- A

\ Q. AARI" PROGRAM EXCHANGE

-WORD PROCESSING
DISKETTE

ATARI Program-Text Editor{tm)
and Text Formatter (FORMS)

Diskette: 32K (APX-20076)

— User-Written Software for ATARI Home Computers

-WORD PROCESSING
DISKETTE

ATARI Program-Text Editor(tm)
and Text Formatter (FORMS)

Diskette: 32K (APX-20076)

WNORD FROCESSITING DISHETTE

Froaram and Manual Contents © 1982 ATARI, Inc.

Copyright notice. On receipt of this computer program and associated documentation (the
software), ATARI, Inc, grants you a nonexclusive license to execute the enclosed software.
This software is copyrighted. You are prohibited from reproducing, translating, or
distributing this software in any unauthorized manner.

Distributed By

The ATARI Program Exchange
P.O. Box 3705
Santa Clara. CA 95055

To request an APX Product Catalog, write to the address above. or call toli-free:

800/538-1862 (outside California)
800/672-1850 (within-California)

-Or call our Sales number, 408/727-5603

Trademarks of Atari
The following are trademarks of Atari, Inc.

ATARI®

ATARI 400™ Home Computer
ATAR! 800™ Home Computer
ATARI 410™ Program Recorder
ATARI! 810™ Disk Drive

ATARI 820™ 40-Column Printer
ATARI 822™ Thermal Printer
ATARI 825™ 80-Column Printer
ATARI 830™ Acoustic Modem
ATARI! 850™ Interface Module

Printed in U.S.A.

IMFORTANT!

DUFLICATE
THIS
DISKETTE
EEFORE
USING
THIS
FROGRAM!

This APX diskette is unnotched to protect the software against
accidental erasure. However, this protection also prevents a program
from storing information on the diskette., The program you’ve
purchased involves storing information. Therefore, before you can use
the program, you must duplicate the contents of the diskette onto a

notched diskette that doesn’t have a write-protect tab covering the
notch.

To duplicate the diskette, call the Disk Operating System (DOS) menu
and select option J, Duplicate Disk. You can use this option with a
single disk drive by manually swapping source (the APX diskette) and
destination (a notched diskette) until the duplication process is
complete, You can also use this option with multiple disk drive
systems by inserting source and destination diskettes in two separate
drives and letting the duplication process proceed automatically.
(Note. This option copies sector by sector. Therefore, when the
duplication is complete, any files previously stored on the

destination diskette will have been destroyed.)

FREFACE

This manual combines the two manuals accompanying the programs on the WORD PROCESSING
DISKETTE. They are in the following order:

1, ATARI Program-Text Editor™

2, Text Formatter (FORMS)

Each manual is reproduced in its entirety, including separate Review Forms, so that you
can send us your comments about the programs and manuals as you use them.

ATARL
PROGRAM-TEXT EDITOR

N\

ATARI®

A Warner Communications Company

Every effort has been made to ensure that this manual accurately documents this product of the ATARI Computer Division. However,
because of the ongoing improvement and update of the computer software and hardware, ATARI, INC. cannot guarantee the accuracy of
printed material after the date of publication and cannot accept responsibility for errors or omissions.

Reproduction is forbidden without the specific written permission of ATARI, INC., Sunnyvale, CA 94086. No right to reproduce this docu- -
ment, nor the subject matter thereof, is granted unless by written agreement with, or written permission from the Corporation.

PRINTED IN U.S.A. MANUAL AND PROGRAM CONTENTS © 1981 ATARI, INC.

CONTENTS

-

1 SYSTEM REQUIREMENTS 1
Setup Procedures 1
Turning On the System 1
Turning Off the System 2

2 OPERATIONAL PROCEDURES FOR THE EDITOR 3
Theory of Operation 6

Starting the Edit Session 8
Familiarity With the Keyboard 9
Command Mode Operation 16
Exiting the Editor 17
Cursor Movement Commands 18
Search Commands 19
Block Commands 21
Inserting and Deleting Commands 23
Specialized Commands 25
Large File Commands 26
3 CUSTOMIZING THE EDITOR 31
A-D—Parameters 32
E—Set Tab Stops 32
F—Set Maximum Line Length 33
G—Set Minimum Growth 33
H—Set Default Margins 33
|—Set Color of Screen 33
J—Set Miscellaneous Flags 34

A —Return to Main Menu 34

B —Set Type of Tab 34
C—Set Tab Display Method 35
D—Set Carriage Return Display 35

