ATARI ®

PERSONAL COMPUTER SYSTEM
OPERATING SYSTEM
User's Manual

: Reproduction is forbidden without the specific written :
: permission of ATARI, INC., Sunnyvale, CA 94086. No right :
:+ to reproduce this document, nor the subject matter thereof, :
: 1is granted unless by written agreement with, or written 3
: permission from the Corporation. :

:

CO016555

ATARI®

PERSONAL COMPUTER SYSTEM
OPERATING SYSTEM
User's Manual

. T T T e e T T - - - .
- - - -

Reproduction is forbidden without the specific written :
: permission of ATARI, INC., Sunnyvale, CA 94086. No right :
t to reproduce this document, nor the subject matter thereof, :
is granted unless by written agreement with, or written :
permission from the Corporation.

C016555

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, COl6555

COPYRIGHT 1980 ATARI, INC.

Every effort has been made to ensure that this manual is an accurate
document. However, due to the ongoing improvement and update of the
computer software and hardware, ATARI, INC. cannot guarantee the
accuracy of printed material after the date of publication, nor can
ATARI, INC. accept responsibility for errors or omissions.

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
~ OPERATING SYSTEM, CO014555

ATARI Personal Computer System

OPERATING SYSTEM USER ‘S MANUAL
TABLE OF CONTENTS

1. Introducton

Purpose of manual "(9>
General description of ATARI Personal Computer Sgstem—(9-\\>
Notations used in this manual —(\Z—L+>

2. Operating System functional organization

1/0 subsystem -(\;3
Interrupt processing.(\s)
Initialization _ (\x)

Power up
RESET

Floating point arithmetic package - (\Q\

3. Configurations

Program environments

Blackboard mode
Cartridge

Disk boot
Cassette boot

RAM expansion
Peripheral devices

Game controllers
Cassette
Serial bus devices

4, System memory utilization

RAM region

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT.

OPERATING SYSTEM., CO14555

Page O

Page 1

0S5 database

User workspace

Boot region

Screen display list and data
Free memory region

Cartridges A and B

Mapped I/0

Resident 0OS and floating point package ROM
Central database description

Memory dynamics

System initialization process
Changing screen modes

2. I/0 subsystem

Overview
Central I/0 Utility (CIO)

CID design philosophy

CID calling mechanism

CI0O functions

Device/filename specification
I/0 example

Device specific information

Keyboard handler (K:)
Display handler (S:)
Screen Editor (E:)
Cassette handler (C:)}
Printer handler (P:)
Disk File Manager (D:)
RS-232-C

Non—-CIO I/0

Resident device handler vectors
Resident Disk handler

Educational System format cassettes
Serial bus I/0 (SID)

Device characteristics

Keyboard
Display
Cassette
Printer

APPROVAL

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO014555

Diskette

. RS-232-C

b. Interrupt processing

Overview
Chip reset
Non—maskable interrupts (NMI)}

Stage 1 VBLANK process
Stage 2 VBLANK process

Maskable interrupts (IRQ@)
Interrupt initialization
System timers

Usage notes

POKEY interrupt mask

Setting interrupt and timer vectors
Stack content at interrupt vector points
Miscellaneous considerations

Flowcharts

7. System initialization

Overview
Power—up initialization (coldstart)
RESET initialization (warmstart)

8. Floating point arithmetic package

Description
Functions/calling sequences
Resource vutilization
Implementation details

?. Adding new device handlers/peripherals

Device Table
CI0/Handler interface

REPRODUCTION PROHIBITED WITHDUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

Calling mechanism
Handler initialization
Functions supported
Error handling
Resource allocation

Handler/SI0 interface
Calling mechanism
Functions supported
Error handling
Serial I/0 bus characteristics and protocol
Hardware/electrical characteristics
Bus commands
Bus timing

Handler enviraonment

Bootable handler
Cartridge rtesident handler

Flowcharts

10. Program environment and initialization

Cartridge

Cartridge without disk booted support package
Cartridge with disk booted support package

Disk booted software

Disk boot file format

Disk boot process

Sample disk bootable program listing

Program and procedure to create disk boot files

Cassette booted scftware

Cassette koot file format

Cassette boot process

Sample cassette bootable program listing

Program and procedure to create cassette boot files

11, Advanced techniques and application notes

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO14555

Sound generation

Capabilities
Conflicts with OS

Screen graphics

Hardware capabilities

0S capabilities

Cursor control

Color control

Alternate character sets

Players/missiles

Hardware capabilities
Conflicts with 0S

Reading game controllers

Keyboard controller sensing
Front panel connectors as I/0 ports

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAIL
OPERATING SYSTEM, CO0l16555

Appendices

—— CI0O COMMAND BYTE wvalues

—— CI0D STATUS BYTE values

-— SI0 STATUS BYTE values

—— ATASCII codes

—-— Display codes (ATASCII)

—— Keyboard codes (ATASCII)

Printer codes (ATASCII)

—— Screen mode characteristics

—— Serial bus I.D. % command summary
—— ROM vectors

—-— 08 Database Yariable Functional Descriptions
-- Equate file

CE>xXC-=TIToTmmMmooo
|
|

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO0146555

1. Introduction

Purpose of manual

This manual provides a description of the Resident Operating System
for the ATARI Personal Computer System, for use by persons concerned
with the internal behavior of the systems. This manual discusses:

o] The functions provided by the sustem and how to use them

o The organization of the various subsystems

0 The characteristics of the ATARI peripheral devices which may
be attached

o Standard techniques for going beyond the basic 0S8
capabilities

o The general nature of the hardware involved

This manual assumes that the reader is already familiar with
programming concepts and jargon., assembly language programming in
general and with the Synertek 6502 in particular, and has some degree
of familiarity with digital hardware. The primary intent is to provide
an experienced programmer with sufficient information so that he or
she can effectively vutilize the rtesources provided by the 0S5 without
having to resort to OS listings er trial and error techniques. A
secondary goal is to provide supporting information for those
individuals who do have to work with the 0OS listings

This manual does not attempt to describe the hardware being used to
provide the 0F% capabilites in any comprehensive fashion. Therefore,
the person wanting to go beyond the capabilities described here are
advised to examine the ATARI Personal Computer System HARDWARE MANUAL.
This applies mostly to persons inveolved in the design of game
cartridges, where display requirements, system timing and/or memory
requirements preclude usage of the 05 for one or more functions.

