
"1 '

ATARI®
DISK OPERATING SYSTEM

REFERENCE MANUAL

COPYR I GHT 1980 AT AR Ir INC.

Every effort has been made to ensure that this manual accurately
documents the Disk Operating System of the ATARI Personal Computer
Systems. However, due to the ongoing improvement and update of the
computer software, ATARI, INC. cannot guarantee the accuracy of
printed material after the date of publication, nor can ATARI accept
responsibility for errQrs or omissions.

C015200 rev. 1

1

DUPLICATION OF ~ASTER DISKETTE PROCEDURE SUMMARY

Your first disk operation should be to write-protect and duplicate
your Master Diskette. The following steps describe the necessary
procedure for duplicating the diskette.

1. Turn on disk drive. Wait for BUSY light to go out.
2. Remove Master Diskette from white, protective envelope.
3. Place write-protect tab over notch on Master Diskette.
4. Insert Master Di~kette into Disk Drive ~1 and close drive door.
5. Turn on computer console. DOS will "boot" into RAM.
6. Type DOS [RETURNJ, if cartridge is inserted.
7. Remove Master Diskette and insert a blank diskette or one you wish

to erase.
8. After the DOS Menu and SELECT ITEM prompt appear, Type I (RETURNJ

to format diskette.
9. Type 1 [RETURN] in response to WHICH DRIVE TO FORMAT? prompt

message.
10. Type Y [RETURN] in response to TYPE "Y" TO FORMAT DRIVE 1 prompt

message.
11. When SELECT ITEM prompt message appears, type H (RETURN]
12. Ttjpe Y (RETURN] in response to TYPE "Y" TO WRITE NEW DOS FILE?

prompt message.
13. Prompt message WRITING NEW DOS. SYS FILE displays on the screen.
14. When SELECT ITEM prompt message appears. the duplication of the

diskette is complete.

3

PREFACE

TABLE OF CONTENTS

7

SECTION 1. GENERAL INFORMATION
DISK DRIVE POWER-UP AND INITIALIZATION 9
DEVICE IDENTIFICATION 9
FILE SPECIFICATIONS 10

File Names 11
Extenders 11
DOS Options Used With Filenames 12

NOTATIONS AND TERMINOLOGY 13
VERSIONS AND RELEASES 14

SECTION 2. ABOUT THE DISK DRIVE
ATARI® 810~ DISK DRIVE 15
MULTIPLE DISK DRIVE NUMBERING 16
DISK DRIVE OPERATION 16

SECTION 3. DISKETTES
DISKETTE DESCRIPTION 17
DISKETTE WRITE-PROTECT 18
DISKETTE ORGANIZATION 19
DISKETTE INSTALLATION 20
DISKETTE STORAGE 21
BOOT ERRORS 21

SECTION 4. DISK OPERATING SYSTEM
DOS DESCRIPTION 23

Disk Utility Package 23
File Management Subsystem 23

OPERATION WITHOUT INSERTED CARTRIDGE 24
PARAMETERS 24
WILD CARDS 24

SECTION 5. DESCRIPTIONS OF DOS MENU SELECTIONS
A. DISK DIRECTORY 27
B. RUN CARTRIDGE 29
C. COP Y FILE (S) 29
D. DELETE FILE (S) 31
E. RENAME FILE(S) 32
F. LOCK FILE 32
G. UNLOCK FILE 33
H. WRITE NEW DOS FILE 34
I. FORMAT DISK 34
J. DUPLICATE DISK 35
K. BINARY SAVE 36
L. BINARY LOAD 38
M. RUN AT ADDRESS 38

5

N. DEFINE DEVICE
O. DUPLICATE FILE

SECTION 6. DISK OPERATIONS WITH BASIC

39
39

COMMANDS TO STORE AND RETRIEVE FILES 41
LOAD 41
SAVE 41
LIST 42
ENTER 42

DISK INPUT/OUTPUT COMMANDS
OPEN
CLOSE
INPUT
PRINT
PUT
GET
STATUS
XIO

42
43
44
44
45
45
46
46
48

APPENDIX A. SUMMARY OF COMMANDS AND RESERVED WORDS 51

APPENDIX B. ERROR MESSAGES 53

APPENDIX C. HOW TO OBTAIN MORE USEABLE RAM 57

APPENDIX D. ATARI 400CTMJ/BOO[TMJ MEMORY MAP 59

APPENDIX E. DECIMAL/HEXADECIMAL CONVERSION 61

APPENDIX F. AUTO. SYS USAGE 63

GLOSSARY OF TERMS 65

INDEX 71

6

PREFACE

This ATARICR) Disk Operating System (DOS) Reference Manual assumes
that the user is familiar with ATARI BASIC. It explains the commands
and statements used by the Disk Operating System (initial
release-9/24/79) to move data to and from the ATARI 810[TM] Disk
Dr i ve (s) .

The first section explains the procedure for powering-up the console
and powering up and initializing the Disk DriveCsi. It also defines
the notations and conventions used throughout the manual.

The second section describes the ATAR! 810[TMJ Disk Drive and a little
about its operation. From this, the manual proceeds to describe the
diskettes and how they are organized to accept data. Section 3 also
contains a "trouble-shooting" section on BOOT ERRORS and possible
reasons for their occurrence.

Section 4 describes the interaction that takes place within the Disk
Operating System itself when it is in operation. The two main files
within the DOS are described in terms of their relationship to the DOS
Menu. This section also explains the parameters and "wild cards"
recognized by DOS.

Sections 5 and 6 contain descriptions of the DOS Menu selections and
the EASIC commands used with disk operations. Each of these provides
an example of its use.

The appendices give useful information including the memory map, a
glossary, error codes, and hints on how to obtain more useable RAM.

7

SECTION 1. GENERAL INFORMATION

This section reviews the procedure for powering-up and initializing an
ATARI Personal Computer System with at least one ATARI Disk Drive
attached. It also defines the notation conventions and general
information that is used throughout this manual. It does not contain
information regarding the attachment of disk drive(sj to the computer
console. That information is contained in the ATARI Disk Drive
Operator's Manual.

DIS~ DRIVE POWER-UP AND INITIALIZATION

After you have checked the connections and placement of your disk
drive(s), use the following procedure to power-up your system and to
initialize the disk drive(s). This initialization procedure is also
called a "bootstrap" operation or "autoboot."

1. Turn on television set.
2. Turn on Disk Drive unit(s). The BUSY light(s) will come on and

will stay on until each drive unit is initialized.
3. Turn on any other peripheral devices; e. g., printer.
4. Ins e r t DOS dis ke t t e i n Dis k Dr i ve # 1 and c los e dis k d r i ve d 0 or.

NOTE: The Master Diskette DOS should always be placed in Disk
Drive #1 (see Drive Code Settings, Section 2j.

5. Turn on computer console.
6. If you get a BOOT ERROR, turn off computer console for

approximately 5 seconds, then turn it an again. If the BOOT ERROR
message persists, check all connections and make sure the
the drive door is closed. If everything seems to be alright,
check the section entitled BOOT ERRORS on page 21.

DEVICE IDENTIFICATION

Each ATARI device, including the disk drives, has an identification
letter that allows you to access it. These identification codes are
given below with a short description of each device:

c: ATARI 410CTMJ Program Recorder. This is both an input and
output device. If you want to save a program an tape in its
tokenized farm, use either the CSAVE or SAVE "C: II command.

9

E:

ATARI 810[TM] Disk Drives The disk drives are both input
and output devices. To save a program on diskette, select the
drive YOIJ want to use; e. g., Disk Drive #2, and use the command
SAVE "02: PROGl. BAS." Device Identification 0: is eQ.uivalent to
01 :

Screen Editor. This input/output device uses the keyboard and
dis pIa IJ (s e e 11..: and S:) to s i mu 1ate a s c r e e ned i tin 9 t e r mi na 1.
Writing (output) to this device causes the data to appear on
the display starting at the current cursor position. Reading
(input) from this device activates the screen editing process
and allows you to enter and edit data.

1-<.: Keybo.ard.
converted

This input only device allows you to read the
(ATASCII) keyboard data as you press each key.

P: Line Printer. This output only device prints ATASCII
c ha rae tel' s , us ua 1 I fJ a lineat a tim e . This d e vic e
identification is used for the ATARI 820[TM] Printer, the ATARI
822[TMJ Thermal Printer, and the ATARI 825[TMJ 80-column
Printer.

c·....,.

ATAR! 850[TMJ Interface Module. This device handles both input
from and output to RS232C-compatible peripheral devices (and
output only to a printer reQ.uiring an 8-bit parallel port
accessed through P:).

TV Monitor. This input/output device allows the user to read
characters from and write characters to the display using the
cursor as the screen addressing mechanism.

Throughout this manual, you will see these device identifications
used in both the DOS Menu options and BASIC commands used with DOS.

FILE SPECIFICATIONS

Information is stored on a diskette in files.
into two types: program files and data files.
contain data used by a program file. A program
instructions to perform a certain task.

Files are classified
Data files usually

file contains the

When referring to a file on a diskette, use a file specification (or
filespec). A filespec consists of up to six elements. Figure 1-1
illustrates the six possible elements of a filespec. In BASIC,
Q.uotation marks are required when accessing a file.

10

"D 1 : A TAR I 8 0 0 . BAS"

____._1.... V' .J ""'-v-'Device----~-

Code

Device
Number
(optional)

Required --1

Colon

File name -----------'
(up to 8
characters-
must begin
with alphabetic
character)

Period required -------------'
as separator if
extender is used.

Extender -l

(optional)-
Includes
0-3 characters

Figure 1-1 EXAMPLE OF A FILESPEC

Filenames

Filenames follow specific rules. If a filename does not follow these
rules, you will see an ERROR-16S (File Name Error) message on the
screen. The rules for filenames are:

1. The maximum length of a filename is 8 characters.
2. The only characters that can be used are A through Z and 0

through 9.
3. The first character is always an alphabetic character.

DOS. SYS is a filename reserved by DOS.

Extenders

A three-character extender can be added to a filename to indicate
the type of data in a file.

Currently, you can use any legal combination af letters and numbers
faT' an extender, e. g., . SYS for system files, . BAS rOT' BASIC program

11

files •. OAT for data files, .LST for list files, . DB.) for binary
files, . SRC for source files, . MUS for Music Composer files, etc. You
can use up to 3 legal char~cters for extenders. Characters beyond 3
characters are truncated and ignored.

Examples of Filenames

Legal name.
Illegal name. # character cannot be used.
Lega I name.
Illegal name. No spaces allowed.
Legal name.

(DOS will truncate the last 2 letters of the extender.)
Illegal name. Reserved for DOS file.
Legal name.

RATA TAT
ATARI. BAS
3ATARI. OAT

ATARI22. XYZ
ATARI#
A1234567.829
B ATAR I. BAS
ATARI. BASIC

DOS.SYS
DOSSYS

Lega 1 name.
Legal name.
Illegal name. First character is not an alphabetic

letter.

DOS Options Used With Filenames

Certain letters can be added to a filename to perform a specific task.

fA means to append data to an existing file on diskette. In
the course of using the SAVE BINARY FILE selection on the
DOS Menu, entering D:BINFILE/A,5000, 52FF would append the
contents of lo~ations 5000 through 52FF to BINFILE, which has
already been stored on disk drive #1.

IN means no verification of an operation. In using the DELETE
FILE selection on the DOS Menu, entering D2:DELTA. BASIN
bypasses the normal verification prompt message.

12

NOTATIONS AND TERMINOLOGY

[RETURN] Press the [RETURN] key on the keyboard.