E —Auto-Indention Feature 35

F —Set Shifting Caselock 35

Contents vii

Vil Contents

ILLUSTRATIONS

1 DOS Il Menu 3
2 Filename Prompt 4
3 Normal Exit From the Editor 7
4 Abort Exit From the Editor 7
5 lllustration of Expanding Tabs 8
6 Answering the Filename Prompt 8
7 Windows 9
8 Example of Entered Text 10
9 Escape Sequence Characters 13
10 Extension Group Prompt 31
11 Customizing File Menu 32
12 Customizing File Submenu | 34
TABLES
1 Immediate Mode Reserved Keystrokes 27
2 Command Mode Instructions 28
3 The ATARI Colors and Numbers 33

T
SYSTEM REQUIREMENTS

The ATARI® Program-Text Editor™ (Model No. CX8121) requires:

e ATARI 810™ Disk Drive
e ATARI Blank Diskette (CX8100)

For information on your disk drive, refer to the ATARI 810 Disk Drive Operators
Manual. Check the drive code setting to make certain that you have a disk drive
designated as Drive 1. Because the Disk Operating System (DOS) Il programs are
included on the diskette containing the Program-Text Editor, you can easily load
the editor software by inserting your diskette in Drive 1. Otherwise, you must have
a copy of the DOS Il Master Diskette, Model No. CX8101, inserted into Drive 1.

You must have at least 24K RAM in your ATARI Home Computer to operate the
disk drive and the editor software. Although the software requires 24K memory, a
total memory capacity of 32K is highly recommended and will result in increased
program efficiency. For instructions on inserting additional ATARI RAM Memory

Modules™ into the ATARI 800™ Computer, refer to the ATARI 800 Operators
Manual.

SETUP 1. Verify that all power switches (console and disk drive) are turned to OFF.
PROCEDURES

2. Check that the computer console is properly connected to the television set
and a standard wall outlet.

3. Place the disk drive at least 12 inches away from your television set and plug it
into a standard wall outlet.

4. Connect the disk drive to either the computer console or another ATARI
peripheral. Plug one end of the I/O Data Cord into the jack labeled /O CON-
NECTORS on the back of the disk drive. Plug the other end into either the
jack labeled PERIPHERAL on the computer console or one of the /O CON-
NECTOR ports of another ATARI! peripheral. If you connect your disk drive to
another ATARI peripheral, verify that there is an 1/O Data Cord plugged into
the computer console.

TURNING ON When you are ready to use the computer, proceed as follows:
THE SYSTEM

1. Turn on the television set. Tune to Channel 2 or Channel 3, whichever has a
weaker signal in your area. Make certain that the 2-CHAN.-3 switch on the
computer console corresponds to your channel selection.

System Requirements 1

2. Turn on the disk drive. Notice that the BUSY and PWR ON light indicators are
activated. Wait until the motor of the disk drive stops its activity and the BUSY
light goes out before continuing to the next step.

3. Insert the diskette containing the Program-Text Editor into the disk drive
designated as Drive 1.

Note: DO NOT TOUCH THE EXPOSED PORTION OF THE DISKETTE.

4. Turn the computer console power switch to ON. This will activate the disk
drive’s loading procedure.

Note: OPTIONAL. To increase the RAM buffer size on a 48K system, before turning
on your computer, remove any language cartridge that might be installed.

Take note of the following conditions to determine if you have successfully com-
pleted the power-on procedure. If you have a language cartridge inserted into the
computer console, the screen displays the prompt applicable to that particular
language. For example, the ATARI BASIC language prompt is the READY message;
the ASSEMBLER EDITOR language prompt is the EDIT message. Otherwise, the
DOS Menu should appear immediately upon the screen.

TURNING OFF Warning: NEVER turn off the disk drive with a diskette in it. You may damage the
8
THE SYSTEM information contained on the diskette and lose the ability to load your program.
When you are ready to end your editing session:
1. Use the exit command appropriate for your editing session.

2. Wait for the DOS I Menu display or the filename prompt to appear on the
screen.

3. Remove the diskette from the disk drive and return it to the protective sleeve
that was provided with the software.

4. You may turn off the television set, the computer, or the disk drive in any
order.

2 Suvem Requirements

2

OPERATIONAL PROCEDURES
FOR THE EDITOR

You must load the editor through the DOS Menu. If the DOS Menu is not already
displayed on your screen, type DOS and press [EIER. Refer to Figure 1. (The DOS
Il Reference Manual contains complete instructions for using the DOS Il Menu op-
tions.)