General description of the ATARI Personal Computer System

The ATARI 400Mand ATARI 800 Personal Computer Systems are virtually
identical from the standpoint of the operating system. In fact, the 0OS
is identical in both models. The primary differences between the ATARI
400 and ATARI BOCO Personal Computer Systems arve:

Q Physical packaging

o] The ATARI 400 console has one cartridge slot, the ATARI BOO
console has two slots

o The ATARI 400 Personal Computer System can be expanded from 8k
to 16K RAM maximum, the ATARI 8B0C Personal Computer System can
be expanded to 48K RAM maximum

The hardware contains circuitry to: produce both character and point
graphics for B%W ot color televisicn:, produce four independent audio
channels (frequency controlled) which use the television sound system
provide one bi—-level auvdiec output in the base unit, interface to up to

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM. C01&555

4 joysticks, 8 paddle controllers/4 driving controllers, light pen,
interface to a serial I/0 bus for expansion, and has a built in ‘

keyboard. A simplified block diagram of the hardware is shown on the
next page.

See the ATARI Personal Computer System HARDWARE MANUAL (part number
CO016555) for supporting documentation.

10

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

ATARI Personal Computer System Block Diagram

e —————— +
i 6502 i
iprocessori
Fm———t————t o ———————— +
!] 0s i
e + ROM H e o e i +
i i DBOO~-FFFF i e +
! Fm———————— + Fm———————— + 1 i
H : RAM A
fomm e e + T+
H 10000—xxx x | —+
! Fm———————— + e +
i iCartridge!
i +slots AXB!
H {BC00-BFFF |
processor | R bl S +
external | b +
bus H s i + joysticks icontrol- |
H H PIA o b e S +ler ports!
Fm————————— + m———————— f——————— + !
baa swawawow iD300-D31F+———————- f———— + | Am——————— +
H IRQ o —————— + i HE
H ! Pl e —— +
i e + pots H o ikeyboard |
i i POKEY +———————-— + L idata keys!
e L B + HE e —— { o i—i——+ + BREAK !
e iD200-D21F+———————— f=———+ | | e——————— +
i IRG Wt @ 180 i i 1 on/off
! e =+ 1 e +
H +———=+————+ trigs | | | | +——+cassette |
! i CTIA Fto—————— + 00 tinterface!
Fm——————— + F———— + A== m——— !
H iDOOO-DO1IF+————={—={—+ | | Fm———————— +
H e i t 4t +=-———+ serial |
: ! video H . H 1/0 H
H DMA +————t—-———+ litpen | | +—————- + bus i
R ! ANTIC +———————— + | Fm——————— +
e ————— + H i i
Vo nossmam iD400-D41F | i | e +
NMI hEsssssaws + i i from | console |
: i CTIA —+ speaker |
composite +————+ H H H
audio/video | i e +
e —t———— ! o ——— +
! ' | i START, i
H TV i Promm s i + SELECT, |
H H i OPTION ¢
e —————— + e +

11

REPRODUCTION PROHIBITED WITHDUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CC14555

Notations wsed in this manuval

Several special notations are used throughout this manual in order to
concisely present certain types of information such as hexadecimal
numbers, memory addresses and data syntax. These notations are
explained in the paragraphs that follow.

MEMORY ADDREESES

All references to computer memory (and mapped I/0) locations will be
in hexadecimal notation; sometimes the addresses will be contained in
square brackets, such as ‘[D20F]‘, and zometimes not, such as ‘D20F’

HEXADEC IMAL NUMBERS

All two digit numbers preceded by a dollar sign (‘#%’) are to be read
as hexadecimal numbers. Where not so prefixed, or specified otherwise
by supporting text, a number that is not a memory address is expressed
in decimal.

KILOBYTES OF MEMORY

Memory sizes are frequently expressed in units of kilobytes, such as
32K, where a kilobyte is 1024 bytes of memory.

PASCAL AS AN ALGORITHM SPECIFICATION LANGUAGE

In the few places where an algorithm is specified in detail, the
Pascal language (procedure block only) is used as the specification
language. Pascal syntax is similar to that of any number of other

block structured languages, and the user should have no difficulty
following the code presented.

MEMORY LAYDUTS

Whenever pictures of bytes or tables are presented, figures similar to
the one shown below are used:

12

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO14555

76543210
+—t—F—t—t—t—t——+
i i ——— this is a single byte.

bt b — = —

+ ——— this is a word (2 bytes).

T

b — o —

= = ——— this is a block of memory
i i of unspecified length.
bk = h b — k= —

Where bit—7 is the most significant bit (msb) of the byte, and bit-0
is the least significant bit (lsb)

In table figures, memory addresses always increase toward the bottom
of the figure.

BACKUS-NAUR FORM (BNF)

A modified version of BNF is used to express some syntactic forms,
where the following meta-linguistic symbols are used:

D= is the substitution (assignment) operator.
L bracket a meftasyntactic variable

! separates alternative substitutions.

L 1 bracket an optional construct

anything else is a syntactic literal constant, which stands for
itself.

For example:

“device specificati
“device name> ::= C
< device numberl =

The above statements specify that something called a "device
specification” consists of a mandatory "device name" followed by an
optional "device number" followed by the character ‘: ‘. The "device
name", in turn, must be one and only one of the characters shown as
alternatives; while the "device number" (if it is present) must be a

digit 1 through 4.

0SS EQUATE FILE NAMES

Operating system ROM and RAM vector names. RAM database variable names
and hardware rvegister names are all referred to herein by the names

13

REPRODUCTION PROHIBITED WITHDUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C0O16555

assigned in the 0S program equate list; in most cases, when one of
these names is used, the memory address is provided also, such as .
‘BOOTAD L[02421".

14

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO16555

2. Operating System functional organization

This section describes the various subsystems of the resident
0S in general terms.

I1/0 subsystem

The I/0 subsystem provides a high—level interface between the programs
and the hardware. Most functions are device independent, such as the
reading and writing of character datai yet provisions have been made
for device dependent functions as well. All peripheral devices capable
of dealing with character data have individual symbolic names (such as
K,D,P, etc.) and may be accessed using a Central I/0 (CIO) routine.

Controllers such as joysticks, paddle contreollers and the light pen,
which do not deal with character data, are accessed via a RAM data
base which is periodically updated to show the states of these
devices.

Interrupt processing

All hardware interrupts are handled in a common and consistent manner
by the Interrupt subsystem. By default, all interrupts are fielded by
the 0S, but at the discretion of the user, individual interrupts (or

groups of interrupts) may be fielded by the application program.

Initialization

There are two levels of initialization provided by the system: power
up and [RESET]. Power up initialization is performed each time the
system power is turned on, and [RESET] initialization is performed
each time the [RESET] key is pressed.