[]

l }
CAPITAL
LETTERS

/ .. ",. . I

adata

aop

lop

cmdno

exp

aexp

aexp1

aexp2

lexp

Brackets. Brackets enclose optional items.

Ellipsis. An ellipsis following an item in brackets indicates
that you can repeat the optional item any number of times,
but are not required to do so.

Items stacked vertically in braces indicate you have a choice
as tow h i chi t em you wa n t to ins e r t . S e lee ton 1yon e in you r
statement or command.

Capital letters are used to indicate commands. statements,
and other functions that you must type exactly as they
appear.

These punctuation marks must be typed as shown in the format
of a command or statement. However, do not type brackets or
braces.

ATASCII data. Any string of ATASCII characters. excluding
commas and carriage returns. Refer to the ATARI BASIC
Reference Manual, Appendix C.

Arithmetic Operator.

Logical Operator.

Command Number (used in XIO commands>.

Any Expression. In this manual, expressions are divided into
three types: arithmetic expressions. logical expressions.
and string expressions.

Arithmetic Expression. Generally composed of a variable,
function, constant, or two arithmetic expressions separated
by an arithmetic operator (aop>.

Arithmetic Expression 1. This arithmetic expression
represents the first auxiliary I/O control byte when used in
commands such as OPEN.

Arithmetic Expression 2. This arithmetic expression
represents the second auxiliary I/O control byte when used in
commands such as OPEN. Usually it is set to O. If, however,
you want to direct the ATARI 820[TM] Printer to sideways
printing, you would set this arithmetic expression to 83.

Logical Expression. Generally composed or two arithmetic or
two string expressions separated by a logical operator. Such

13

sexp

an expression evaluates to either a 1 (logical true) or a 0
(logical false).

String Expression. Can consist of a string variable, string
literal (constant), or a -Function that returns a string
value.

filespec File Specification. A string expression that refers to a
device such as the keyboard or to a disk file.

iocb Input/Output Control Block
that evaluates to a number
refer to a device or -File.
cannot be used.

(IOCB). An arithmetic expression
fro m 1 to 7. The I DC B i susedt 0

IOCB 0 is reserved for BASIC and

lineno

val'

avar

mvar

svar

Line Number. A constant that identifies a particular program
line in a deferred mode BASIC program. A line number can be
any integer from 0 through 32767. Line numbering determines
the order of program execution.

Variable. Any variable. In this manuaL variables are
classi-Fied as arithmetic variables (avar), matrix variables
(mvar), or string variables (svar).

Arithmetic Variable. A location where a numeric value is
s tor e d . Va ria b 1 e n a me s can b e fro m 1 t 0 120 alp han umer i c
characters. but must start with an unreversed, upper case
alphabetic character.

Matrix Variable. An element of an arrayal' a matrix. Matrix
variables can be subscripted. A matrix variable is a number,
variable, or expression placed in parentheses immediately
following the name of the array or matrix. For example, A(l),
A(ROW), A(X+1.Y-3).

String Variable. A location where a string of characters can
be stored. The same rules given for the arithmetic variable
(avar) apply to the string variable with the additional
restriction that the string variable name must end in $.
String variables can be subscripted.

VERSIONS AND RELEASES

Currently, the DOS Master Diskette is Version t. Subsequent versions
will be designated as DOS II. DOS III. etc. This manual describes
only DOS 1. As ATARI releases new versions of DOS, new documentation
describing those versions will also be released.

14

SECTION 2. ABOUT THE DIS~ DRIVE

An ATARI 810[TMJ Disk Drive provides fast, reliable data storage.
When attached to your ATARI Personal Computer System, you can:

1.
2.
3.
4.
5.
6.
7.

Store programs on diskette.
Retrieve programs from diskette.
Create and add to data files needed by programs.
Make copies of disk files.
Erase aId files from a diskette.
Load and save binary files.
Move files to and from memory, the screen, diskette,
and to and from any new peripherals that ATARL Inc.
introdlJce.

printer,
will

The ATARI Disk Drives are "smart." Each contains a microprocessor
with its own software in addition to the logic and hardware
necessary for the magnetic he.3d to move b.:3ck and forth "across"
a floppy (flexible) diskette.

Your ATARI Personal Computer System with 16K RAM can accommodate up
to four ATARI 810 Disk Drives. Each drIve operates independently of
the others.

ATARI 810 Disk Drive

FIGURE 2-1. ATARI 810 DISK DRIVE

15

The ATARI 810 Disk Drive is a single drive with single density
recQrding capabilities. It uses standard 5 1/4" flexible diskettes!
each of which stores 88K (88 thousand) bytes. The 810 Disk Drive
contains a built-in microprocessor which gives it an automatic
stand-by capabilit~. This means that the Disk Drive motor is not in
constant operation, bljt waits to be "told" when it is needed. The
ATARI 810 Disk Drive Operator's Manual describes many of the Disk
Drive's features.

MULTIPLE DISK DRIVE NUMBERING

When you attach the Disk Drive(s) to your ATARI Personal Computer
System, you should check the back of each drive to ensure that
each one is specified to a different DRIVE CODE NUMBER (Figure 2-1).

@
DRIVE CDDe NO.

, @ ~~o NO.., NO.2

PWR. ~ ~

FIGURE 2-2. DRIVE CODE SETTINGS

The disk drive in the above figure would be designated as Drive #1
because the white tab is behind the black tab on the left side. To
change the drive to Disk Drive #2, move the black tab to the right,
but leave the white tab on the left. If you move both tabs, the disk
drive will be set to Disk Drive #3 position.

You can designate the ATARI 810 Disk Drives in any order; e. g., if
you have two 810 Disk Drives, either can be Drive #1 and the other
can be Drive #2, #3, #4. Remember that DOS wi 11 not be ab Ie to boot
unless the drive in th~ #1 position contains a Master Diskette or its
duplicate.

DISK DRIVE OPERATION

When you nave set the drive code positions and connected the drive(s)
to your ATARI Personal Computer System, you are ready to insert a
diskette and begin disk drive operations.

16

SECTION 3. DISKETTES

This section describes diskettes, their organization, and care. It
also covers the method for write-protecting a diskette so that
valuable files are safe from being overwritten or erased.

DIS~ETTE DESCRIPTION

ATAR! Diskettes are thin mylar circular sheets covered with an
oxide similar to that used on recording tape. Each ATAR! Diskette
is about 5 1/4" in diameter and each is sealed in a special, black
Jacket designed to protect it from being bent, scratched, or
contaminated. Figure 3-1 illustrates a diskette.

ATARI Label ~

Read/Write
Area

Write-Protect
.......- Notch

Spindle Hole

FIGURE 3-1. DISKETTE IN PROTECTIVE COVERING

NOTE: DO NOT ATTEMPT TO REMOVE THE THE DISKETTE FROM ITS BLACK
PROTECTIVE COVERING.

The readlwrite area on each diskette is e~posed and the diskette can
be damaged if you scratch or fingerprint this area, expose it to
bright sunlight, or drop ashes on it. To prevent this from happening,

17

it is recommended that all diskettes not in use be kept in the white
protective envelopes provided with them.

When the diskette is inserted into the Disk Drive, the spindle hole is
automatically placed on the drive hub and the diskette is seated.
The circular diskette spins within its protective Jacket. When you
access the diskette, the magnetic head is placed over the read/write
area.

DISKETTE WRITE-PROTECT

A sheet of large file identification labels and a sheet of small,
adhesive tabs are included in each Master Diskette box(CX8101) and in
each box of 5 Blank Diskettes(CX8100i. To write-protect a diskette,
remove one adhesive tab from the sheet and fold it over the notch on
the edge of the diskette (Figure 3-2). It is recommended that you
write-protect your Master Diskette immediately and any other diskettes
containing valuable files. Write-protecting a diskette prevents it
from being inadvertantly overwritten. If you attempt to write on a
write-protected diskette, an ERROR-144 displays on the screen.

18

FIGURE WRITE-PROTECTING A DISKETTE

DIS~ETTE ORGANIZATION

BeT 0 r e JJ 0 IJ C ~ln Wr i teonab I an k dis ke t t e , you mus t " or 9ani z e II the
surface so that the DOS will know where the information is located.
This is done by formatting a diskette into tracks and sectors. (Refer
to Section 5, I. DrSI-<. FORMAT.) After a diskette has been formatted, it
is logically divided into 40 tracks with 18 sectors per track. Each
of these single density diskettes thus has a total of 720 sectors on
which you can write information (see Figure 3-3).

FIGURE 3-:3. FORMATTED SINGLE DENSITY DIS~ETTE

Eleven of the sectors are allocated by the DOS for "special duty"
so that they are not av~ilable to you.

1 sector u3ed for boot
8 sectors used for Directory
1 sector used for Volume Table of Contents
1 sector (number 720) is not addressable, so is unused.

11 TOTAL

Each of the remaining 709 sectors can store 128 bytes of information,
3 bytes of which are used for overhead. That gives a total byte

19

capacity per single density diskette of 88,625 bytes.

If a diskette has the DOS on it. its storage capacity is reduced since
the DOS file itself uses approximately 9K bytes. It is not necessary
to have the DOS file on every diskette, but you will have to remember
to load the DOS from your Master Diskette before inserting your
program diskette.

When you store data on a diskette, the disk drive converts the data it
receives from the console into coded electrical pulses. These pulses
magnetize minute areas of the oxide coating of each diskette while the
diskette is spinning.

When you retrieve data from a diskette, the disk drive positions the
magnetic head so that the area of the diskette where the data is
stored passes beneath it. The disk drive's microprocessor controls the
positioning and timing for the diskette.

DISKETTE INSTALLATION

Inserting the diskette into the ATARI 810 Disk Drive is a simple, but
very important procedure. If the diskette is improperly inserted, it
can cause boot errors. Improper diskette insertion can also cause
damage to the diskette itself.

To insert the diskette, remove it from the white, protective envelope
and, holding it as shown in Figure 3-4. gently slide it into the
drive. Be sure that the notch is on the LEFT side.

Figure 3-4 DISKETTE INSERTION

20

DISKETTE STORAGE

Since your diskettes are flexible, they are subject to being damaged.
Always keep your diskettes not in use in their white, protective
envelopes and store them vertically. It is recommended that you store
your diskettes at least 12" to 18" from your television set or any
other possible source of magnetic fields. It is also recommended that
you keep them away from any source of heat.

If you handle your diskettes with care and store them properly.
you will minimize the chance of losing valuable data.

BOOT ERRORS

If you have inserted the diskette and get a BOOT ERROR message
displayed over and over again on the screen, turn off the computer
console, re-read the procedure and try it again (refer to Section 1).
BOOT ERRORS can occur if:

1. The inserted diskette does not have the DOS on it.
2. The disk drive was powered up after the computer console

was turned on.
3. The disk drive is not properly connected to the computer

console.
4. The transformer plug has loosened in its wall socket.
5. The power plug has loosened in the PWR socket in the disk

drive.
6. The diskette was improperly inserted.
7. The diskette has been scratched, warped, or marred. In this

case, use another diskette.
8. The drive code setting is not correct.

If you are sure that it is none of these probems, you should use
the Master Diskette to boot up, re-insert the problem diskette,
and save any accessible files on yet another diskette. Then,
reformat the "problem" diskette and try to use it again.

21

SECTION 4

DISK OPERATING SYSTEM

DOS (pronounced doss) is an acronym for Disk Operating System. It
is an extension of the ATARI Operating System <OS) that allows you
to interface with a disk drive so that information can be passed
between the diskette and the computer memory <RAM).