DISK OPERATING SYSTEM IX VERSION 2.05
COPYRIGHT 1980 ATARI

DISK DIRECTORY I. FORMAT DISK
RUN CARTRIDGE J. DUPLICATE DISK
COPY FILE K. BINARY SAQVE
DELETE FILECS) L. BINARY LOAD
RENAQME FILE . RUN AT ADDRESS
LOCK FILE . CREATE MEM. SaV
UNLOCK FILE . DUPLICATE FILE
WRITE DOS FILES

Q.
B.
c.
D.
E.
F.
G.
H.

EELECT ITEMOR FOR MENU

Figure 1 DOQOS Il Menu

Because the editor program is included on a diskette that has been factory write-
protected for software safety, you must prepare a diskette for your text files. For
identification purposes, we refer to this diskette as a “’data’’ diskette. With the DOS
Menu displayed on the screen, remove the diskette containing the Program-Text
Editor software. Refer to the DOS Il Reference Manual. Format a blank diskette,

then write new DOS files to it. Remove this diskette and reinsert the editor program
diskette.)

Select the L-BINARY LOAD command. Answer the prompt, LOAD FROM WHAT
FILE, with the name of the Program-Text Editor software, MEDIT. The program will
automatically run after being loaded. Refer to Figure 2. Insert your data diskette in-
to the disk drive at this time.

Caution: You may not change your data diskette once the editing session is started.
Because the editor has built-in memory checks and free space allocation computa-
tions, a memory map of the diskette inserted at the time the editor performs its
check is always retained. Therefore, even though the editor’s workspace resides in
RAM, the block-write command can result in an overwrite situation on any but the
original diskette.

Operational Procedures
for the Editor 3

4

Operationai Procedures
tor the Editor

Note: Because the editor performs a free |IOCB (Input/Output Control Block)
check, you may receive the error message EDITOR CANNOT RUN - NO FREE
IOCBs. PRESS to return to DOS. Refer to the ATARI Operating System
Manual (part number CO16555) for complete information on IOCBs and to the er-
ror messages on the back cover for an explanation of this condition.

PROGRAM-TEXT EDITOR

versioni1.6
For pos 2.6

FILENaME IS5l

Copyright 1981 . ATARI

Figure 2 Filename Prompt

Your Program-Text Editor is now ready to bring the file that you wish to edit into its
workspace. At this point, there are several options available:

® Press the key to end the edit session and return control to DOS.

¢ Enter the filename of the program that you wish to edit.

¢ Create a new file under the editor by naming a file that does not exist. The
editor will automatically create an empty file using the specified name.

The correct syntax for an acceptable filename is in the form:
Dn:filename.extension,optional parameters separated by commas.
Example: D4:MYFILE.MAC,3,.ASM,D

The drive number n designation corresponds to the disk drive that contains your
source program and must be between the numeric characters of one and eight.
You may use a filename of from one to eight characters, either alpha characters A
through Z or numeric characters 0 through 9.

Note: For a filename specification, an alpha character must be in the first character
position. This rule does not apply to filename extensions.

Your optional extension may be from one to three characters long, using either
alpha or numeric characters.

Remember the following specifications when answering the filename prompt.

¢ If no device is specified, the editor automatically assumes the use of the disk
drive designated as Drive 1.

¢ Lowercase file specifications automatically convert to the correct uppercase
syntax.

o |f the file, its associated backup file, or its temporary file is locked (see the
“Theory of Operation’’ section for further explanation), the editor displays
the error message FILE LOCKED and reissues the filename prompt. Unlock
any of these files through use of the DOS Menu. Refer to the ATARI DOS I/
Reference Manual.

Optional parameters may be entered in any order after the file specification:

,n OVERRIDE DESTINATION DRIVE. Unless otherwise specified, the default
destination drive is the one on which the source file is located. You may move
the destination file from the default drive by using this parameter. The value n is
a numeric digit corresponding to the number of the destination disk drive.

Example: MYFILE,2

When you have more than one disk drive, use this optional parameter to edit
large files or when there is not enough free space on the source diskette to allow
you to save the edited file.

,D DELETE BACKUP FILE FLAG. If a backup file exists, this parameter tells the
editor to erase it before beginning the editing session. Use of this parameter
allocates free space at the cost of backup file protection.

Example: MYFILE,D

Note: If the source and destination drive are not the same, the editor
automatically deletes a file with the same name on the destination drive.

,-ext OVERRIDE CUSTOMIZING FILE. Use of this parameter causes the editor
to use the customizing file associated with the designated extension file. Unless
this parameter is assigned, the editor defaults to use of the extension associated
with the file specification being edited.