Power up

Whenever system power is turned on, the 0S examines and notes the
configuration of the unit; the following items are among those things
performed at power up:

Determine the highest RAM address.

Clear all of RAM to zeroes

Establish all RAM interrupt vectors.

Format the Device Table.

Initialize the cartridge(s).

Setup the screen for 24 x 40 text mode.

Boot the cassette if directed.

Check cartridge slot(s) for disk boot instructions.
Boot the disk if directed to do so and a disk is attached
Transfer control to the cartridge, disk booted program,
cassette booted program:, or blackboard program.

00000000 O0O0

REFRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C0i&555

CRESET]

Whenever the [RESET] key is pressed, the 0S performs some. but not
all, of the functions performed at power up; the following items are
among those things performed as a result of pressing the [RESET] key:

Clear the OS portion of RAM.

Re—establish all RAM interrupt vectors.

Format the Device Table

Initialize the cartridge(s).

Setup the screen for 24 x 40 text mode.

Transfer control to the cartridge, disk booted program.
cassette booted program: or blackboard program.

0O 00000

Floating point arithmetic package

Contained within the 0S5 ROM is a floating point (FP) package which is
not used by the other parts of the 0S5 itself, but is available to
non-resident programs such as BASIC, Calculator, Pascal, etc. The
floating point numbers are stored as 10 BCD digits of mantissa plus a
1 byte exponent. The following routines are among those found in the
package:

ASCII to FP and FP to ASCII conversion.
Integer to FP and FP to integer conversion.
FP add, subtract, multiply and divide.

FP log, exp and polynomial evaluation.

FP number clear, load, store and move.

00000

1&6

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO16555

3. Configurations

The ATARI 400 and ATARI BCO Personal Computer Eystems support a wide
variety of configurations, each with a unique cperating environment:
cartridge(s) may or may not be inserted, memory may be cptionally
added to the ATARI B0O computer console in €K or 16K increments: and
many different peripheral devices may be attached to the serial 1/0
bus. The DS accounts for sll of these variables without requiring a
change in the resident 0S itself As explained in Section 2. the
machine configuration is checked when power is first turned on and
then is not checked again. A general discussion of some of the valid
configurations follows

Program environments

The 0S allows one of four program types to be in control at any point
in time: the 0S blackboard (ATARI Memo Pad) program. a cartridge
resident program, a disk booted program or a cassette booted program.
Which one of these is in control is based upon information in the
cartridge(s), whether or not a disk is attached and operator keyboard
inputsi the exact algorithms are discussed in detail in section 7.

Blackboard mode

When in blackboard mode, the screen is established as a3 24 x 40
text screen. Anything entered from the keyboard goes to the

screen without being examined;, although all of the screen

editing functions are supported. Blackboard mode is the lowest
priority environment; one only goes there if there is no other
reasonable environment for the 0S to enter or if the operator
requests a higher priority environment to enter the blackboard

mode (for example, BYE in BASIC). If it was entered from & higher
priority environment, the blackboard mode may be exited by pressing
the [RESET] key

Cartridge

When a cartridge is inserted, it normally provides the main contrtol
after initialization is complete; for example: BASIC,

Super Breakouﬂ@l BASKETBALL, COMPUTER CHESS, etc. all interface
directly with the vuser in some way. Althowugh it is possible for a
cartridge to provide a supporting function for some other program
environment, this has not yet been done. In some cartridges,
particularly keyboard oriented ones, it possible to change
environments by entering special commands such as "BYE" to go to
blackboard mode or "DOS" to enter the Disk Utility. In manu other
cartridges, particulary games, it is not possible to change
environments. Note that because of a hardware interlock it is
impossible to remove or insert a cartridge with the power on; this
means (among other things! that every cartridge change will completely
reinitialize the entire system.

REPRODUCTION FROHIBITED WITHDUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C01&555

Bisk boot

When the system powers up with a disk attached with disk bootable
software, the disk may or may not be booted, depending upon conditions

explained in section 7. The rest of this paragraph assumes that a disk
boot did occur.

The disk booted software may take control as the Disk Utility does
under certain conditions, or may provide a supporting function as the
File Management System dees: this envirenment is so flexible that it
is difficult to generalize on its capabilities and restrictions. The
enly machine requirement (other than the disk drive) is that
sufficient RAM be installed to support the program being booted

Cassette boot

Everything that was said asbout the disk boot environment is also true
about the cassatte boot environment, although the cassette is limited
as an I/0 device due to its slowness, sequential access and single
file at a time nature. Those limitations probably limit cassette
booted software to "cartridge type" programs, 100 percent RAM resident
and not involving rtandom access nor much I/0 involving permanent
storage. Note that the cassette boot facility has no relation to the
use of cassettes to store high level language programs (e.g. programs
written in RASIC) nor to the use of cassettes to store data.

RAM expansion

though RAM may be =2xpanded non—-contiguously by the wuser in the ATARI
Personal Computer Syztem, the 08 will only recognize RAM that is
iguous starting from location O. Directions for installing the RAM
modules are provided with the purchas=d modules. RAM may be added
until it totals 4BK; after 32K, additional RAM overlays first the
Tight cartridge addresses (22K to 40K) and then the left cartridge
addresses (40K to 4BK). Note that in cases of conflict, the inserted
cartridge has higher pricrity and disables the conflicting RAM in 8K
increments. See secticn 4 for a detailed discussion of system memory.

A3 5 Tesult of power up the 0% will generate two pointers that define
the lowest available RAM location and the highest available RAM

location. The 05 and disk/cassette booted software will determine the
iocation of the lowest available RAM, while the number of RAM modules
and the current screen mede will determine the highest available RAM.

Feripheral devices

Peripheral desvices of several types may be added to the system using
standard canles to either the serial bus or the connectors at the
front of the computer consele. The most rcommon types deal with either

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO146555

transmission of bytes of data (usually serial bus) or transmission of
sense information (usually game controllers).

Game controllers

The standard game controllers (pots, joysticks, driving contrellers,
light pen, etc.) are sensed periodically (50 or &0 times per second)
by the 0S and the values read are stored in RAM. These controllers may
be plugged in, pulled out, and rearranged at will by the user without
affecting system operation; the system will always try to read all of
these controllers. Other controllers:, such as the keyboard controller,
are not read by the 0OS and special instructions as described in
section 11 are required to read them.