DOS DESCRIPTION

The ATARI Disk Operating System contains two main parts:
o a Disk Utility Package <DUP)
o a File Management Subsystem (FMS)

This section describes the interaction that takes place between the as
and DOS when the system is powered up and the disk drive is lIbooted. II

It also provides a description of the two main parts contained in DOS.

When you power up your disk drive<s> and the computer console, the
Operating System executes a bootstrap loader that brings a special
file called DOS.SYS into RAM and begins executing the initial code
in that file. DOS.SYS contains both the File Management SUbsystem
and the Disk Utility Package.

When DOS I is loaded into the computer RAM, it occupies a special area
in RAM that does not interfere with the memory locations allocated for
BASIC or Assembly Language programs. The Memory Map in Appendix D
shows the RAM locations occupied by the DOS. After the disk drive
system has been booted and the DOS.SYS file is loaded, the ATARI
Operating System turns control of the system to the cartpidge. If no
cartridge has been inserted. OS gives control of the system directly
to the Disk Utility Package.

Disk Utility Package

The Disk Utility Package <DUP) programs allow you to display the DOS
Menu by calling and executing its DUP Executive program. The Executive
program, besides displaying the DOS Menu, takes Menu input and ppints
the module entpy message for each Menu option; e. g. I DELETE FILESPEC
for Menu selection D. and executes the selected utility. The DUP
programs also allow easy access to the File Management Subsystem (FMS)
without your having to undepstand the logical stpuctupe of FMS.

File Management Subsystem

The File Management Subsystem gives you a simpler way of storing data
on a diskette by putting a logical structure on top of the formatted

23

diskette. Because of the File Manager program, you don't have to keep
track of all the sectors a program occupies, which sectors they are,
or how to find a particular file. FMS relieves the user of all that
reponsibility.

The FMS also "controls" the operations performed on a file: OPEN,
CLOSE, PUT, and GET (see Section 6). In addition, it defines the
subfunctions displayed on the DOS Menu that are accessed by DUP. The
subfunctions that are not defined by FMS are BINARY LOAD, BINARY SAVE.
RUN AT AT ADDRESS, RUN CARTRIDGE, COpy FILE, DUPLICATE FILE and
DUPLICATE DISK.

OPERATION WITHOUT INSERTED CARTRIDGE

When no cartridge has been inserted, the as gives control directly to
the DOS Menu and that is what appears on the screen. However, if you
have inserted a cartridge. you must type DOS CRETURN] before the DOS
Menu will appear on the screen.

PARAMETERS

A parameter is additional information (sometimes optional) that
specifies how the command is to operate. If more than one parameter is
required, separate them with commas. For example, the BINARY LOAD
selection requires a START and END. A parameter can be a filename or a
hexadecimal number. If you enter a parameter and decide against it,
press [BREAKJ. The selected subroutine will not be executed and a
SELECT ITEM prompt message will appear on the screen.

WILD CARDS

ATARI DOS recognizes two "wild cards ll which can be substituted for
characters in a filename. Wild cards are represented by the special
characters? and *
The? is used in place of any single valid character. If there are 25
files on a diskette and you want to list to the screen only those
five-letter files beginning with PROB and ending with . BAS. you would
type PROB? BAS. (See A. DISK DIRECTORY.) This wild card can only I-e
substituted for a single character. To substitute for a variable
number of characters, there is another. more fl~l(ible wild card.

The * stands for any valid combination of characters in a filename or
an e~tende~. The follOWing examples illustrate the use of the *.

EXAMPLES:

*.BAS

24

will list all the program files on a diskette in disk
drive #1 that end in . BAS.

02:*. *

PRO*. BAS

will list all the p~og~am files on the disk d~ive 2
diskette.

will list all the p~og~am files on diskette of disk
drive #1 that begin with PRO and have. BAS as the
extender.

Lette~s o~ numbe~s (but not a period) to the ~ight of the aste~isk (*)
are ignored. In othe~ words, *T. BAS would appea~ to the compute~ as
*. BAS and PROT.*S would be the same as PROT.*.

You can load a p~ogram f~om the diskette using a wild ca~d in the file
name if there is no mo~e than one file to which it is applicable;
e. g., if while the DOS is sea~ching for a file PRO*.BAS and it finds a
PR01.BAS and a PROB. BAS, an ERROR-21 (Load File Er~o~) will appea~

on the screen.

25

SECTION 5

DOS MENU SELECTIONS

This section describes each of the selections that appear on the Disk
Operating System Menu. The DOS Menu is "self-prompting." When you type
the letter of one of the selectionsi e. g., A, II" D, etc., in response
to the SELECT ITEM prompt, the DUP program prints the message
concerning that selection and turns control over to the selected
subroutine.

Figure 5-1 illustrates the DOS Menu selections and prompt message. The
rest of this section describes each of these selections and gives
examples of their uses.

~ISK OPERATING SYSTEM
COPYRIGHT 1~7' ATARI

A. ~I~~ ~IRECTORY I. FOR~AT ~r.5K

B. RUN CARTRIOGE J. &UPLICATE ~ISK
C. COpy FILE K. BXNARY SAVE
D. ~ELETE FILE{S) L. BINARY LOA~

E. RENAME FILE ". RUN AT AODRESS
F. LOC~ FILE N. OEFINE DEVICE
G. UNLOCK FILE O. DUPLICATE FILE
H. WRITE ~OS FIL£

SELECT ITEM•

FIGURE 5-1.

A. DISK DIRECTORY

DOS MENU

The disk directory contains a list of all the files on a diskette. On
d e rna n d , i t dis pIa ys the f i 1ena me, the ext end e r (i fan y) I and the
number of sectors allocated to that file. It will either display a
partial list or a complete list depending on the parameters entered.
Wild cards can be used in the parameters.

Type A [RETURN) below the SELECT ITEM prompt.

The screen immediately displays the entry module message:

DIRECTORY--SEARCH SPEC, LIST FILE

27

You can choose at this time to search for a single filespec, several
filespecs, or all filespecs on the diskette.

Type DOS.SYS [RETURN]

The screen displays:
DOS SYS 064

645

TYPE RETURN FOR MENU

This tells you that DOS.SYS is present on the diskette and contains 64
sectors. The number 645 on the next line notifies you of the number of
free sectors left on the diskette. Since there are 709 sectors
available to the user on a diskette, this display also lets the user
know that DOS.SYS is the only file on the diskette.

The second parameter, LIST FILE, allows you to print the directory
information to any output device you choose. Since there was no
specified device in the example above, the DOS printed it on the
screen (E:), which is the default device.

Notice that TYPE RETURN FOR MENU is displayed on the screen. Press the
[RETURN] key and the DOS Menu redisplays with a SELECT ITEM prompt. To
list the filespec names on a printer. type A [RETURN]. After the
directory prompt message, type DOS. SYS, P: [RETURN]. If you have a
printer and it is on, DOS will print DOS SYS 064 with 645 directly
below it. If you do not have a printer (or it is not turned on), you
will see an ERROR-138 displayed on the screen. Each time this
selection completes a task, it displays a TYPE RETURN FOR MENU prompt
message. The follOWing examples illustrate different uses of this
selection.

EXAMPLE 1:

SELECT ITEM
A (RETURN]
DIRECTORY--SEARCH SPEC, LIST FILE?
[RETURN]

TYPE RETURN FOR MENU [RETURN]

EXAMPLE 2:

SELECT ITEM
A [RETURN]
DIRECTORY--SEARCH SPEC, LIST FILE?
*.SYS (RETURN]

TYPE RETURN FOR MENU [RETURN]

28

Lists all filenames on screen.

Lists all files on screen with
. SYS extender.

EXAMPLE 3:

SELECT ITEM
A [RETURN]
DIRECTORY--SEARCH SPEC, LIST FILE?
D2:,P: [RETURN]

TYPE RETURN FOR MENU [RETURN]

EXAMPLE 4:

SELECT ITEM
A [RETURN]
DIRECTORY--SEARCH SPEC, LIST FILE?
DO"7.* [RETURN]

TYPE RETURN FOR MENU [RETURN]

SELECT ITEM

B. RUN CARTRIDGE

List all files on disk drive
#2 on the line printer.

Lists all 3-letter filespecs
beginning with DO.

Whenever you select B, the DUP file gives control of your ATARI
Personal Computer System to the inserted cartridge. If the EASIC
cartridge is inserted, the screen displays a READY prompt. If the
Assembler Editor cartridge is inserted, the screen displays an EDIT
prompt. If you have not inserted a cartridge, the message NO CARTRIDGE
appears on the screen.

You can also press [SYSTEM RESET) to return control to the cartridge.
This selection has no entry message OT' parameters.

EXAMPLE:

SELECT ITEM
E [RETURN]

C. COPY FILE

Use this selection if you have two disk drives and want to copy a file
from one diskette in disk drive #1 to a second diskette in disk drive
#2. You can also use this selection to create a backup copy on the
same diskette with the same filename but a different extension, or
even a completely different filename. No wild cards are allowed.

29

EXAMPLE 1:

SELECT ITEM
C [RETURN]
COPY--FROM,TO?
Dl:00SEX. BAS, 02: OOSEX, BAS [RETURN] Copies OOSEX. BAS from 01 to 02
SELECT ITEM

EXAMPLE 2:

SELECT ITEM
C [RETURN]
COPY--FROM, TO'';'
01: DOSEX, 8AS,Ol:DOSEX. BAK

SELECT ITEM

Creates backup copy of file on
same diskette.

Also, use this selection to copy the file listing to the screen, the
printer, or the program recorder.

EXAMPLE 3:

C [RETURN]
COPY--FROM, TO'?
D1:DOSEX. LST,E:

SELECT ITEM

EXAMPLE 4:

[RETUR~n Displays the program listing on
screen.

SELECT ITEM
C [RETURN)
COPY--FROM, TO?
E: ,Dl:TEMP, OAT [RETURN]

PETER [RETURN]
BILL [RETURN]
STEVE [RETURN]
[CTRLJ3
SELECT ITEM

EXAMPLE 5:

SELECT ITEM
C [RETURN]
COPY--FROM, TO'::-
01: OISEX. LST, P: [RETURN]

SELECT ITEM

'30

Copies any succeeding screen data
into a file named TEMP. OAT.
Type data on screen to

be stored in TEMP. DAT file.

Terminates entry of data.

Lists the program listing DISEX. LST
on the printer.

D. DELETE FILE(S)

This selection allows you to delete one or more files from the disk
directory file and from the diskette. Wild cards can be used in the
filesp-:c names.

EXAMPLE 1:

SELECT ITEM
o [RETURN]
DELETE FILESPEC
02:REM*. BAS [RETURN]

TYPE tey" TO DELETE...
REM 1. BAS?
Y [RETURN]
REMB. BAS
V [RETURN]
SELECT ITEM

EXAMPLE 2:

SELECT ITEM
o [RETURN]
DELETE FILESPEC
D:TEMP. OAT [RETURN]
TVPE "V" TO DELETE.
TEMP. OAT
V [RETURN]

SELECT ITEM

All files that begin with REM and that
have a . BAS extender.
Verification prompt.
Deletes REM1. BAS

Deletes REMB. BAS

A single file.
Verification prompt.

If N is typed, file will not be
deleted.

The verification prompt message gives you a chance to change your mind
about deleting a file. By appending the option IN to the filespec
en try, DOS wi I leI i minate t his v e r i f i cat ion s t e p .