Example: MYFILE,.PAS
MYFILE, . ASM
MYFILE,.BAS

Operational Procedures
for the Editor 5

THEORY OF
OPERATION

Operational Procedures
6 101 the Editor

Following are additional examples of valid filename prompt responses.

MYFILE

MYFILE.PAS

D3:MYFILE

D3:MYFILE,2
MYFILE.PAS,D,4
D2:MYFILE,.PAS,D,3
MYFILE, . ASM
d2:myfile,.pas,d,3
D4:MYFILE. BAS,3,.PAS,D

After receiving the filename specification, your Program-Text Editor checks the free
space on the destination diskette and makes a comparison with the size of the file
to edit. A minimum growth factor, considering the expansion of file storage capaci-
ty requirements because of additions or modifications, of g units is ascertained.
(See the ““Customizing the Editor’’ section.) If there is not enough room on the
diskette for the edit file and the growth factor, the editor displays a warning
message. You may choose to ignore the warning and continue with the editing ses-
sion. Or you may abort the edit, exit from the editor, and return to the DOS Menu.
If the editor determines that there is enough room on the diskette for the edit file
and growth factor, the edit session begins.

Caution: If you ignore the warning message, be sure that you have as much free
space as the size of your existing file plus room for any additions you will make dur-
ing the editing session. If your calculations are not correct and you run out of free

space on the diskette, you may lose all work completed in the current editing ses-
sion.

Note: A minimum growth factor of g units is determined from the customizing file.
If default factors are used, the minimum growth factor is 100 sectors of free space.

For efficiency and optimum protection, the Program-Text Editor uses a common
two-file editing method. During the editing session, the original file remains intact

while all modifications are made to a copy of the file. Therefore, this procedure
allows for:

e Automatic backup copies of files to be edited

e Modification of the original file only after the editing session is terminated
with a normal exit from the editor

e Use of sequential file access

A procedural outline of the two-file method is:

e Text is copied from the file to be edited into a memory buffer.
e When the buffer becomes full, data transfers to a temporary file.

Normal exit (Figure 3) from the editor causes the following sequence:

* The .BAK file is deleted.
¢ The edited file is renamed as the new .BAK file.
* The temporary file is renamed as the edited file.

BEFORE .
Bt | FILE . BAK FILE FILE . TMP
\ y
AFTER
EXIT FILE . BAK FILE

Figure 3 Normal Exit From the Editor

An abort exit (Figure 4) from the editor causes the following sequence:

¢ The temporary file is deleted.
* The original edited file and the .BAK file retain their integrity.

BEFORE .
EXIT FILE . BAK FILE FILE . TMP
AFTER
FILE . FILE
EXIT E . BAK

Figure 4 Abort Exit From the Editor

Your Program-Text Editor uses two modes of operation: immediate and command.
Immediate mode operation is keyboard interactive. Command mode ‘operation
defers to a later time execution. All three windows and both operation modes are
discussed at length in subsequent sections of this manual.

The Program-Text Editor is defined as a source file editor. A source file is a disk file
consisting of ATASCII characters terminated by ATASCIl EOLs (End-of-Line).
Therefore, the editor functions with files containing the source code written for
ATARI Computer programming languages. A line length default value of 114
columns can be changed to a maximum length of 200 columns by using the
customizing file feature (see section titled ““Customizing the Editor’’)

Operational Procedures
for the Editor 7

STARTING THE
EDIT SESSION

Operational Procedures
8 rorthe Faitor

Two types of tabs are allowed: (1) regular tabulation as provided by the operating
system in which blanks are substituted between tab stops or (2) expanding tabs. Ex-
panding tabs only take one character in the file but are displayed as many columns
of blanks. Set the type of tab by using the customizing file.

LINE OF TEXT-35 CHARACTERS
LINE OF TEXT
LINE OF TEXT

5 character displacement = 5 bytes of memory
using default value of 5, inserting blanks like the operating system

LINE OF TEXT-35 CHARACTERS
P....LINE OF TEXT
P....LINE OF TEXT

— —
5 character displacement = 1 byte of memory
using expanding tabs

Figure 5 lllustration of Expanding Tabs

If you attempt to edit a file that does not meet source file definitions and customiz-
ing column limits, the editor tiuncates the lines in the file to conform to the set line
length limits. Given this situation, the editor generates the LINE TOO LONG error
message while reading the file either during initial entry to the editor or as an input
command.