Cassette

The cassette is a special peripheral in that it uses the serial bus to
send and receive data, but does not conform to the protocol of the
other peripherals that use the serial bus. The cassette must also be
the last device on the serial bus because it does not have a serial
bus extender connector as the other peripherals do. The lack of a bus
extender assures that there is never more than one cassette drive
connected to any system. The system cannot sense the absence or
presence of the cassette drive, so it may be connected and
disconnected at will.

Serial bus devices

By serial bus devices we mean those that conform to the serial 1/0 bus
protocol as defined in section ?i this does not include the cassette
drive. Each serial bus device has two identical connectors: one a
serial bus input, the other a serial bus extender. Either connector
may be used for either purpose, and peripherals may be "daisy chained"
simply be cabling them together in a sequential fashion. There are
uysvally no restrictions on the cabling order, as each device has a
unique identifier, where there are restrictions, they will be
mentioned in section 5

19

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CQO14555

4. System memory utilization

Memory in the system is decoded in the full 44K range of the 6502
microcomputer and there are no provisions for additional mapping to
extend memory. Memory is divided into four basic regions (with some
overlap possible): RAM, cartridge area, I/0 region and the resident 0S
ROM. The regions and their address boundaries are listed below (all
addresses are in hexadecimal):

0000—-1FFF = RAM (minimum required for operation)

2000-7FFF = RAM expansion area

B8000—-9FFF = Cartridge B, Cartridge B (half of 16K size) or RAM
AOQO-BFFF = Cartridge A or RAM

COO0O-CFFF = unused

DOCO-D7FF = Hardware I/0 decodes

DB8OO-DFFF = Floating point package (0S)

EQOO=FFFF = Resident Operating System ROM

This section will break these regions into even smaller functional
divisions and provide detailed explanations of their usage.

RAM region
The RAM region is shared between the 0S5 and the program in control
and can be further subdivided into the following sub— rtegions for

discussion purposes:

Page O = &502 page zero address mode region.
Page 1 = 6502 stack rTegion

Pages 2-4 = 0S database % user workspace.

Pages 5-6 = User program workspace.

Pages 7—-XX = Bootable software area/free RAM:.

Pages XX—top of RAM = screen display list and data*.

Note that XX is a function of the screen graphics mode and the
amount of RAM installed.

The paragraphs that follow indicate the 0S usage and recommended user
program usage of these RAM sub-regions.

Page O

Because of the architecture of the 4502 microcomputer instruction set
and addressing modes, page O has special significance; references to
addresses in that page (0000 to OOFF) are faster, require fewer
instruction bytes and provide the only mechanism for hardware indirect
addressing. Therefore page O is a resource that has to be utilized
sparingly so that all possible users may have portion of it. The 0OS
permanently takes the lower half of page O (0000 to O07F) and this
portion may never be used by any outer environment unless the OS is
completely disabled and all interrupts to the 0OS are eliminated.

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO0146555

The upper half of page O (00BO to QOOFF) is available to outer
envirnments with the following vestriction: the floating point
package, if used, requires 0O0D4 through OOFF.

Page 1

Page 1 is the 4502 hardware stack region; JSR instructions, PHA
instructions and interrupts all cause data bytes to be written to page
1 and conversely RTS, PLA, and RTI instructions all cause data bytes
to be read from page 1. The 2546 byte stack is adequate for normal
subroutine calls plus interrupt process nesting, so no restrictions
have been made on page 1 usage. It is obvious that a stack of this
size is totally inadequate for deeply recursive processes or far
nested processes with large local environments to be saved. So, for
sophisticated applications, software maintained stacks must be
implemented.

The 6502 stack pointer is initialized at power up or [RESETJ] to point
to location O1lFF, the stack then pushes downward toward 0100. The
stack will wrap around from 0100 to O1FF if a stack overflow
condition occurs, due to the nature of the 6502’s B-bit stack pointer
register.

0S database

Locations 0200 through O47F are allocated by the 0S5 for working
variables, tables and data buffers. Portions of this region may be
used only after it is determined that nonconflict with the 0S8 is
guaranteed. For example, the printer and cassette buffers could be
used if I/0 operations to these devices are impossible within the
controlling environment. The amount of work involved in determining
nonconflict seems to be completely out of line with the benefits to be
gained (except for a few trivial cases) and it is recommended that
pages 2 through\not be used except by the 0OS.

{ £\)
~ y

User workspace = o

Locations 0480 through OAFF are dedicated for outer environment use
except when the floating point package is used, in which case it uses
iocations O0S7E through OSFF.

Boot region

Page 7 is the start of the "boot region". When software is booted from
either the disk or the cassette, it may start at the lowest free
memory address (which is 0700) and proceed uvpward (although it may
also start at any address above 0700 and below the screen display
list). The top of this region defines the start of the "free memory"
region. When the boot process is complete, a pointer in the data base
contains the address of the next available location above the software

21

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C0O146555

jJust booted. When no software has been booted, this pointer contains
the value 0700.

Screen display list and data

When the 05 is handling the screen display, the display list which
defines the screen characteristics and the current data which is
contained on the screen are placed at the high address end of RAM. The
bottom of this region defines the end of the "free memory" region and
its location is a function of the screen mode currently in effect. A
pointer in the data base contains the address of the last available
location below the screen region.

Free memory Tegion

The free memory region is all that RAM between the end of the boot
region and the start of the screen region. The outer level application
is responsible for managing the free memory region. See section 4 for
more details.

Cartridges A and B

There are two 8K regions reserved for plug—in cartridges. Cartridge B,
which is the right hand cartridge slot found only in the ATARI 800
Personal Computer System:, has been allocated memory addresses 8000
through 9FFF; while cartridge A, which is the left—hand cartridge slot
in the ATARI 800 computer console, and is the only slot in the ATARI
400 computer console, has been allocated memory addresses AOOC through
BFFF and optionally 8000 through BFFF, for 14K cartridges. If a RAM
module is plugged into the last slot such as to overlay any of these
addresses, the RAM takes precedence as long as a cartridge is not
inserted. However, if a cartridge is inserted, it will disable the
entire conflicting RAM module in the last slot in 8K increments

Mapped I/0

The 4502 performs input/output operations by addressing the external
support chips as memory; some chip registers are read/write while
others are read only or write enly (the ATARI Personal Computer System
HARDWARE MANUAL gives descriptions of all of the external registers)
While the entire address space from DOCC to D7FF has been allocated
for I/0 decoding. only the following sub—-Tegions are used:

DOOO-DO1F = CTIA
D200-D21F = POKEY
D300-D31F = PIA

D400-D41F = ANTIC

22.