EXAMPLE 3:

SELECT ITEM
D [RETURN]
DELETE FILESPEC
OOXEX. BASIN [RETURN]
SELECT ITEM File is deleted without requesting

verification.

You can also delete all files on a diskette, but leave the diskette
formatting. Example 4 illustrates the steps for deleting all the
existing files on disk drive #1. Note that the IN option is used
in this example so that the verification message is not displayed.

31

EXAt1PLE 4:

SELECT ITEM
D [RETURN]
DELETE FILESPEC
./N (RETURN]
SELECT ITEM

E. RENAME FILE(S)

Deletes all files from the disk
drive *1 diskette.

This selection allows you to change the name of one or more files. You
can use wild cards in the filespec names.

EXAMPLE 1:

SELECT ITEM
E [RETURN]
RENAME, GIVE OLD NAME,NEW
D2:TEMP.DAT,NAMES.DAT [RETURN]
SELECT ITEM

EXAMPLE 2:

SELECT ITEM
E [RETURN]
RENAME, GIVE OLD NAME. NEW
.8KB..BAS [RETURN]
SELECT ITEM

The file designated on D2 as
TEMP. OAT is changed to NAMES.DAT.

All files with extender eKE have
their extenders changed to . BAS.

If you attempt to rename a file on a write-protected diskette, an
ERROR-144 (Device Done Error) will display on the screen. If ~ou try
to rename a file that is not on the diskette, an ERROR-170 (File Not
Found) error displays. If the screen displays ERROR-167, it means
that you tried to rename a lacked file (see F. LOCK FILE).

F. LOCK FILE

Use this selection to "write-protect" a single file. A locked file
c:annot be written to. appended, or deleted. An ERROR-167 will result
from trying to write to a locked file. You can use wild cards to lock
several files at the same time.

EXAMPLE 1:

SELECT ITEM
F [RETURN]
WHAT FILE TO LOCK?
DOS.SYS [RETURN]
SELECT ITEM

32

A locked file is designated by an asterisk (*i preceding its file­
name in the Disk Directory. Note that the asterisk has two different
function<:i. When used within a filename, it 1S a wild card; when u<:ied
preceding a filename in the DOS DirectorYI it denotes a locked file.

The following example illustrate<:i the use of the wild card to lock
all files with an extender of . BAS.

EXAt1PLE 2:

SELECT ITEM
F [RETURN]
WHAT FILE TO LOCK?
Dl:*. BAS [RETURN)
SELECT ITEM

EXAMPLE 3:

SELECT ITEM
F [RETURN]
WHAT FILE TO LOCK?
T*. * [RETURN]
SELECT ITEM

EXAMPLE 4:

SELECT ITEM
F [RETURN]
WHAT FILE TO LOCK?
. [RETURN]
SELECT ITEM

Locks all files on Dl which begin
wi th T.

Locks all D1 files.

If you do not enter a filename or a wild card filename before
pressing [RETURN], the screen will display an ERROR-165.

G. UNLOCK FILE

Use this selection to unlock a file or files that you previously
locked using selection F. When you complete this selection, the
asterisk that appeared before the filename in the DOS Directory that
indicated that the file was locked will no longer appear on the
screen. Wild cards can be used in the filespec name<:i.

EXAMPLE 1:

SELECT ITEM
G [RETURN]
WHAT FILE TO UNLOCK?
DOSEX. BAS [RETURN]
SELECT ITEM

Unlocks DOSEX. BAS file on D1.

33

EXAMPLE :2:

SELECT ITEM
G (RETURN]
WHAT FILE TO UNLOCK?
T*.* [RETURN]
SELECT ITEM

EXAMPLE 3:

SELECT ITEM
G (RETURN]
WHAT FILE TO UNLOCK?
PROB?DAT (RETURN]
SELECT ITEM

H. WRITE DOS FILE

Unlocks files beginning with
the letter T on disk drive *1
diskette.

Unlocks all 5-letter files
beginning with PROB and having
a . DATe xten d e r .

To writ. a DOS/FMS file on a diskette, the diskette must have been
previously formatted (see I. FORMAT DISK>. The diskette to be written
is inserted in Disk Drive *1. This selection does not allow a choice
of drives.

EXAMPLE:

SELECT ITEM
H (RETURN]
TYPE "Y" TO WRITE NEW DOS FILE?
Y [RETURN]
WRITING NEW DOS.SYS FILE
SELECT ITEM

You can also use C. COpy FILE or O. DUPLICATE FILE to write a new
DOS onto a diskette, but you must first rename the DOS. SYS file before
trying to copy it. After copying the file, rename it back to DOS. SYS
and you will have a bootable version of DOS. However, since this is
the selection designed specifically for writing a DOS/FMS file onto a
second diskette. it is recommended that you use it rather than either
of the two other selections, C or O.

I. FORMAT DISK

This selection is used to format a diskette. The diskette can be blank
or it can have files on it that you do not want anymore. Formatting
writes a digital pattern on the diskette that allows data to be stored
and retrieved. Formatting a diskette takes approximately 2 minutes.

WARNING:

34

Formatting a diskette always destroys all files
existing on the diskette.

EXAt1PLE:

SELECT ITEM
I [RETURN]
WHICH DRIVE TO FORMAT?
1 [RETURN]
TYPE "V" TO FORMAT DISK 1
V [RETURN]
SELECT ITEM

Although the above example illustrates disk drive #1 as the drive to
be formatted, you can specify any drive. It is possible to format a
diskette containing bad sectors. DOS will "flag" the bad sectors
internally and wiJl not write any data on those sectors.

J. DUPLICATE DISK

Use this menu selection to copy the files on a diskette (Source
diskette; to another (Destination) diskette. The Disk Utility Package
(DUP) program uses sector by sector copying, which means that programs
already on the destination diskette will be destroyed.

This selection can be used with a one drive system or a multiple drive
system. For a one drive system, save any RAM-resident BASIC program
before attempting to duplicate a diskette. This selection uses the
program area (where a RAM-resident BASIC program is stored) as a
buffer for moving the files on the source diskette to the destination
diskette when one drive is used.

EXAMPLE 1.

SELECT ITEM
J [RETURN]
DUP DISK--SOURCE,DEST DRIVES?
1, 1 [RETURN]
TYPE "Y" IF OK TO USE PROGRAM AREA?
V [RETURN]
INSERT SOURCE DISK,TYPE RETURN
(RETURN]
INSERT DESTINATION DISK, TYPE RETURN
(RETURN]
SELECT ITEM

Always write protect your source diskette as a safety measure. Then,
if it is accidentally inserted when the destination diskette is
supposed to be, the ~creen will display an ERROR-144, but your
~ource diskette will still be intact.

If you type any character other than Y [RETURN] in response to the
TYPE "V" IF OK TO USE PROGRAM AREA message, the program aborts and a
SELECT ITEM prompt appears on the screen.

35

NOTE: The number of times the DUP program requests you to insert the
source and destination diskettes depends on the number and size
of the file(s) to be duplicated for a given system and the
amount of RAM in the system. A 48K system might require only
two insertions whereas a 16K system might require five or six
diskette insertions.

For a multiple disk drive system, it is not necessary to save a
RAM-resident BASIC program, as an internal DOS buffer is used and the
user's program area will not be altered. Notice that in the following
e~ample, there is no prompt message regarding the program area. Insert
the source diskette in disk drive #1 and the destination diskette in
disk drive #2 and use the steps in EXAMPLE 2.

EXAMPLE 2.

SELECT ITEM
J [RETURN]
DUP DISK--SOURCE,DEST DRIVES
1,2 [RETURN]
INSERT BOTH DISKS, TYPE RETURN
[RETURN]

SELECT ITEM

The cursor remains on the screen during the duplication process.
This process can take several minutes if the source diskette is
almost full.

Although the above example uses Disk Drive #1 as the source disk
and #2 as the destination disk, you can duplicate a disk from any
numbered drive to any other numbered drive; e. g., 2,1;3,1;2,3.

1-<.. E INARY SAVE

Use this Menu selection to save the contents of memory locations in
object file (binary) format. Programs written using the Assembler
Editor Cartridge have this format. The parameters for this selection,
START and END, are hexadecimal numbers. These numbers are determined
by your object file program. For instance, if you had an Assembly
Language program BINFIL.OBJ stored on diskette, it would be preceeded
by a 6-byte header in the form shown in the following:

Header Decimal Hex
Byte # Number Number Description

#1 132 84 Identifier code for
#2 9 09 binary load file
#3 0 00 Starting address (LSB>
#4 60 3C (MSB)
#5 255 FF Ending address (LSB)
#6 91 58 (MSB)

Bytes of file data

36

In Example 1, you would insert the hexadecimal addresses 3COO and
5BFF from the header as the START and END parameters in the BINARY
SAVE selection.

EXAMPLE 1:

SELECT ITEM
K [RETURN]
SAVE--GIVE FILE,START,END
BINFIL.OBJ,3COO,5BFF (RETURN]
SELECT ITEM

This BINARY SAVE selection used with a fA after a filename can be used
to incorporate an automatic run feature into an obJect file program.
To make an obJect file run automatically, insert the starting address
into hexadecimal locations 2EO and 2E1. Since BASIC does not recognize
hexadecimal numbers. use POKE statements with the decimal equivalents
of the hexadecimal locations of the starting address. In the above
example BINFIL.OBJ, the starting address is 3COO. The least
Significant Byte (lSB) is 00 and the Most Significant Byte is 3C. When
these are converted to decimal the LSB is still 0, but the MSB is 60.
The decimal equivalents of locations 2EO and 2E1 are 736 and 737,
respectively. See Appendix E.

EXAMPLE 2:

Binary File Automatic Run

Type B [RETURN] to get into BASIC

READY

POKE 736,00 [RETURN]
READY
POKE 737,60 [RETURN]
READY
DOS [RETURN]

SELECT ITEM
K [RETURN]
SAVE--GIVE FILE,START, END
BINFIL.OBJ/A,2EO,2El (RETURN]
SELECT ITEM

Enter LSB first in decimal.

Enter MSB second in decimal.

Return to DOS Menu.

Enter hexadecimal equivalents.

When BINFIL.OBJ is loaded into RAM, it will begin executing
immediately. Be sure to enter decimal numbers in the POKE state­
ments. If you enter hexadecimal numbers by mistake. you could POKE
into DOS and create all kinds of problems, making it necessary for you
to reboot the system.

37

L. BINARY LOAD

Use this selection to load into RAM an Assembly Language (Binary) file
that was previou~ly saved with BINARY SAVE. If the starting address
was appended to the file in locations 2EO and 2El, the file will
automatically run after being entered.

EXAMPLE 1:

SELECT ITEM
L [RETURN]
LOAD FROM WHAT FILE?
BINFIL.OBJ [RETURN]

Since this file had the starting address in locations 2EO and 2El
(see K. BINARY SAVE" this file will begin executing as soon as
the load is complete.

If a file has not had the starting locations inserted in 2EO and 2El,
the SELECT ITEM prompt message would display on the screen as soon as
the file completed loading.

EXAMPLE 2:

SELECT ITEM
L [RETURN]
LOAD FROM WHAT FILE?
MACHL. OBJ [RETURN]
SELECT ITEM

To run a program without an appended starting address, see the next
selection, M. RUN AT ADDRESS.

M. RUN AT ADDRESS

Use this selection to enter the hexadecimal starting address of an
object file program after you have loaded it into RAM with the BINARY
LOAD selection. This selection is used when the starting address has
not been appended to the object file.