Answer the filename prompt. For the purposes of demonstration, enter the
filename PRACTICE. Refer to Figure 6. >

PROGRAM-TEXT EDITOR

versioni.oe
For Dos 2.0

FILENQME IS PRACTICEN

Copyright 1981, ATARI

Figure 6 Answering the Filename Prompt

Notice the three windows displayed on the screen:

TEXT WINDOW Appears at the top of the screen and consists of 20
lines.
ERROR WINDOW Appears in inverse video and consists of a single line.

COMMAND WINDOW Appears at the bottom of the screen and consists of
three lines.

Figure 7 Windows

FAMILIARITY A summary of the immediate keystroke commands appears at the end of this
WITH section.

THE KEYBOARD

From the keyboard shown above, locate the following specific keys: (S8, EXED
CEEEEES . XX} Note that there are keys indicating directional arrows as well
as arithmetic operators. Some keys serve a dual purpose, for example, the
CEEE. As the operation of the key on the computer keyboard is the
same as the shift key of a typewriter, its use will select the function that appears on
the top of the key.

Operational Procedures
for the Editor 9

10

Operational Procedures
tor the Editor

Enter the following text onto your screen:

AND HERE WE SEE THE INVISIBLE BOY
IN HIS LOVELY INVISIBLE HOUSE,
FEEDING A PIECE OF INVISIBLE CHEESE
TO HIS LITTLE INVISIBLE MOUSE.

AND HERE WE SEE THE INVISIBLE BOYv
IN HIS LOVELY INVISIBLE HOUSE .+
FEEDING A PIECE OF INVISIBLE CHEESE+
}O HIS LITTLE INVISIBLE MOUSE.+

04

Figure 8 Example of Entered Text

After entering the lines, notice the following: every time you press the key,
an { appears on the screen. This figure indicates the carriage return action. Also,
pay particular attention to the movement of the cursor. During execution of the
keystroke entry, the cursor position indicates character placement by appearing
immediately in front of the next entry. After any keystroke, the text window is up-
dated to reflect the current state of the file, and the cursor moves accord-
ingly. Look again at the above screen diagram and note the cursor positioning.

Using the table below, manipulate the cursor within your displayed text.

Keystroke Explanation

- Moves cursor left

- Moves cursor right

G Moves cursor down one physical line

[cTrL 0 Moves cursor up one physical line

2 Moves cursor to beginning of logical line
3

Moves cursor to end of logical line

After you feel thoroughly acquainted with the movement produced by striking
these keys, follow the procedure outlined below:

Position the cursor on the ““A’" of the first word in the first line of your text. Use the
~ keystroke. Now use the t keystroke. Note that both of these opera-
tions result in the warning message CURSOR AT END. The same error message will

be displayed if you use a — if the cursor is in the far right position at the end of
text.

Note: When the cursor moves up and down a slight glitter of the screen may occur.
Also, on occasion, you may notice the appearance of an additional line below the
command window. These are normal operating conditions.

Notice that these cursor-movement keystrokes position the cursor but do not affect
the entered text. Within the immediate mode operation, there are essentially two
types of keystrokes: those that directly relate to cursor positioning and those that
execute a change to the text itself. You must position the cursor at a precise point
using the above key combinations. Refer to the table below for those keystrokes
that will immediately edit entered text. :

Keystroke Explanation

Inserts a blank line above the current logical line
Deletes character left of cursor

Deletes character right of cursor

Deletes the logical line occupied by cursor
Regular keys ‘ Insert character into text

Within the framework of this software and as a matter of convention, this manual
introduces the terms logical line and physical line. A logical line contains those
characters entered between carriage returns. A physical line encompasses those
characters contained in a straight line from the extreme left side to the extreme
right side position of your television screen. A logical line can be one or more
physical lines.

Return to your screen. You must use your cursor control keys to move your cursor
during an edit session. Position the cursor so that it is over the “*v’’ in the word *‘in-
visible.”” Use the key twice. (Do not press [EIELY. Pressing the
key at any time will introduce a carriage return figure, ¥ into your text.)

Take note of several unique conditions that might arise from operation of the

and keys.

If the cursor is to the right of a carriage return, use either the key or
the - key to reposition the cursor. However, when the cursor is to the im-
mediate right of a carriage return, use of the key deletes the carriage
return itself. Similarly, if the cursor is to the left of a carriage return, use of the
key repositions the cursor exactly as use of the - key.
However, when the cursor is to the immediate left of a carriage return, use of the
key removes the carriage return itself. Concatenation follows
the carriage return deletion. If the maximum line length is exceeded, the editor:

e Restores the deleted carriage return

* Aborts the command line |

¢ Displays the error message LINE TOO LONG
e Returns to immediate mode operation

Operational Procedures
for the Editor 11

12

Operational Procedures
tor the Editor

Other specific conditions that result when the cursor is positioned:

Within an expanding tab

At the beginning of the buffer

Above the text window

At the 'end of the buffer

Use of either keystroke deletes the en-
tire tab.