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO16555

Resident 0S and floating point package ROM

The region from DBOO through FFFF always contains the 0OS and the
floating point package. To allow for the possibility that another, but
functionally compatible, 0S5 may be generated in the future, care
should be taken to avoid using any entry points that are not
guaranteed not to move. The 0S contains many vectored entry points at
the end of the ROM and in RAM which will not move. The floating point
package is not vectored, but all documented entry points will be fixed
(this means do not use undocumented routines found by scanning the
listing'!). A list of the fixed ROM vectors and entry points may be
found in Appendix J.

Central data base description

Discussion of organization of this section.

There are a large number of variables in the 0O data base, most of
which have some relevance to the user, either for control or debug
purposes. This section provides detailed information for those
variables which can be altered by the user in meaningful ways and to
provide at least a narrative description of the remaining variables.
One major problem when dealing with this many variables, is how to
present the information so that it is accessible to the user in the
different contexts in which the user may work. This manual attempts to
solve that problem by providing a multiple access scheme, in which
several lookup tables are provided, all of which reference a common
set of narratives that is itself ordered by function.

In order to provide a means of referencing the variable descriptions,
the variable descriptions are each provided with a label consisting of
a single letter followed by a number (e.g. A4, B13, etc.). A different
letter is assigned for each major functional area being described, and
the numbers are assigned sequentially within each functional area.
This label just described will be referred to as a VID (variable
identifier) throughout the remainder of this document. Those var
iables which are not concidered to be of interest to any user are
flagged with an asterisk (’#’) after their names

The database lookup tables provided are:

1. Functional grouping —— index to the function narrative and
descriptions of variables, giving VID and variable name.

For more information, see Appendix K.

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
DPERATING SYSTEM, CO1&555

FUNCTIONAL INDEX TO DATABASE VARIABLE DESCRIPTIONS

A. Memory configuration
A1 MEMLO
A2 MEMTOP
A3 APPMHI
A4 RAMTOP#
AS RAMSIZ

E. Text/graphics screen

Cursor control
Bl CRSINH
B2 ROWCRS, COLCRS
B3 OLDROW, OLLDCOL
B4 TXTROW, TXTCOL

Screen margins
BS LMARGN
B6 RMARGN

Color control
B7 PCOLRO — PCOLR3
B8 COLDRO - COLOR4

Text scrolling
B? SCRFLG*

Attract mode
B10 ATRACT
Bil COLRSH=#*
B12 DRKMSKi#

Tabbing
B13 TABMAP

Logical text lines
B14 LOGMAP*
B15 LOGCOL=*

E€plit screen
Bl14 BOTSCR#

FILL/DRAW function

B17 FILDAT

B18 FILFLG*

2192 NEWROWH*, NEWCOL#
B20 HOLD4#

B21 ROWINC#, COLINCH*
BZ22 DELTAR%*, DELTACH*
B23 COUNTR=#

B24
B25

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL

ROWAC3*, COLAC*
ENDPT#*

OPERATING SYSTEM,

Displaying control characters

Escape (display following control char)
B24 ESCFLG#*

Display control characters mode
B27 DSPFLG

Bit mapped graphics

B28
B29

DMASK#
SHFAMT 3

Internal working variables

B30
B31
B32
B33
B34
B35
B34
B37
B38
B39
B40
B41
B42
B43
B44
B45
B4&
B47
B48
B49
BSO
B51
BS2
BS3

HOLD1#*
HOLDZ#
HOL.D3#
TMPCHR#
DSTAT#*
DINDEX3*
SAVMSC
OLDCHR#
OLDADR %
ADRESS#

MLTTMP /OPNTMP / TOADR #

SAVADR/FRMADR #
BUFCNT#

BUFSTR#

SWPFLG#

INSDAT#
TMPROW#*, TMPCOL
TMPLBT

SUBTMP #

TINDEXs

BITMSKs

L INBUF #

TXTMSC

TXTOLD#

Internal character code

BS54
B55

ATACHR
CHAR#

Disk handler
C1 BUFADR#*
C2 DSKTIM*

conversion

C016555

REPRODUCTION PROHIBITED WITHDUT PUBLICATIONS DEPT.

OPERATING SYSTEM, CGO14555
D. Cassette (part in SIO part in handler)

Baud rate determination
D1 CBAUDL%, CBAUDH%*
D2 TIMFLG*
D2 TIMER1#, TIMERZ2%*
D4 ADDCOR#*
DS TEMP1#
D& TEMP3#
D7 SAVIO=*

Cassette mode
DB CASFLG#

Cassette buffer
D? CASBUF:#
D10 BLIM*

Dil BPTR#

Internal working variables
D12 FEOF#
D13 FTYPE%
D14 WMODE#
D15 FREQ=#*

E. Keyboard

Key teading and debouncing
E1 CH1=
E2 KEYDEL=#
E2 CH

Epecial functions

Start/stop
E4 SSFLAG

CBREAK]
ES BRKKEY
SHIFT/CONTROL lock
B4 SHFLOK
E7 HDLDCH*

Auto-Tepeat
E8 SRTIMR#*

Inverse wvideon
E9 INVFLG

Console switches {(SELECT. START % OPTION)

APPROVAL

Printer

Printer

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL

buffer

F1 PRNBUF*
F2 PBUFSZ*
F3 PBPNT#*

Interna

1 working variables

F4 PTEMP*

FS PT

Central

User ca

IMOT*

I/0 routine (CIO)

11 parameters

G1 IOCB

G2
G3
G4
G
Gé6
G7
G8
G?
G10

ICHID
ICDNOD
ICCOM
ICSTA
ICBAL. ICBAH
ICPTL, ICPTH
ICBLL, ICBLH
ICAX1, ICAX2
ICSPR

Device status

G11

DVSTAT

Device Table

G12

HATABS

OPERATING SYSTEM,

CIO/handler interface parameters

G13 Z
G14
G1iS
Glé
G17
G18
G19
G20
G21
G222

Interna

I0OCB (IOCBAS)

ICHIDZ

ICDNOZ

I1CCoMZ

ICSTAZ

ICBALZ, ICBALH

ICPTLZ, ICPTHZ

ICBLLZ, ICBLHZ

ICAX1Z, ICAX2Z

ICSPRZ (ICIDNO, CIOCHR)

1 working variables

G23 ICCOMT
G24 ICIDNO#*

G25 C

IOCHR#

C014555

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C014555

H. Serial I/0 routine (SID)

User call parameters

H1 DCB control block
H2 DDEVIC
H3 DUNIT
H4 DCOMND
HS DSTATS
H&6 DBUFLO, DBUFHI
H7 DTIMLO
HEB DEYTLO, DBYTHI
H? DAUX1, DAUX2