EXAMPLE:

SELECT ITEM
M [RETURN]
RUN FROM WHAT ADDRESS?
3000 [RETURN]

In the above example, the instructions at hexadecimal location 3000
will begin executing. Be very careful in entering these hexadecimal
address locations. If you enter an address that does not contain
executable code, it will create problems. The least damaging of these
problems causes the system to lock up making it necessary for you to
reboot the system.

38

N. DEFINE DEVICE

This selection allows you to change the routing defined in the FMS
Ha n d 1 e r Tab 1e . For t his use lit he Ips tot h ink of E:, P:, and D: as
single files rather than devices. In the following example, data that
would have normally been sent to the printer is rerouted to a TEMP2. P
file on a diskette.

EXAI1PLE:

SELECT ITEM
N [RETURN]
LOGICAL DEVICE/PHYSICAL DEVICE
P: ,TEMP2.P [RETURN]
SELECT ITEM

Within the system, the P: handler address is ~hanged to reflect
another handler in the FMS that "sets up" the actual device. In a
program that has data to be sent to the printer, the FMS would find
the address of P: in the Handler Table, and route the data to that
location. HOljJever, this selection changes the P: ".file" address and
reroutes the data to the TEMP2.P file on the diskette. The logical
device! l.!Jhich in this case is P: I can be redefined any number of
times.

The full implementation of this sele~tion 15 not supported, so use it
with caution.

O. DUPLICATE FILE

Use this selection for a one drive system to copy a file from the
diskette in drive #1 to another diskette. No wild c~rds are possible
with this selection. The operation and prompt messages far this
selection are very similar to those of the DUPLICATE DISK selection.
The following example is for a single disk drive system.

EXAMPLE:

SELECT ITEM
o [RETURN]
NAME OF FILE TO MOVE?
DOSEX. BAS [RETURN]
TYPE "y" IF 0[,\ TO USE PROGRAM AREA
Y [RETURN)
INSERT SOURCE DISK, TYPE RETURN
[RETURN]
INSERT DESTINATION DISK, TYPE RETURN
[RETURN]
SELECT ITEM

This sele~tion also contains the same restrictions regarding the
program area that are explained in Example 1 of the DUPLICATE DISK

:39

SECTION 6.

DIS~ OPERATIONS WITH BASIC

This section describes the BASIC commands that are used to move data
between devices. Four of these commands allow storage and retrieval of
files and the remainder are associated with input and output data
operations. Each command is illustrated with its abbreviation, format,
and an example of the command.

COMMANDS TO STORE AND RETRIEVE FILES

LOAD
SAVE

LOAD (LO.

LIST
ENTER

Format:
Example:

LOAD filespec
LOAD "D1:DOSEX. BAS"

This command causes the computer system to load the filespec from the
disk drive specified into RAM. It loads the tokenized version of the
program. The tokenized is shorter than the untokenized version in
that, when recorded, this version contains shorter inter-record gaps.
How~ver, when a tokenized version is loaded, it also loads the
program's symbol table. If the program is altered or deletions are
made, the symbol table is NOT changed. This means that all variables
which were defined in the original program still exist in the symbol
table. Therefore, it is recommended that LOAD and SAVE be used only
when saving a program is its final form. When specifying disk drive
#1. it is not necessary to call it out; e. g., D: is the same as D1:.

This command is also used in "chaining" programs'. If you have a
program that is too big to run in your available RAM, you can use the
LOAD command as the last line of the first program so that when the
program encounters the LOAD statement, it will automatically read in
the next part of the program from the diskette. However, the second
program must be able to stand alone without depending on any
variables, etc. from the first program.

To cause the second segment to load and run automatically, you would
use a RUN "D: filespec" as the last line of the first segment. However,
before running the first segment, make sure you have saved it on
diskette as the RUN statement will wipe out your RAM-resident program.

SAVE (S.

Format:
El(ample:

SAVE filespec
SAVE "Dl:EXAMP2. BAS"

This command causes the computer system to save a program on disk with
the filespec name designated in the command. SAVE is the complement of

41

LOAD and stores programs In tokenized form.

LIST (L.

Format:
Example:

LIST filespec
LIST "D:DATFIL.L.ST"

In BASIC, if no device is specified a-fter the LIST command; e. g., LIST
or L. 10,100, then the default device is the screen. All program lines
currently RAM-resident or specified program lines are displayed on the
screen. However, if a device is specifiedi e. g., P:, C:, 0:, 02: I the
RAM-resident program lines (or designated program lines) will be
listed to the specified device.

When a disk drive is specified, this command causes the computer
system to move the current RAM-resident (source) program to a file on
diskette under the name specified by the referenced filespec. This
command unlike SAVE, saves the untokenized (textual) format.

The untokenized format, although longer, does not merely enlarge on
the already existing symbol table. Each time the program is changed
and LISTED to the diskette, an updated symbol table is saved with it.
This leads to less ERROR-9 and ERROR-5 messages as the variables
are all current. When you are working with a program, it is advisable
to s~ve it using the LIST command.

ENTER (E.

Format:
Example:

Er-HER filespec
ENTER "D:LIST2.LST"

This command causes the computer system to move a file on diskette
with the referenced filespec into RAM. The program is entered in
untokenized form and is interpreted as the data is received. ENTER,
unlike LOAD, will not destroy a RAM-resident BASIC program, but will
merge the RAM-resident progr~m and the disk file being loaded. If
there are duplicate line nu~bers in the two programs, the line in the
program baing ENTERed will replace the same line in the RAM-resident
program.

DIS~ INPUT/OUTPUT COMMANDS

An I/O operation is controlled by an I/O Control Block crOCB). An IOCB
is a specific~tion of the I/O operation, consisting of the type of
I/O, the buffer length, the buffer address and two more auxiliary
control variables, of which the second is usually O. ATARI BASIC sets
up the eight IOCEs and dedicates three to the following:

IOCB ~O is used by BASIC for I/O to E~

IOCB #6 is used by BASIC for IIO to 5:
IOCB #7 is used by BASIC for LPRINT, CLOAO, and SAVE

commands.

42

IOCBs #1 through #5 can be used freely, but the dedicated IOCBs
should be avoided unless a program does not make use of one of the
dedicated uses mentioned above.

The 110 commands defined in this section are:

OPEN/CLOSE
INPUT/PRINT
PUT/GET
STATUS
XIO

The NOTE and POINT commands are not supported in this version of DOS.

OPEN (0.

Format:
Example:

OPEN +(: i 0 c b, a ex pi, a e xp2, f i 1 e s p e c
100 OPEN #2,8,0, "Dl:ATARI800. BAS"

The OPEN statement links a specific IOCB to the appropriate device
handler, initializes any CIO-related control variables (see Glossary),
and passes any device-specific options to the device handler. The
parameters in this statement are defined as follows:

#
iocb

aexpl

aexp2

filespec

Mandatory character entered by user.
A number between 0 and 7 that refers to a device
or file.
Code number that determines the type of operation
to be performed.

Code 4 = input operation
6 = disk directory input operation
8 = output operation
9 = end-of-file append operation

Code 9 allows program input from screen
editor without user pressing [RETURNJ.

12 = input and output operation

Device-dependent auxiliary code. An 83 (ASCII S) in
this position causes the ATARI 820 Printer to
print sideways; otherwise it is always O.
Specific file designation (see Section 1 for filespec
definition>'

In the example, OPEN #2,8,0, "D1: ATARI800. BAS", IOCB #2 is opened for
output to a file on disk drive #1 designated as ATARI800. BAS. If there
is no file by that name on disk drive #1, the DOS creates one. If a
file by that name already exists, the OPEN statement destroys that
file and creates a new one. If the IOCB has already been opened, the
screen displays an ERROR-129 (File Already OPENed.)

43

CLOSE (CL.)

Forma t:
Exampl~:

CLOSE #iocb
300 CLOSE #2

The CLOSE command closes devices or files that had been previously
opened for read/write operations. The number following the mandatory #
must be the same as the iocb reference number used in the OPEN
statement. (See Example 1.) If the iocb has already been opened to
one device and an attempt is made to open the same IOCB to another
device without first closing the IOCB, ERROR-129 displays on the
screen. The same IOCB cannot be used for more than one device at a
time.

EXAMPLE 1:

10 OPEN #1. 8, 0, "D: FIL. BAS
20 CLOSE #1

INPUT (1.

Forma t:

Examples: 100 INPUT #2; X,y
100 INPUT #2iN$

This command is used to request data <either numerical or string) from
a specified device. When used without a #iocb, the data is assumed to
be from the default device <E:).

5 kH1 :ttCF.:EATE DATA FILE;:::::::
7 RH1 ::;::::~:OF'Er~ l,JITH 8 CF.:EATE~3 DATA FILD;:::;;
113 OFH~ #L :3, [1.' "0 :l·~R ITE .OAT II

213 0It1 ~,lK:T :t\ 60)
30 ? "HITER A ~;HnH~=E t-r':iT r10~:E THAt·~ 60
CHARACTEP~::; . "
35 INPUT l·JRT:t
38 F:H1 l::n·~ITE DATA TO DI~;f;::ETTE:r;;;:

40 PRun it1, ~~PT:t
45 ~:H1 :!;;:::~CLO::;E DATA FILE:;:;::;;;:
50 CLO::::E #1
55 F:Et1 t:::; OFH~ DATA FILE FOP PEAD:;:::;;::
58 F:H1 ttl]FHi mTH 4 If A READ m·ll,·t:::::;::
60 OPEH #1.,4 .. (j, "0: ~,l~:ITE. OAT"
65 F.:H1 ::~::;;:: PEAO DATA FRDt-1 D1::;f:::E11"[;::::(::
713 INPl~ #l,WRTt
75 PH1 :t::;:: PF.: an DATA:t;~::

:::0 PRI ~-rr ~·~PT:f
:::5 FH1 t::;:~ CLO~;E DATA FILE:;;:::\::
913 CLC6E #1

Fi 9 ure 6-1.

44

INPUT and PRINT Program Example

In Figure 6-1, line 50 reads the user input from the keyboard (default
device). In line 80, the INPUT statement reads the contents of the
string from the opened file.

PR I NT (PR.

Forma t:

Examples:

or ?)

PRINT {# ~ : ~ ~ J} [t} [e x p]. . .]

100 PRINT #2; X,V
100 PRINT #2iA$

This command writes an expression (whether string or arithmetic) to
the opened device with the same 10GB reference number. See Figure 6-1.
If no 10GB number is specified, the system writes the expression to
the screen, which is the default device. If the information is
directed to a device that is not open, ERROR-133 displays on the
screen.

PUT (PU.

Forma t:
Example:

PUT #iocb,aexp
100 PUT #6, ASC ("A")

The PUT command writes a single byte (value from 0-255) to the device
specified by the 10GB reference number. In the following example
program, the PUT command is used to write each number you type into an
array dimensioned as A(SO). You can enter up to 50 numbers, each of
which should be less than 256. See GET command for second half of this
program.

10 GRAPHIC::; 0: FH1 PUT.··..GET DEi'10
~'0 DW A(5fn., A$(10)
30 GRAPH ICS 0:? II PUT At·[I GET TO [! I '::1::: F'P
OGRAf'1 D::Ar1F'LE II : ?
40 ? II Is this to be a READ Ot-· a l.lP ITE? II ,

I t~F'UT A$:?