Use of the key results in

no operation and generates the error
CURSOR AT END.

Use of the key causes an

automatic scroll that pulls down the
previous line.

Use of the key

results in no operation and generates
the error CURSOR AT END.

Note: Attempted deletion of the last carriage return in the buffer is illegal and
results in the CURSOR AT END error message. Use a delete line operation to suc-
cessfully remove this last carriage return.

Follow the same procedure to acquaint yourself with the use of the other
keystrokes outlined in the table. Use cursor control keystrokes to position the cur-
sor. Select the appropriate key to accomplish the desired change. Use cursor con-

trol keystrokes to remove the cursor from the logical line.

On the ATARI Computer keyboard, locate the key. Use this key in conjunc-
tion with control graphics keys to print specific graphics characters. Refer to Figure
9 for keystroke combinations to produce a chosen graphics display.

Press the key to get
and then press:
DELETE
BACK S
CLR i3y
TAB
Press the key — to get
and then press the _
key simultaneously
with: g
S A
*
[~ AN
+
CLEAR
<
INSERT
>
CLR i3}
TAB
Press the key DELETE to get
and then press the BACK S

key simultaneously

with: INSERT
>

Figure 9 Escape Sequence Characters

2F] -+ E] M E 2

J |||+

Operational Procedures

for the Editor 13

14

Operational Procedures
tor the Editor

If the cursor is within an expanding tab or to the right of a carriage return when a
character is inserted into text, the editor automatically repositions the tab or car-
riage return to the right of the cursor.

Additional cursor movement keystrokes:

Keystroke Explanation
8 Displays previous screen
9 Displays next screen

Use the keystrokes above to respectively display either 20 physical lines above or
below the text window. Additional reserved keystrokes include:

Keystroke Explanation

Tabs to next tab stop

Returns and auto-indents to same level
Toggles visible-tab mode

Toggles visible-carriage return mode

Use the key to position the cursor. Space tabs insert a selected number
of blanks between tab stops, and the cursor positions itself accordingly. Expanding
tabs, however, insert a character into the text that indicates the tab function. By us-
ing the customizing file, you can display the expanding tab character- as either
blanks or a right triangle followed by periods. Set your default choice within the
parameters of the customizing file. If you have chosen the expanding tab option,

use the immediate mode keystroke command to display the
alternate character choice.

Carriage returns can be displayed as blanks or down-arrows. Default choice is set
within the parameters of the customizing file. Use the immediate
mode keystroke to display the alternate character choice.

Auto-indention allows you to reposition the cursor to return to an automatic tab
stop on the next logical line. Press the and keys simultaneously. The
indention of the logical line containing the cursor determines the position of the
automatic tab.

Keystroke Command

Erases the error window

Executes command window
Selects the alternate command line
Changes mode

Aborts command being executed

Error messages displayed within the error window are cleared in three ways:
® Pressing the keys will clear the error.
¢ |f a syntax error occurs, the window clears when the command is corrected.
® After four seconds of elapsed time, the error window automatically clears
with any keystroke entry.

Use the key to change operation modes. In immediate mode operation, use
of enters command mode. Switching these operation modes automatically
clears the current command window. To avoid this erasure, use the
combination keystroke. The current command line remains intact, and the cursor
positions itself at the end of the command line.

Within the command mode, all keystrokes enter text into the command window.
All immediate and reserved keystrokes, with the exception of (EESEEIIEY. can
still be executed. Use of the key deletes the last character typed into

the command window. Pressing twice while in command mode deletes the
entire command line.

During execution of the command window, the editor is in command mode.
Notice that the cursor remains in the command window while the command is be-
ing executed. After successful completion of the command execution, the cursor
disappears from the command window and the editor returns to immediate mode
operation. Use the key to rotate displays of the command line and any
alternate entry. Touch the key during execution of the command line to
discontinue processing. As soon as the current command execution is completed,
a BREAK KEY ABORT message appears in the error window, and the editor returns
to immediate mode operation. Touching at any other time has no effect.

In command mode, the use of returns control to immediate mode. The
command line remains in the command window for later execution. Use the
key to execute commands within the command window. A NOT COMPLETE error
message results when a command contains a syntax error. The editor remains in
command mode so that correction can be made. Executing a blank command or
an empty display window returns control to immediate mode.