Bus sound control
H10 SOUNDR

Serial bus control

Retry logic
H11 CRETRY#*
Hi2 DRETRY#

Checksum
H13 CHKSUMs
H14 CHKSNT#
H15 NOCKSM#

Data buffering
General buffer control

Hié BUFRLO#*, BUFRHI*
H17 BFENLO3#*, BFENHI#*

Command frame output buffer
H18 CDEVIC#*
H1?2 CCOMND=*
H20 CAUX1%, CAUX23#

Receive/transmit data buffering
H21 BUFRFL#*
H22 RECVDN#
H22 TEMP*
H24 XMTDON#*

SI0 timeovut
HZS TIMFLG#*
HZ24 CDTMV1#
H27 CDTMA1l=*

Internal working variables
H28 STACKP+#
H29 TSTAT#*

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL

H30 ERRFLG*
H31 STATUS*
H32 SSKCTL*

ATARI controllers

Joysticks
J1 STICKQ STICK3
J2 STRIGO - STRIG3

i

Paddles
J3 PADDLO
J4 PTRIGO

PADDL7
PTRIG?

i

Light pen
J3 LPENH
Jé& LPENV
J7 STICKO

Driving controllers
JB STICKO - STICKI3
J? STRIGO - STRIG3

Disk file manager
K1 FMSZIPG*

K2 ZBUFP3#*

K3 ZDRVA#x*

K4 ZSBA%*

K5 ERRNO#*

Disk uvtilities (DOS)
L1 DSKUTL#

Floating point package
M1 FRO

M2 FRE#*

M3 FR1

M4 FR2#%

M3 FRX#

M& EEXP#

M7 NSIGN#*
M8 ESIGN:#
M? FCHRFLG#*
MiO DIGRT#*
Mi1 CIX

M12 INBUFF
M13 ZTEMP13#
M14 ZTEMP4#
M1S5 ZTEMP3#
M16 FLPTR

OPERATING SYSTEM,

CO016555

29

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO01&555

M17 FPTR2#*

MiB8 LBPR1%

M19 LBPR2%#

M20 LBUFF

M21 PLYARG#

M22 FPSCR/FSCR#
M23 FPSCR1/FSCR1#
M24 DEGFLG/RADFLG#*

N. Power up % [S RESET]
RAM sizing
N1 RAMLO%*, TRAMSZ#*
N2 TSTDAT#*

Disk/cassette boot

N3 DOSINI

N4 CKEY3#

NS CASSBT#*

N& CASINI

N7 BOOT?#

N8 DFLAGS#*

NS DBSECT#

N1O BOOTAD*

Environmental control
N11 COLDST#*
Ni2 DOSVEC

[S RESET]
N13 WARMST

P. Interrupts
P1 CRITIC
P2 POKMSK

System timers

Real—-time clock
P3 RTCLOK

System timer 1
P4 CDTMV1
PS5 CDTMAL1

System timer 2
P& CDTMVR2
P7 CDTMAZ

System timers 3-5

P8 CDTMV3, CDTMV4, CDTHMVS
P? CDTMF3, CDTMF4, CDTHMFS

30

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO016555

RAM interrupt vectors

. NMI interrupt vectors
P10 VDSLST

P11 VVBLKI
P12 VVBLKD

IRQ interrupt vectors
P12 VIMIRQ
P14 VPRCED
P15 VINTER
P16 VBREAK
P17 VKEYBD
P18 VSERIN
P19 VSEROR
P20 VSEROC
P21 VTIMR1, VTIMRZ2, VTIMR4

Hardware register updates
P22 SDMCTL#*
P23 SDLSTL#*, SDLSTH#*
P24 GPRIOR#*
P25 CHACT#*
P26 CHBAS
P27 PCOLRx, COLORx

Internal working variable
. P28 INTEMP3¢

R. User areas
R1 (unlabeled)
R2 USAREA

S. Unused (spare) bytes

S1 HOLDS

S2 CSTAT

83 DUNUSE

S4 TEMP2

S5 TMPX1

S6 DSKFMS

§7-515 (unlabeled)

31

REFPRODUCTION PROHIBITED WITHDOUT PUBLICATIONS DEFT. APPROVAL
OPERATING SYSTEM, C016555

Memory dynamics

The free memory Tegion is the area between the end of the boot region
and the start of the screen region., and as such, its limits are
variable. The bottom of the free region is defined by the content of
the variable MEMLO [Q2E731, and the top of the region is defined by the
content of the variable MEMTOP [O2ES5]. The conditions which cause the
setup or alteration of these variables are now discussed.

System initialization process

When the system is powered—up, the extent of the lowest block of
contiguous RAM is determined and the limits are saved. The Screen
Editor is then opened, thus setting a new (and lower) value in MEMTOP.
Then, as discussed in section 7, disk or cassette booted software
might be brought into memory, which would probably set a new (and
higher) value in MEMLO. When the application program finally gets
control, MEMLO and MEMTOP will define the maximum amount of free
memory available at that time; however, that amount may later decrease
further, as described in the next paragraph.

Changing screen modes

The user may, at any time, command the Display handler to change
screen modes. In most cases this will involve a change in the memory
required for the display list and display data, and hence, will change
the value of MEMTOP. Appendix H indicates the amount of memory
required for each of the screen modes

In order to allow the user to protect the portion of free memory space
that he is using from being overwritten as a result of a screen mode
change, the variable APPMHI [OOOE] is interpreted by the Display
handler as containing the address below which MEMTOP may not extend.
If, as a result of a screen mode change, the Display handler
determines that the screen memory would extend below APPMHI, then the
screen is setup for mode O, MEMTOP is updated and an error status is
returned to the user; otherwise the desired mode change is effected
and MEMTOP is updated

W
n

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO14555

5 I/0 subsystem

Introduction

This sectieon discusses the I/0 subsystem of the operating system. The
1/0 subsystem is a collection of routines which allows the user to
access peripheral and local devices at a number of different levels,
all higher than that of accessing the device hardware registers
directly. The routine of interest to most wusers is CIO (Central I/0
utility), which provides the highest level. device independent access
to devices. The next level down would be communication with the device
handlers, followed by use of the SID (Serial I/D bus utility) routine,
which is the bottom leavel general I/0 routine in the 05 Any lower
level access to & device would involve the direct reading and writing
of the hardware registers associated with the device

The basic unit of input/output is the data byte, which can contain
either "binary" (non—-text: information or encoded text information.
The text encoding scheme supported by the 05 is called ATASCII, the
name of which is derived from the words ‘ATARI ASCII‘. Most ATASCIT
codes are the same as AECII, with the primary deviations being the
control codes. Appendix D shows the ATASCII character set, and
Appendices E, F and G show device specific implementations for the
display, keyboard and printer.

