K XK X

REM DISFLAY SORTED RECORDS

REM 55K K K 5 5 % K K 5K 5K 5K 3 5K 5K 3 3 % % K XK X

REM

FRINT $(FPRINT (FRINT "SORTED RECORDS"

GOSUE 1520¢REM FRINT FORMATTER

END

REM

REME KK 353K 5K 5K 3K 3K 3K 3K K 3K K 3K 3K 5K 5K 9K 3K 3 3 3K 3K 3K K 3K 9K XK K 3K K K 3K K XK %
REM SUEROUTINES

FUETM 200K K DK I 3K 3K 3K 3K 3 K 3K K K K K 3K 3K 3K 3K 3K 3 3K K 3K 3K 3K 3K K 3K 3K 3K 3K 3K 3K 3 %
REM

REM THIS SUBROUTINE CREATES A ELANK RECORD
REM IN THE SORT BUFFER. IT IS USED TO MAKE
REM EOTH THE FIRST AND LAST ELANK RECORDS
REM REQUIRED EBY SUFERSORT.

FUETM K 5K 35 35 I 3K DK 3 3K 39 K 3K 3K K 35 3K 3K 3K 3 5K K 3K 3K 3K 3K 3K K 3K 3K 3K 3K 3K 3 3K XK
REM

-1 Q-

1470
1480
1490
1500
1510
1520
1530
1540
1550
1560
1570
1580
1590
1600
1610
1620
1630
14640

FOR I=1 TO FIELDS

BUFS (LENC(EUF$)+1)=ELANKS$

NEXT I

RETURN

REM

REM 3K KKK K K K K K K K K XK K K K 3K K K 3K 3K K K K K 3K K 3K KKK XK K KK
REM OUTFUT DISFLAY FORMATTER

FUEM KKK KK KK K K K KK K K K K K K 3K 3K K 3K K K K 3K 3K K 3K K K 3K K K K K K
REM

C=FLENGXFIELDS+1:REM SKIF FIRST ELANK RECORD
FOR I=1 TO NREC

FRINT

FOR J=1 TO FIELDS

FRINT BUF$(C,C+FLENG-1),

C=C+FLENG

NEXT J

NEXT T

RETURN

o i

Limited Warranty on Media and Hardware Accessories. We, Atari, Inc., guarantee to you, the original
retail purchaser, that the medium on which the APX program is recorded and any hardware
accessories sold by APX are free from defects for thirty days from the date of purchase. Any applicable
implied warranties, including warranties of merchantability and fitness for a particular purpose, are
also limited to thirty days from the date of purchase. Some states don't allow limitations on awarranty’s
period, so this limitation might not apply to you. If you discover such a defect within the thirty-day
period, call APX for a Return Authorization Number, and then return the product along with proof of
purchase date to APX. We will repair or replace the product at our option.

You void this warranty if the APX product: (1) has been misused or shows signs of excessive wear;
(2) has been damaged by use with non-ATARI Home Computer products; or (3) has been serviced or
modified by anyone other than an Authorized ATARI Computer Service Center. Incidental and conse-
quential damages are not covered by this warranty or by any implied warranty. Some states don’t allow
exclusion of incidental or consequential damages, so this exclusion might not apply to you.

Disclaimer of Warranty and Liability on Computer Programs. Most APX programs have been written
by people notemployed by Atari, Inc. The programs we select for APX offer something of value that we
want to make available to ATARI Home Computer owners. To offer these programs to the widest
number of people economically, we don’t put APX products through rigorous testing. Therefore, APX
products are sold “as is,” and we do not guarantee them in any way. In particular, we make no warranty,
express or implied, including warranties of merchantability and fitness for a particular purpose. We are
not liable for any losses or damages of any kind that result from use of an APX product.

For the complete list of current
APX programs, ask your ATARI retailer
for the APX Product Catalog

N AR

PROGRAM
EXCHANGE
P.O. Box 3705

Sonta Clara. CA 95055

Review Form

We're interested in your experiences with APX programs instructions are meeting your needs. You are our best
and documentation, both favorable and unfavorable. source for suggesting improvements! Please help us by
Many of our authors are eager to improve their programs taking amoment to fill in this review sheet. Foid the sheet
if they know what you want. And. of course. we want to in thirds and seal it so that the address on the bottom of

know about any bugs that slipped by us, so that the the back becomes the envelope front. Thank you for
author can fix them. We also want to know whether our helping us!

1. Name and APX number of program.

2. If you have problems using the program, please describe them here.

3. What do you especially like about this program?

4. What do you think the program'’s weaknesses are?

5. How can the catalog description be more accurate or comprehensive?

8. Onascaleof 1to 10. 1 being “poor” and 10 being “excellent”. please rate the following aspects of this program:

Easy to use :
User-oriented (e.g.. menus. prompts. clear language)
Enjoyable

Self-instructive

Useful (non-game programs)

Imaginative graphics and sound -

7. Describe any technical errors you found in the user instructions (please give page numbers).

8. What did you especially like about the user instructions?

9. What revisions or édditions woulid improve these instructions?

10. On a scale of 1 to 10, 1 representing “poor”’ and 10 representing “excelient”, how would you rate the user

instructions and why?

11. Other comments about the program or user instructions:

From

ATARI Program Exchange
P.O. Box 3705
Santa Clara. CA 95055

[seal herej

STAMP

~—