Operational Procedures
for the Editor 15

COMMAND

MODE
OPERATION

Operational Procedures
16 1or the Editor

The command window accepts and displays all keystroke entries made in com-
mand mode operation. With the exception of the key, all immediate
reserved keystrokes function identically within either operation mode. The com-
mand window is three physical lines long and allows a single command line that is
made up of one or more commands. You may enter spaces between commands
for better readability, and use either upper- or lowercase. Within the command
window, a carriage return is displayed as the inverse (@ escape sequence
character. A mini-interpreter checks each keystroke for valid syntax. The following
syntax error messages may be displayed:

e UNRECOGNIZED COMMAND
e DELIMITER ERROR

e NUMBER TOO BIG

If a syntax error occurs, the editor ignores all keystrokes until you delete the offend-
ing character from the command window. Manipulation of the command window
is as follows:

key returns the editor to immediate mode operation.
. key pressed twice erases the entire command window.

. key deletes the last character entered into the command win-
dow.

key executes the command line if the syntax is correct and complete.

key swaps the command line displayed in the command window with
an alternate command line.

After execution of the command line, the editor returns to immediate mode opera-
tion. The command line is not erased and may be reexecuted by pressing (GIX8.

EXITING THE EDITOR

Depending upon your desired end result, choose one of the following options to
exit from the editor:

Command Explanation

EXIT Use this command to exit from the
editor and return to DOS. All changes
made during the edit session are re-
tained. .

EXIT2 Use this command to exit from and
restart the editor. In effect, this com-
mand duplicates the action of EXIT
followed by the DOS “L"" (load) com-
mand, and you will receive the editor
sign-on filename prompt.

ABORT Use this command to exit from the
editor without incorporating any
changes made during the edit session
and return control to DOS.

ABORT2 Use this command to exit without in-
corporating any changes made during
the edit session and restart the editor.
In effect, this command duplicates the
action of ABORT and DOS “‘L”’ (load)
commands. You will receive the editor
sign-on filename prompt.

REOPEN Use this command to exit from the
editor and automatically reenter the
same file. In effect, this command
duplicates the action of EXIT2 and
answering the filename prompt with the
specification of the file you are editing.
See ‘‘Specialized Commands’’ within
this section for specific details.

Note: The editor accepts the exiting commands in the form EXITn and ABORTn as
valid syntax. However, at execution time, the error message NUMBER TOO BIG is
generated if n is greater than 2.

Operational Procedures
for the Editor 17

18

Operational Procedures
tor the Editor

CURSOR MOVEMENT COMMANDS

You may manipulate the cursor through command mode operation. This method
lets you quickly move the cursor to where you want it. To use the following table
effectively, you must be familiar with two terms: buffer and file. In this particular
software application, text is copied from the file to be edited into a memory buffer
where modification is achieved. When the memory buffer becomes full, it is writ-
ten to a temporary file. This process is repeated continuously until all text has been
copied from the edited file into a temporary file. As you can determine, the con-
tents of the edited file and the memory buffer can differ.

Note: Take care in planning your editing session. You cannot easily edit the portion
of the file that has been written out of the buffer. Make your modifications from the
beginning to the end of the file. To edit a part of the file that has already been writ-
ten out of the buffer, use the REOPEN command (see ‘‘Specialized Commands’’
contained within this section) or reenter the editor. Both of these methods require
lengthy disk access.

Command Explanation
ClLn Moves cursor left n characters
CRn Moves cursor right n characters
CUn Moves cursor up n logical lines
CDn Moves cursor down n logical lines
CBB Moves cursor to beginning of buffer
CEB Moves cursor to end of buffer
CBF Moves cursor to beginning of file
CEF Moves cursor to end of file
CBL Moves cursor to beginning of the logical
line
CEL Moves cursor to end of the logical line
CCn Moves cursor to column n (range 1-200)

Note: The notation n signifies an optional numeric argument, which usually acts as
a repeat counter, with a range of 1-65535. With the exception of margin values, if n
is omitted, the editor assumes a value of 1.

The error message CURSOR AT END is generated each time you attempt to posi-
tion the cursor:

Left, before the beginning of the buffer
e Right, past the end of the buffer

e Up, before the beginning of the buffer
e Down, past the end of the buffer

Note: Each time the editor generates this error message, it aborts the command line
and enters immediate mode operation.

Use the cursor control movements to position the cursor at strategic locations to
implement the more sophisticated commands available in the editor.