The

n

tructure of the I/0 subsystem is shown on the following page.

REPRODUCTION PROHIRITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO16555

1/0 SUBSYSTEM FLOW DIAGRAM

e m e ———— +
] user H
i Program Hormrmemrmmme e s e e e e e i e +
Fm———————— + '

R + H H

H I0OCBs HE R R R :

Fm———————— + H H

Fm————————— 4+ :
H CIOD H R s + i
Vutility | i DCR HE LS
m————————— = o —————— + ¥ !
i * i
! * H

F——————— + F—————— + m———————— + % :

H ZI0CB H i Device ' iDisk Fileil '

e + i Table | Fmmm | MENEGEF esmme= +

* o ——————— + : o o e + Vo
» : { HE

e i e e F—mt—— o \

1] 1 1 1 1
Fm———————— + e ——————— + o —————— et T T +
i Printer | i Cassette! P { i Keyboard! i Disk i
i Handler | i\ Handler | i Handler ¢ i Handler | i Handler |
e —————— 4+ Am———— ———— o e e em e ————— 4 Amm——————— +

] 1 1 1

1 1] 1

o ————— e e E R — e +

]

o e e e e -+ H

! DCRE -2

Fm———————— + !

o ——————— +

H €10 '

P Utility |

e —————— +
Where: ——-- shows a control path.

##¥%# shows the data structure required for a path.
Mote the following:

1. The Keyboard/Display/Screen Editor handlers don’t use SI0.
2. The Disk handler is not callable directly from CIO.
3. The DCB is shown twice in the diagram.

Central I/D Utility (CIOD;
The Central I/0 Utility (CID) provides the user with a single
interface with which to accesz all of the system peripheral devices,

in a device independent manner. The minimum unit of data transfer is
the data byte, with multiple byte transfers also supported. All I/0

34

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO1&555

operations are performed on a "return to user when complete" basis;
there is no way to initiate concurrent "overlapped" I/0 processes

1/0 is organized by "files", where a file is a sequential collection
of data bytes. A file may or may net contain textual data and it may
or may not be organized by "records", where a record is a contiguous

group of bytes terminated by an EOL (End of Line) character. Some
files are synonymous with a device (as with the printer and the Screen
Editor):, while other devices may contain a multiplicity of files, each
with a unique name (as with the floppy disk).

CIO will allow the user to access up to eight independent device/files
at one time; there being that many I/0 Control Blocks (IOCBs) in the
system. Each of the IOCBs may be assigned to control any desired
device/file, as there are no preferred assignments, except that IOCB
#0 is assigned to the Screen Editor at power up and [S/RESETI.

In order to access a peripheral, the user must first setup an IOCB for
the OPEN command, which supplies the system name for the device to be
accessed (e.g. ‘K:’ for the keyboad, ‘P:‘ for the printer, ’‘D:STARS‘
for a disk file named ‘STARS’, etc.). The user then calls CIO, telling
it which IOCB to use to find the OPEN information. CIO attempts to
find the specified device/file and returns a status byte indicating
the success of the search. If the specified device/file can be found
by CIO, then CIO stores control information in the IOCB and that IOCB
is now used for as long as that file is OPEN.

Once a file is OPEN, it can then be accessed using data Tead or data
write types of commandsi in general, reading may proceed until there
is no more data to read (End of File) and writing may proceed until
there is no more medium to store data on (End of Medium), although
neither reading nor writing need proceed to that point. The reading
and writing of data generally occurs into and out of user supplied
data buffers (although a special case allowing single byte transfers
using the 6502 A rtegister is provided).

When there are no more accesses to be performed on an OPEN
device/file, the CLOSE operation is performed by the user. This
accomplishes two functions: 1) it terminates and makes permanent an
output file (essential for disk and cassette) and 2) it releases that
I0OCB to be used for another I/0 operation.

CIO Design Philosophy

The CIO utility was designed specifically to meet the following design
criteria.

The transfer of data is device independent.

Byte—at—a—-time, multiple byte and record aligned accesses are
supported.

Multiple device/files can be accessed concurrently.

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

Error handling is largely device independent

New device handlers may be added without altering the system ROM. .

DEVICE INDEPENDENCE

CIO provides device independence by having a single entry point for
all devices (and for all operations) and by having a device
independent calling sequence. Once a device/file is OPENed, data
transfers occur with no regard to the actual device involved. Uniform
rules for handling byte and record oriented data transfers allow the
actual device storage block sizes to be transparent to the user.

DATA ACCESS METHODS

Two file access methods are supported by CIO: byte aligned and record
aligned.

Byte aligned accesses allow the user to treat the device/file as a
sequential byte stream; any number of bytes may be read or written and
the following operation will continue where the prior one left off
Records are of no consequence in this mode, and reads or writes may
encompass multiple records if desired.

Record aligned accesses allow the user to deal with the data stream at
a higher level, that of the data record or "line of text". Each and
every write operation creates a single record (by definition), and
each read operation assures that the following read operation will
start at the beginning of a record. Record aligned accesses may not
deal with portions of more than one rtecord at a time. Record aligned
accesses are useful only with text data or with binary data guaranteed
not to contain the EOL character ($9B) as data.

Note that any file may be accessed using the byte aligned access
method, regardless of how the file was created. But not all files may
be successfully read using record aligned accesses; the file must
contain EOL characters at the end of each record and at no other
place.

MULTIPLE DEVICE/FILE CONCURRENCY

Up to eight device/files may be accessed concurrently using CIO, each
operating independently of the others.

UNIFIED ERROR HANDLING

All error detection and recovery occurs within the CIO subsystem and
the status information that reaches the user is in the form of a
status byte for each device/file. As much as possible, error codes are
device independent (see Appendix B). . Lo | .

DEVICE EXPANSION

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING EYSTEM, CO16555

Devices are known by one character names such as ‘K’ or ‘P’, and a
number of device handlers are part of the resident system ROM.
However, additional device handlers may be added to the system using
the RAM resident Device Table; this is nermally done at power up time
as with the disk boot process, but may be done at any point in time.