50 IF A$="PEAD II
THE~'~ 160

60 IF A$<>lIl·f.:I-:-E" THaI F'RUH "?II :mrCi 40

70 ~H1 I,ll? ITE POUT Ir·IE
S'fJ OFH~ #1.0 :::, fL 1101: E::<Ht·1FU. Drir
90 ? lIEnt~r' a nLHilber' less then 256": IHF'U
T \'
95 I?Et1 ::t:::l,JR HE t·~ljt·1E:EF: TD FILE::;::::;':
l~J PUT #1, ::<
110 IF >(=0 THEI CLO::;E #1: I~OTO :JiZl
12£1 GOTO 90
130 GPAPHIC; (j: '? :? llF:ead dab. in f.i 1e n
D~J? fI : U~PUT A".t:.;

F i gur e 6-2. Partial Program Example Using PUT

This command is used to create data files or append data to an

45

edsting file.

GET (GE.

Format:
Example:

GET 4tiocb,avar
100 GET #2, X

This cQm~and reads a single byte from the device specified by the IOCB
reference number into the specified variable. The following program is
the second part of the program example listed in the PUT command
description. It allows you to retrieve each byte stored by the PUT
command.

140 IF A$="m u
THH~ Em

1~50 IF A:f<:> II 'rtS It THH~ 13f1
160 REr1 PEAO OUT ROUT I ~·jE

170 OPHj #2,4,0,1101: E::-~r'lF'L1 .DAr'
180 FOR E=l TO 50
185 ~H1 ::~:::;::REHO ~~UME:ER(~:; > FRot"1 FILEt::;::
190 GET #2~G:A(E)=G

200 IF G=0 THEN GOTO 230
210 PRIHT ItBYTE # II.; L 11=11; G
~'20 ~jE:x:T E
230 CLO~;E #2

Figure 6-3. Partial Program Example Using GET

When you run this program, it will print the numbers entered from
the keyboard together with the byte number in which it was stored.

STATUS (ST.

Format:
Example:

STATUS ~iocb,avar

100 STATUS #l,ERROR

This command is used to store the status of the referenced drive in a
specified variable. If no errors are encountered, the status is li
otherwise it is one of the error codes found in Appendix B. The
following program example incorporates the STATUS command to test
whether or not the disk drive is readyi i. e., whether the drive door
is closed. If the disk drive door is open, the disk drive power is not
on, the diskette has not been inserted, or the diskette has been
incorrectly inserted, the screen displays an ERROR-138 or ERROR-139
and takes the user out of the program. Using the TRAP command, the

46

user can remain in the program while the STATUS command allows the
user to determine and correct the situation causing the error.

10 GRAPHICS 0:R£M TRAP/STATUS OEt1O
20 DIM A(50), A$(10),0$(1)
30 GRAPHICS 0:? II PUT At.[) GET TO nISK PR
(DAM EXAr'fLEII =?
4e ? nIs this to be a READ or' a ~~ITE?":

IWUT M:?
50 IF A$=IIREAD II THEN 160
6e IF A$<)II~ITEu THEN PRINT II?II :GOTO 40

70 REM WRI TE ROUT HE
Be TRAP 400: OPEN ttL 8, 0,1101 :E:~At1PL1. DArn

ge ? nEnter· a. nUffibep 1e5S then ~.J6 II = IhPU
T X
100 PUT #L>~
110 IF X=0 THEN CLOSE 81: GOTO 130
120 GOTD ge
130 GRAPHICS 0:? :? IIRead data in file n
04J? II : II'PUT A$:?
140 IF A$=1Itt)1I THEN 00
15e IF A$<>IIYES II TI·EN 130
160 REM READ OUT RUJT INE
170 TRAP 400: OPE~~ #L 4, 0, II 01:EXAt1PL1 .OAT
II

180 FOR E=1 TO 50
190 GET 11,G=A(E)=G
200 IF G=e THEN GOTO 230
210 PRINT IIBYTE tt II; Ei "=11; G
220 NEXT E
233 CLOSE 11
240 END
400 TRAP 40000=STATUS 81,ST:IF 5T<>138 A
NO 5T<>139 THEN PRWT III-ELP":? ST:GOTO 4
30
410 ? "The disk drive door ff~t be close
d!1I
420 ? nT~ Y if ~u closed t~~ disk dri
ve door. "; : INPUT 0$
430 CLOSE #1:GOTO 40

Figure 6-4. Program Listing for STATUS Command

To test this program and the STATUS command, type in the program and
SAVE it on diskette. Open the door of the disk drive before RUNning
the program. The STATUS command will cause the error number to be
printed and will give you a prompt message to close the disk drive
door. After you close the door. the program will try again to open th@
file. This time no error will occur and the program will not trap but
give you a ? prompt for your ~irst input.

47

XIO (x.)

Format:
Example:

XIO cmdno,#iocb,aexpl,aexp2,filespec
100 XIO 3,#6,4,0, "D:TEST. BAS"

The XIO command is a general input/output statement used for special
operations. It is used when you want to perform the functions that
would otherwise be performed using the DOS Menu selections. These XIO
commands are used to open a file, read or write a record or character,
close a filel store status, reference a location in a file for reading
or writing, or to rename, delete, lock, or unlock a file.

The cmdno is used to designate Just which of the operations is to
be performed.

cmdno

3
5
7
9

11
12
13
32
33
35
36

OPERATION

OPEN
GET Record
GET Characters
PUT Record
PUT Characters
CLOSE
STATUS Request
RENAME
DELETE
LOCK FILE
UNLOCK FILE

EXAMPLE

Same as BASIC OPEN

Similar to BASIC statements
GET, INPUT,PUT.PRINT

Same as BASIC CLOSE
Same as BASIC STATUS
XIO 32,#1,0,0, ltD: SECC, PRTS. BAS"
XIO 33, #1, 0, 0, "D: TEMP. BAS"
XIO 35, #1, 0, 0, ltD: ATARI. BAS"
XIO 36, #1, 0, 0/ "D: DOSEX. BAS"

The following program allows you to create a file for each month of
the year into which you can enter the names and birthdays of your
family and friends. The program uses XIO statements to create
the file for each month. to lock and unlock each file as needed by the
program. and to close the file when you are through with it.

Line 20 defines the disk file D:BIRTHDAY as FILE$. Then in line
170, FILE$ is opened with an XIO statement for input. The XIO
statement in line 390 unlocks the proper file. The XIO statement
in line 400 creates the file and allows you to write to the file.
The next XIO statement. in line 430/ closes the file and the
next line's XIO statement locks the file to prevent it from being
accidentally overwritten or erased.

To run this program, enter a number from 1 to 12.
check to see whether or not there are any entries

48

The program will
in the file.

If there are none, the screen will displav the message NO BIRTHDAYS
IN followed by whatever month you selected. If you have made entries,
the screen will displaV the names of the people and their birthdavs
for that month. In either event, the screen will display the names
and birthdays for the month you selected and the succeeding month
(as a failsafe feature against your forgetting an important birthday
that comes at the first part of the next month). When you do not wish
to see another file or make another birthday entry, type NO to each
prompt message and the program will terminate.

S GRAPHICS e
10 OIM A$(S),O$(15),FILE$(20),OATE$(20)J
MON$(20 ») ERR$(20), NAf'Ef'(40)
2e FILE$="0:BIRTHOA'l. II
30 ERR$="ERROR IN MONTH I"
100 GRAPHICS 0:? :? :? II PLEASE TYPE MONT
H NUMBER 0-12)"
110 TRAP 100; INPUT rot·ffH
120 TSTENO=0
130 MONTH=I~fT(MONTH)

140 IF ~{fH<l OR MONTH>12 THEN? ERR$:G
OTO 100
145 GOSUB 10e0+MONTH
150 FILE$(12)=STR$(MONTH)
160 EOF=0
170 TRAP 700:XIO 3,12,4,0,FILE$
180 TRAP 600: FOR 1=0 TO 1 STEP 0
190 INPUT 12jNAME$
20B INPUT 12iOATE$
210 EOF=EOF+1
220 IF EOF=1 THEN ? nBI~:THDAY~; m II iMOH$
ill ARE:II:?
224 TEMP=LEN(NAME$)
225 NAt1E$(TEt1P+1)= II II

226 ~~At'lEfJ~ 30)= II II

227 NAME$(TEMP+2,30)=r~ME$(TEt~'+1)

230 ? N~1E$,DATE$

240 t'~E>n I
299 ~H1 ::;~1AKE ~~EW HrrF~'l IN BIRTHOAl'S:~::

300 ? :? :? IIWOULD VOU LikE TO t1AKE A HE
W BIRTHDA'r' ENTR'l"; It-f'UT A$
305 IF A$:::II'lESII THE~~ GOTO 320
310 IF A$="l'm" THH4 PRn~T flWOULO YOU UK
E TO CHECK At~OTHER t10!'lTH I S FILE?II: INPUT
A$;'?
315 IF A:f="YES Il THEH GOTO 20
318 IF A!=lIt·jO" THEt·~ 00
320 ? IIPLEASE TYPE PERSON I S NAt'E II

330 I t·~F'UT t·~r1E$

340 ? II PLEASE T,/PE PERSOt·~ I S BIRTl-IDAY (Mt1
-DD-YY)"
350 H~PUT DATE$
360 t1mnH=nn(lJAL(OATE$»
370 IF Mrn·ITH<l OR MotnH>12 TH8i ? ERR$,O
ATE:f:GOTO 300
380 FILE$(12)=STR$(MOt-ITH)

49
Figure 6-5. Sample Program Using XIO Statements (Page 1 of 2)

390 TRAP 400:XIO 36,#3,0/0/FlLE$:OPEN #2
1910,FILE$:GOTO 410
400 CLOSE #2:XIO 3,#2,8,0,FILE$
410 PRINT #2; NAt1E$
4~'0 PRHIT #2; DATE$
430 XIO 12,#2,0/0,FILE$
440 XIO 35,#2,uJ0,FlLEJ:
450 GOTO 300
600 CLOSE #2: IF EOF=0 THEN ? "t'~J 8IF~THDA
VS W II ;MOt4$
610 t1mnH==t·1Qt·UHt1
620 IF MONTH>12 THHl r10NTH=1
630 TSTEt·lO=TSTHm+ 1
640 IF TSTENO=l THEtl GOTO 145
650 GOTD 30"0
700 EOF=0:GOTO 600
1001 MOH$=llJAt'~UARYll :PBURN
If102 t1ml$=IIFE8RUAF~'y'1I: RETURN
1003 r1Oft.t-= IIMAF.:CW :RETUR~~
10f14 t1Ot4$= II APR ILII : RETUFj·l
1005 t10H$=llt1A'r''': RETURN
1006 MOH$= II JU~'~E It : RETURt~

1007 Mat·$=II.JJL'r'1t :RETlR<N
1008 r1Ot'U:='·AlJJ~UST" :RETURt·~

1009 MOH$=IISEPTEMBER lI
: RETURN

lew t1Of·l$= II OCTOBER II : RETUP..N
1£111 t1ot-tt= II NOl)EM8ER II : P£TURH
1012 t1ot,U:=1I0ECEt18ERII: RETURN
3000 FILE$(12,12+LEN(STR$(MONTH))=STR$(
MmnH):? FILE!

Figure 6-5. Sample Program Using XIO Statements (Page 2 of 2>

50

APPENDIX A

ALPHABETICAL DIRECTORY
OF BASIC RESERVED WORDS USED WITH DISK OPERATIONS

Note: The period is mandatory after all abbreviated keywords.

RESERVED
WORD:

CLOSE

DOS

END

ENTER

GET

INPUT

LIST

LOAD

OPEN

PRINT

PUT

ABBREVIATION

CL.

DO.

E.

GE.

1.

L.

LO.

o.

PRo or ..,

PU.