SEARCH COMMANDS

In the following commands, delimiters must be used to separate the string from the
search command notation. You may either use the slash mark, /, or a set of quota-
tion marks as delimiter characters. As an example, the SB/-/n command explained
below can also be entered as SB’’-"’n. You can use ‘‘wild cards’’ as a substitution
for characters in a search string. The editor recognizes the inverse video question
mark () as a wild card that will match any character while searching. (To display
any inverse video characters from the ATARI 800 keyboard, use the g8 key.)

Command Explanation

SB/-/n Search for nth occurrence of string in
buffer

SF/-/n Search for nth occurrence of string in
file

SRB/-/-/n Search and replace n times in buffer

SRF/~/-/n Search and replace n times in file

SRVB/-/-/n Search and replace with verify n times
in buffer

SRVF/-/-/n Search and replace with verify n times
in file

Note: The notation n signifies an optional numeric argument, which usually acts as
a repeat counter, with a range of 1-65535. With the exception of margin values, if n
is omitted, the editor assumes a value of 1.

In general, all string searches begin after the current cursor location. In successful
file and buffer searches, the cursor is positioned after the nth occurrence of the
string. The logical line containing the cursor is displayed as the first line of the text
window.

In unsuccessful buffer searches, the editor:

e Retains the cursor in its original position
Generates a SEARCH FAILED error message
Aborts the command line

Returns to immediate mode operation

In unsuccessful file searches, the editor repeatedly writes out the current buffer and
reads a new buffer. If the end-of-file is reached before finding the nth occurrence of
the string, the search fails. Then, the editor:

® Retains the cursor in its original position if the last line in the file was already
in the buffer before the search began or

* Positions the cursor to the beginning of the last buffer read if new lines were
introduced from the file to the buffer area

* Follows the same procedure outlined above for unsuccessful buffer searches'

Operational Procedures
for the Editor 19

20

Operational Procedures
tor the Editor

In general, the search and replace commands, perform a search for the first string
and replace it with the designated second string for the specified n times. The
replacement string may be null or have a different amount of characters than the
search string. Care should be taken to avoid the following conditions resulting in
error messages. As with all error conditions, the editor aborts the command line
and returns to immediate mode operation.

LINE TOO LONG

LINE TOO LONG

CURSOR AT END

Could result if the insertion of a large
replacement string into a text line ex-
ceeds the maximum line length.

Result of Operation: Only the first part
of the replacement string would be in-
serted into the text.

Could result if the search string contains
carriage returns. When a carriage return
is deleted and the lines are con-
catenated, the resulting new line could
exceed the maximum line length.

Result of Operation: The cursor is
located to the right of a partial search
string and that logical line is displayed
as the first line of the text window.

Could result if the search string ter-
minates with a carriage return and is
found on the last line of the buffer.
Because the editor does not allow the
last carriage return in the buffer to be
deleted (except with a delete-line com-
mand), this search results in the given
error message.

Result of Operation: The editor will find
the string but abort the command line,
resulting in no replacement.

In unsuccessful buffer searches, the editor:

® Retains the cursor in its original position if no replacement has been made or

© Positions the cursor after the last successful replacement and

- generates a SEARCH FAILED error message

- aborts the command line

- returns to immediate mode operation

In unsuccessful file searches, the editor repeatedly writes out the current buffer and
reads in a new one. If the end-of-file is found before the nth occurrence of the
search string, the command fails. Then, the editor follows the same procedure as
outlined above for unsuccessful buffer searches.

Search and replace with verify commands for buffer and file use the same pro-
cedure as those respective commands without verification. Additionally:

* Before each replacement, the editor moves the cursor after the found search
string and displays that logical line as the first line of the text window.

® A prompt question appears in the error window

R Signifies replacement of the search string
S Signals a “‘skip”’ of this occurrence :
Q Terminates or prematurely ‘‘quits’’ the search and replace command.

You may type your response in upper- or lowercase letters. If the response is valid,
the editor clears the error window and completes the operation. If the response is
invalid, your typed character is displayed; the cursor appears in the error window
with a question mark.

.BLOCK COMMANDS

You can manipulate a section of text lines by placing them within a defined block.
To do this, you must precede and follow the designated text with a block marker
that flags the attention of the editor and signals the beginning and end of the block.
In the case of having more than two markers, the block is defined to be the group
of text between the first encountered set of markers within the buffer.

Note: Do not use a line within your file that matches the block marker text designa-
tion.

Block markers are:

® A special text line displayed as follows

#3%3%%BLOCK MARKER**x%% B4

that must be the Only text on the line itself

* Conv<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>