BRIEF SUMMARY
OF BASIC STATEMENT

I/O statement used to close a disk file
at the conclusion of I/O operations.

This command causes the menu to be
displayed. The menu contains all DOS
utility selections.

stops program execution; closes files;
turns off sounds. Program may be
restarted using CONT. (Note: END may
be used more than once in a program.)

110 command used to retrieve a LISTed
program in untokenized (source) form.
If a program or lines are ENTERed when
a program is resident in RAM, ENTER will
merge the two programs.

Used with disk operation to input a
single byte of data into a specified
variable from a specified device.

This command requests data from a
specified device. The default device is
E: (Screen Editor).

This command Qutputs the untokenized
version of a program to a specified
device.

110 command used to retrieve a SAVEd
program in tokenized form from a
specified device.

Opens the specified file for input or
output operations.

110 command causes output from the
computer to specified output device.

Causes output of d single byte of data
from the computer to the specified
device.

51

SAVE

STATUS

TRAP

XIO

52

S.

ST.

T.

x.

I/O statement used to record a
tokenized version of a program in a
specified file an a specified device.

Calls status routine for specified
device.

Directs execution to a specified line
number in case of an INPUT error,
allowing user to maintain control of
program.

General 110 statement used in a program
to perform DOS menu selections and
specified liD commands.

APPENDIX B
BASIC ERROR MESSAGES

ERROR
CODE NO.

2

ERROR CODE MESSAGE

Insufficient memory to store the statement or the new
variable name or to DIM a new string variable.

3 Value Error:
is negative,
range is not.

A value expected to be a positive integer
a value expected to be within a specific

4 Tao Many Variables:
names is allowed.

A maximum of 128 different variable

5

6

7

8

9

string Length Error: Attempted to stare beyond the
DIMensioned string length.

Out of Data Error: READ statement requires more data
items than supplied by DATA statement(s)

Number greater than 32767: Value is not a positive
integer or is greater than 32767.

Input Statement Error: Attempted to INPUT a non­
numeric value into a numeric variable.

Array or String DIM Error: DIM size is greater than
32767 or an array/matrix reference is out of the range
of the dimensioned size, or the array/matrix or string
has been already DIMensioned, or a reference has been
made to an undimensioned array or string.

10 Argument Stack Overflow:
too large an expression.

There are too many GOSUBs or

11

12

13

14

Floating Point Overflow/Underflow Error: Attempted to
divide by zero or refer to a number larger than +lE98
or smaller than -lE99.

Line Not Found: A GOSUB, GaTOr or THEN referenced a
non-existent line number.

No Matching FOR Statement: A NEXT was encountered
without a previous FOR, or nested FOR/NEXT statements
do not match properly. (Error is reported at the NEXT
statement, not at FOR).

Line Too Long Error: The statement is too complex or too
long for BASIC to handle.

53

15

16

17

GOSUB or FOR Line Deleted: A NEXT or RETURN statement
was encountered and the corresponding FOR or GOSUB has
been deleted since the last RUN.

RETURN Error: A RETURN was encountered without a
match i ng GOSUB.

Garbage Error: ExeclJtion of "garbage" (bad RAM bits)
was attempted. This error code may indicate a hardware
problem, but may also be the result of faulty use of
POKE. Try typing NEW or powering down, the re-enter
the program wihout any POKE commands.

18 Invalid String Character:
valid character, or string
numeric string.

String does not start with a
in VAL statement is not a

19 LOAD Program Too Long:
complete LOAD.

Insufficient memory remains to

20 Device Number Larger than 7 or Equal to O.

21 LOAD File Error: Attampted to LOAD a non-LOAD file.

Nate: The following are INPUT/OUTPUT errors that result during the
use of disk drives, printers, or other accessory devices.
Further information is provided with the auxiliary hardware.

128 BREAK Abort: User hit [BREAK] key during 1/0 operation.

129 IOCB* already open. OPEN statement within a program loop
or IOCB already in use for another device or file.

130 Nonexistent Device specified.
not attached.

Device is not turned on or

131

132

I DC B Wr i t e On 1 y .
(Pr inter j.

Invalid Command:

Command to a write-only device

The command is invalid for this device.

133 Device or File not Open:
device.

No OPEN specified for the

134 Bad IOCB Number: Illegal device number.

135 IOCS Read Only Error:
device.

Command to a read-only

136 EOF: End of File read has been reached. (NOTE:
message can occur when using cassette files.)

This

*IOCB refers to Input/Output Control Block.
is the same as the IOCB number.

54

The device number

137 Truncated Record:
256 characters.

Attempt to read a record longer than

138 Device Timeout. Device doesn't respond. Check
connections between peripheral equipment and console.

139 Device NAK: Garbage on serial port or bad disk drive.

140

141

142

143

144

Serial Bus input framing error.

Cursor Out of Range for particular made.

Serial Bus Data Frame Overrun.

Serial Bus Data Frame Checksum Error.

Device Done Error <invalid Udone ll byte):
write on a write-protected diskette.

Attempt to

145

146

147

160

161

162

163

Read After Write Compare Error (disk handler) or bad
screen mode handler.

Function not Implemented in handler.

Insufficient RAM for operating selected graphics mode.

Drive Number Error.

Too Many OPEN Files (no sector buffer available).

Disk Full (no free sectors).

Unrecoverable System Data 110 Error.

164

165

File Number Mismatch:

Fi Ie Name Error.

Links on disk are messed up.

166

167

168

169

170

171

POINT Data Length Error.

File Locked.

Command Invalid (special operation code).

Directory Full (64 files).

Fi Ie Not Found.

POINT Invalid.

55

APPENDIX C

HOW TO OBTAIN MORE USEABLE RAM

1. RELEASE UNNECESSARY DISK DRIVE BUFFERS

The DOS is able to control up to four disk drives. If you have
fewer than four drives, you can use some of the RAM that the DOS
sets aside for programming to control four drives.

By POKEing certain RAM locations, you can simplify the DOS so that
it is not carrying the excess capability for controlling mare disk
drives than are in your system.

Here's the RAM-saving technique, step by step:

- First "boot up" using
cartridge in its slot.
unformatted diskette.

your Master Diskette with the BASIC
Now remove the diskette and insert a new

- Select DOS item B (RUN CARTRIDGE) to gfit into BASIC, then POKE
memory location 1802 with the value shown in the table below.
(Use Direct Mode).

REGUIRED POKES

NUMBER OF
DRIVES

1
2
3

POKE THIS VALUE
INTO 1802

1
3
7

PRINT
FRE(O)

21006*
20867*
20739*

BYTES SAVED
(OVER 4-DRIVE

CONFIGURATION)

397
258
130

*Assumes 16K system.

- Now do a PRINT PEEK(1802) and check that the value returned is
the same number that you POKEd into that location. If it isn't,
repeat the POKE step and check again.

- Go to DOS and use Menu item I (FORMAT DISK) to put the
formatting onto your blank diskette. Now use item H (WRITE NEW
DOS) to place the DOS. BYS file (with the new value of location
1802), on your new diskette.

- With the DOS file now on the new diskette, power down the
computer to clear the RAM. Power up (boot up) again with the new
diskette installed.

- Now go to BASIC again and do a PRINT PEEK(1802),FRE<O) in direct
mode. Location 1802 should show the new number you POKEd into
it, and the free RAM should reflect a significant memory saving.

57

2. CHANGE THE NUMBER OF BUFFERS USED TO REFLECT THE MAXIMUM NUMBER OF
FILES THAT NEED TO BE OPEN.

This procedure is exactly the same as the previous example except
that you now POKE memory location 1801 with the number of files
~QU wish to allow to be open simultaneously. This could be as
small as 1 if you are ~ertain that you will not be executing a
program that needs to open more than 1 file. The value of this
parameter in the DOS as supplied by ATARI is 3, which means that 3
files can be open simultaneously.

3. ELIMINATE DOS AND FMS WHEN THEY ARE NO LONGER NEEDED.

When you power up in the proper sequence (disk drive then console),
the DOS and FMS are loaded from the diskette into RAM. When you later
run a BASIC program, you do not need parts of the DOS that have to do
with dsiplaying the menu and responding to your selections. You can
release the RAM reserved for these functions with the following BASIC
program. You can still use all the DOS functions that are controllable
with BASIC keywords. You release 5384 bytes of RAM.

10 PO~E 10,35
20 PO~E 11,242
30 POKE 12, 136
40 POKE 13,7
50 POKE 1804,48
60 POKE 1805, 18
70 TRAP 90
80 X=USR(1928)
90 X=VSR(40968)

100 PRINT FRE(O) :REM LINE 100 FOR TESTING

Future versions of DOS and FMS will accomplish this operation
automatically.

58

APPENDIX 0

ATARI 400 and ATARI 800 MEMORY MAP (PARTIAL)

ADDRESS
DECIMAL HEXADECIMAL

CONTENTS

65535 FFFF
EOOO

OPERATING SYSTEM ROM

---------------------_._------------------_._-----------------------
10879

9856

2A7F

2680

DISK OPERATING SYSTEM (2A7F-700)
DISK I/O BUFFERS (current DOS)

---------------_.__._---
9885
4864

267F
1300

DISK OPERATING SYSTEM RAM
(current DOS)

----------------------------------"--------------------------------
4863
1792

12FF
700

FILE MANAGEMENT SYSTEM RAM
(current DOS)

------,---------_._--~------------------~------------- --------------

1791
1536

1151
1021

6FF
600

47F
3FD

FREE RAM

OPERATING SYSTEM RAM (47F-200)
CASSETTE BUFFER

________________ M __ '_ •

999
960

3E7
3CO

PRINTER BUFFER

--------------- -_.- ------ -----....--------- ._----- - ---------------------_ -

511
256

iFF
100

HARDWARE STACK

----------- -----------~

255

212

FF

D4

PAGE ZERO
FLOATING POINT <used by BASIC)

------------_._--
211
210

209
208

207
203

202
176

128

D3
D2

D1
DO

CF
CB

CA
BO

80

BASIC or CARTRIDGE PROGRAM

FREE BASIC RAM

FREE BASIC and ASSEMBLER RAM

FREE ASSEMBLER RAM
------------------- BASIC

ZERO PAGE
ASSEMBLER ZERO PAGE

59

APPENDIX E

TABLE FOR HEXADECIMAL TO DECIMAL CONVERSION
(up to 4 Hex DigitsJ

FOUR HEX DIGITS

HEX

4

DEC HEX

3

DEC HEX

2

DEC HEX

1

DEC

0 0 0 0 0 0 0 0
1 4096 1 256 1 16 1 1
" 8192 2 512 2 32 ~ 2~ c:
3 12288 3 768 3 48 3 3
4 16384 4 1024 4 64 4 4
5 20480 5 1280 5 80 5 5
6 24576 6 1536 6 96 6 6
7 28672 7 1792 7 112 7 7
8 32768 8 2048 8 128 8 8
9 36864 9 2304 9 144 9 9
A 40960 A 2360 A 160 A 10
13 45056 B 2816 B 176 13 11
C 49152 C 3072 C 192 C 12
D 53248 D 3328 D 206 D 13
E 57344 E 3584 E 224 E 14
F 61440 F 3840 F 240 F 15

---------_._------------------------------------_._---

For example, to convert the he~ number 1234 to de,=imaL add the
entries from each of the 4 columns in the table. For L use the
column number 4, and so on.

1234 hex. ==

Other examples:

EEDD hex. ==

AB hex. ==

4096
+ 512
+ 48
+ 4

4660 dec.

57344
+ 3584
+ 208
+ 13

61149 dec.

160
+ 11

171 dec.

61

APPENDIX F

AUTO.SYS USAGE

You can use AUTO.SYS in limited ways to perform a task that you always
want done each time you power-up the system. The following example
illustrates one use of the AUTO. SYS file to control the margins of
l.,jour display area. Normally, the margins are set at 2 and 38,
respectively. If you want them to be 0 and 39 respectively, you must
PO~E the new values into decimal locations 82 and 83.

EXAt-1PLE:

POKE 82,0 [RETURN]
READY
PO~E 83,39 [RETURN]
READY
DOS

Sets the left margin to 0
Note margin changes immediately.
Sets the right margin to 39

Note that this example uses the intermediate mode to enter data into
memory. The neKt step is to create the AUTO. SYS file which will
automatically reload the data each time the computer is turned on.
To create a load format file, you now use the DOS Menu selection,
Binary Save, to save the contents of memory locations 82 and 83 in a
file called AUTO. SYS. The BASIC command SAVE cannot be used to save
any data which has been stored in this fashion. If you followed the
above example, the DOS Menu should be displayed on the screen. (Fiqure
5-1 shows an illustration of the DOS Menu.) Under the SELECT ITEM ­
prompt message, type'" [RETURN). The screen will display a prompt
message SAVE--GIVE FILEr START, END. Type AUTO. SYS, 52, 53 [RETURN]. The
52 and 53 are the hexadecimal equivalents of the decimal locations 82
and 83. When the SELECT ITEM prompt message appears again, it
indicates the AUTO. SVS file has been saved in load file format on the
diskette. Now, whenever the DOS is loaded from this diskette, AUTO.SYS
will be automatically read into RAM and the margins will be 0 and 39.

If you press the [SYSTEM RESET] key, the margins will default to their
original default values of 2 and 38. [SYSTEM RESET) re-initializes
the Operating System, but does not re-boot the DOS.

GLOSSARY OF TERMS

Access: The method
read from,

(or order) in which information is
or written to diskette

Address:

Alphanumeric:

Array:

ATASC I I:

AUTO. SYS:

B a c k up DOS Dis k :

Baud Rate:

Bi.nary Load:

Binary Save:

3i t:

Boot:

A location in memory, usually specified by a
tWG-byte number in hexadecimal or decimal format,

The capital letters A-Z and the numbers 0-9,
and/or combinations of letters and numbers.
Specifically e~cludes graphics symbols, punc­
tuation marks, and other special characters.

A one dimensional set of elements that can be
referenced one at a time or as a complete list
by using the array variable name and one sub­
script, Thus the array 8, element number 10
would be referred to as B(10), Note that string
arrays are not supported by BASIC, and that all
arrays must be DIMensioned. A matrix is a two
dimensional array.

The method of coding used to store text data.
In ATASCII (which is a modified version of
ASCII, the American Standard Code for informa­
tion Interchange), each character and graphics
symbol, as well as most of the control keys,
has a number assigned to represent it. The
number is a one-byte code (decimal 0-2551.

Filename reserved by Disk Operating System.

An exact copy of original master DOS/FMS
diskette. Always keep backups of your DOS/FMS
master diskette and of all important data
diskettes.

Signalling speed or speed of information inter­
change in bits per second.

Loading a binary machine-language object file
into the computer memory.

Saving a binary machine-language object file
onto a disk drive or program recorder.

Abbreviation of "binary digit"- The smallest
unit of information, represented by the value
o or 1.

This 1S the initialization program that "sets
u p II the com p .) tel' when i tis P0 'Jl ere d 'J P . At
conclusion of the Boot (or after "booting up"),

65

Brea k:

BUffer:

Byte:

C 10:

CLOSE:

Data:

Debug:

the computer is capable of loading and executing
higher level programs.

To interrupt execution of a program. Pressing
the BREAK key causes a break in execution.

A temporary storage area in RAM used to hold
data for further processing, input/output
operations. etc.

Eight bits.

Central Input/Output Subsystem. The part of
the OS that handles input/output.

To terminate access to a disk file Before
further access to the file, it must be opened
agaIn. See OPEN.

Information of any kind.

To isolate and eliminate errors from a program.

Dec iroa 1: A number base system using the
9. Decimal numbers are stored
decimal format in the computer.
HexadecimaL and Octal.

digits 0 through
in binary coded

See Bit,

Default:

Delimiter:

Destination:

Directory:

Diskette:

DOS:

66

A condition or value that exists or is caused
to exist by the computer until it is told to
do something else. For example, the computer
defaults to GRAPHICS 0 until another ~raphics

mode is entered.

A character that marks the start or finish of
a data item but is not part of the data. For
example, the quotation marks {"} are used by
most BASIC systems to delimit strings.

The device or address that receives data during
an exchange of information (and especially an
I/O exchange). See Source.

A listing of the files contained on a diskette.

A small disk. A record/playback medium like
tape, but made in the space of a flat disk and
placed in an envelope for protection. The
access time for a diskette is much faster than
for tape.

Disk Operating System abbreviation. The soft­
ware or programs which facilitates use of a
disk drive system.

DOS. SYS:

Drive Specification
or Dr i ve s pee:

Drive t\lumber:

End of File:

Entry Point:

Fi 1 e:

Filename:

Filename Extender
or Extension:

Filespec:

Filename reserved by Disk Operating System.

Part of the filespec that tells the computer
which disk drive to access. If this is omitted
the computer will assume Drive #1.

An integer from 1 to 4 that specifies the drive
to be used.

A marker that tells the computer that the end
of a certain file on di~k has been reached.

The address where execution of a machine­
language program or routine is to begin. Also
called the transfer address.

An organized collection of related data. A file
is the largest grouping of information that can
be addressed with a single name. For example,
a BASIC program is stored on diskette as a
particular file, and may be addressed by the
statements SAVE or LOAD (among others!.

The alphanumeric characters used to identify a
file. A total of 8 numbers and/or letters may
be used, the first of which must be a letter.

From 0 to 3 additional characters used follOWing
a period (required if the extender is used) after
the filename. For example, in the filename
PHONLIST. BAS. the letter3 "BAS" comprises the
extender.

Abbreviation for file specificatiDn. A sequence
6f characters which specifies a particular device
and filename. Do not create two files with
exactly the same file"5pec. If 'JOU do. and they
are both stored on the same diskette, you will
not be able to acces<.;i the 3l?cond file. And, as
they both have the same filespec, the DOS func­
tions of Delete File, Rename File, and Copy File
will act on both files.

Format: To organize a new or magnetically
diskette onto tracks and sectors.
matted, each diskette contains 40
tracks, with 18 sectors per trac~.

can store up to 128 bytes of data.

(bulk> e,ased
When for­

circular
Each sector

Hexadecimal or Hex:

IOCB:

Number base system using 16 alphanumeric
characters: 0,1,2,3,4, 5,6,7,8,9,A,B,C,D,E,and F

Input/Output Control Block. An arithmetic
expression that evaluates to a number

67

INPUT:

Least
Significant Byte:

V..ilobyte or 11..:

Machine Language:

Most Significant
Byte:

Null String:

Object Code:

Dc ta 1 :

OPEN:

Parameter:

Peripheral:

Record:

Sector:

Source:

68

between 1 and 7. The IOCB 15 used to refer
to a device Dr file.

To transfer data from outside the computer (say.
from a diskette filei into RAM. OUTPUT is the
opposite, and the two words are often used to­
gether to describe data transfer operations:
InputlOutput or Just "liD". Note that the re­
ference paint is always the computer. OUTPUT
always means away from the computer, while
INPUT means into the computer.

The byte in the rightmost position in a number
or a ward.

1024 bytes of memory. Thus a 16K RAM capacity
actually gives us 16*1024 or 16,384 bytes.

The instruction set for the particular micro­
processor chip used, which in ATARI'S case is
the 6502.

The byte in the leftmost position in a number
or a word.

A string consisting of no character whatever.
For e:;:ample, A$="" stores the null string
as A$.

Machine language derived from "source code",
typically from Assembly Language.

The octal numbering system uses the digits
o through 7. Address and byte values are some­
times given in octal form.

To prepare a file for access by specifying
whether an input or output operation will be
conducted. and specifying the filespec.

Variables in a command or function.

An IIO device.

A block of data.

The smallest block of data that can be written
to a disk file ar read from one. Sectors can
store up to 128 bytes. Also called a "physical
record".

The device or address that contains the data to
be sent to a Destination. See Destination.

for magnetic storage
sectors, each with

There are a total

Source Code:

String:

Tokenizing:

Track:

Variable:

Write-Protect:

A series of instructions, written in language
other than machine language, which re~uires

translation in order to be executed.

A se~uence of letters, characters, stored 1n a
string variable. The string variables name must
end with a $.

The process of interpreting textual BASIC source
code and converting it to the internal format
used by the BASIC interpreter.

A circle on a diskette used
of data. Each track has 18
128 byte storage capability.
of 40 tracks on each diskette.

A variable may be thought of as a box in which
a value may be stored. Such values are typically
numbers and strings.

A method of preventing the disk drive from
writing on a diskette. ATARI diskettes are
write-protected by covering a notch on the
diskette cover with a small sticker.

69

INDEX

A

adata,13
aexp,13
aop,13
avar, 14
Append,37,43,45
AUTO.SYS,63
Automatic RUN,37

B

BASIC
I/O commands,41-42
reserved words,5!

Bad sectors,35
Binary autorun,37
Binary Load,38
Binary Save,34
Booting D05,9
Boot Errors.21
Bootstrap,23
Brackets, 13

c

Central Input/Output System,43
Chaining programs,41
CIa (see Central Input/Output System)
CLOSE, 44
cmdno.13,48
Codes, device,9
Copy File,29

D

Da t a f i 1 e 5, 10, 30
Dec imaL 36,59,61
Dedicated IOCB,42

71

Default,28
Define Device,39
Delete File(s),31
Destination,35
Devices, 1/0,9-10
Device 10,9-10
Disk Directory,27
Disk Drive

description,15
numbering,16

Disk Operating System,23
Disk Utility Package,23
Diskette

capacity,19
description,17
duplicate/3,35
-tormat,34
insertion,20
organization, 19-20
storage,21
write-protect, 18,32

DOS (see Disk Operating System)
DOS Menu,27
DOS. SYS, 23
Duplicate Disk,35
Duplicate File,39

E

Eliminate DOS, 55
ellipsis,13
ENTER,4-2
Error messages, 53
exp,13
extenders,11

F

File Management Subsystem,23
Filename,11
filespec (see File Specification)
File Specification, 10
format, 19
Format Disk,34

72

G

GET,46
Glossary,65

H

Hexadecimal,36,59,61

I

Initialization,9
Input/Output

commands,41
devices,9

INPUT,44
Input/Output Control Block, 14,42-43
i oc b, 14, 43

L

lexp,13
lineno,14
LIST,42
LOAD, 41
Lock File,32
lop, 13

M

Master Diskette
care,21
duplicate,3
write-protect, 18

Memory Map/59
Menu,DOS,27
More usable RAM,57
mvar, 14

73

N

Non-usable sectors, 19

o

OPEN
command format,43

Operating System,23
Operation w/o cartridge,24
Options, 12

P

Parameters, 24
POKE, 37, 57
PRINT, 45
Program area,35,39
PUT, 45

Q

Quo tat ion rna r k s, 10, 13

R

RAM, 57
RAM-resident program,35
Random Access Memory (see RAM)
Rename File,32
Reserved words, 51
Run at Address,38
Run Cartridge,29

74