CIO calling mechanism

The primary element in performaing I/0 using CID is an Input/Output
Control Block (IOCB). There are eight IOCEs in the system, arranged
linearly in RAM as shown below.

ey + low address [0340]

U + high address

One IDCE is required for each OPEN device/file and any IOCB may be
used to control any device/file; although IOCB O is normally assigned
toc the Screen Editor {(E:). A typical I/0 operation is performed by
having the wuser: 1) insert appropriate parameters into an IOCB of his
chosing, 2) put the IOCB number ftimes 146 into the 4502 X register and
33 JER to the CIO entry point CIOV [E454]. CIO will return to the user
when %the operation is complete ov if an errvor was encountered; the
status of the operation will be in the I0OCB used as well as in the
4502 Y registeri in addition, the 4502 conditions codes will reflect

the value in the Y rvegister.. In some casez a data byte will be in the
4£502 A register. The X register will temain unchanged for all
operatione and conditions. An example is shown below:
I0CBR2X = %20 i INDEX FOR IOCE #2.

L.DX #IOCB2X

J5SR CIov

CPY #0C; (optional’

BMI ERROR

Each IDCRB is sixkteen bytes long, in which some bytes are user
alterable and some are for use by CIO and/or the device handlers. Each
of the IOCR bytes will now be described, and the system equate file
name and memory address for each will be given.

HANDLER I.D. -- ICHID L[O240]

37

REPRODUCTION PROHIBITED WITHODUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO014555

The handler I.D. is an index into the system Device Table (see section
?) and is not user alterable. This byte is set by CIO as the result
of an OPEN command and is left unchanged until the device/file is
CLOSEd, at which time CIO will set the byte to %FF.

DEVICE NUMBER —-- ICDNOD L[0341]

The device number is provided by CID a
and is not user alterable. This byte i
multiple devices of the same type, suc

5 the result of an OPEN command
s used to distinguish between
h as ‘Di: 7 and ‘D2: °.

COMMAND BYTE ——- ICCMD L[O0342]

The command byte is set by the user and tells CIO which of its
repertoire of commands is to be performed. The commands and their
command byte values will be detailed in section 5. 2. 3. This byte is
not altered by CIO.

STATUS -— ICSTA [0343]

The status byte is used by CID to convey nperation status to the user;
it is updated as a result of each and every CIO call. The most
significant (sign) bit is a one for error conditions and zero for
non—error conditions, and the remaining bits represent an error
number. See Appendix B for a list of status codes

BUFFER ADDRESS —-- ICRAL [03441 % ICBAH [0345]

This two byte pointer is set by the user and is not altered by CIO.
The pointer contains the address of the beginning (low address) of a
buffer which is used to: 1) contain data for Tead and write operations
and 2) contain the device/filename specification for the OPEMN command.
The pointer may be altered at any time by the user.

PUT ADDRESS -- ICPTL [O03461 % ICPTH [0347]

This two byte pointer to the handler’s PUT CHARACTER entry point (- 1)
is set by CIO at OPEN time; this was provided as an accommodation to
the people writing the BASIC cartridge and has no legitimate use in
the system. This variable is set to point to CIO‘s "IOCE not OPEN"
Toutine on CLOSE, power up and [S/RESET]

BUFFER LENGTH/BYTE COUNT -- ICBLL C[O2481 % ICBLH [0249]

This two byte count is set by the user to indicate the size of the
data buffer pointed te by ICBAL and ICBAH for read and write
operations; it is not required for OPEN. After each read or write
operation, CIO will set this parameter to the number of bytes actually
transferred into or out of the data buffer For record aligned
accessed, the rtecord length may well be less than the buffer length.
Also an end of file condition or an error may cause the byte count to
be less than the buffer length.

AUXILLIARY INFORMATIONM —- ICAXi [O034A] % ICAX2 L[C34R]

38

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM: CO16555

These two bytes are set by the user and contain information which is
used by the DPEN command process and/or is device dependent.

For OPEN, two bits of ICAX1l are always used to specify the OPEN
direction as shown below, where R is set to 1 for input (read! enable
and W is set to 1 for output (write) enable

7 32 0

ICAX1 is not altered by CIO and should not be altered by the user once
the device/file is OPENM.

The tTemaining bits of ICAX1 and all of ICAX2 contain only device
dependent data and are explained in section 5:Device specific information.

REMAINING BYTES (ICAX3—-ICAX&)

The four remaining bytes are reserved for use by the handler
processing the I/0 command for CIO. There is no fixed use for these
bytes and they are not user alterable except as specified by the
particular device descriptions in sectibn 5.3. These bytes will be
referred to as ICAX3, ICAX4, ICAXS and ICAXé&, although there are no
equates for those names in the 0S equate file

CI0O functions

There are eight basic functions that are supported by all of the
system handlers, subject to restrictions based upon the
direction of data transfer (e.g. one cannot read data from the
printer). The basic functions are: OPEN, CLOSE, GET CHARACTERS,
PUT CHARACTERS, GET RECORD, PUT RECORD, GET STATUS and SPECIAL.
Other, device specific, commands are also supported by CIO and
are described in section S5:Device specific information.

OPEN —— Assign device/filename to IOCB and ready for access

Before a device/file may be accessed, it must be OPENed; this process
links a specific IOCB to the appropriate device handler, initializes
the device/file, initializes an CIO control variables, and passes

device specific options to the device handler.

The following IOCB parameters are set by the wuser prior to calling CIO
for an OPEN operation:

COMMAND BYTE = %03

BUFFER ADDRESS = pointer to a device/filename specification (see
section S:Device/filename specification.)

39

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
CPERATING SYSTEM, CC146555

AUX1

DPEN direction bits, plus device dependent information.

AUX2

device dependent information.

After an OPEN operation, CID will have altered the following IOCB
parameters:

HANDLER I.D. = index to the system Device Table; this is used
only by CIO and must not be altered by the user.

DEVICE NUMBER = device number taken from the device/ filename
specification and must not be altered by the user.

STATUS = result of OPEN operation; see Appendix B for a list of

the possible status codes. In general, a negative status will
indicate a failure to OPEN properly.

PUT ADDRESS = pointer to the PUT CHARACTERS routine for the
device handler just OPENed. #%## It is recommended that this
pointer not be used ###
CLOSE -- Terminate access to device/file and release IOCB.
After the user is through accessing a given device/file, the CLOSE
command is issued. This process completes any pending data writes,
goes to the device handler for any device specific actions and then
releases the IODCB.
The following IOCB parameter is set by the user prior to calling CIO:
COMMAND BYTE = $0C

The following IOCB parameters are altered by CID as a result of the
CLOSE operation:

HANDLER I.D. = $FF
STATUS = Result of CLDEE operation.

PUT ADDRESS = pointer to "IOCB not OPEN" routine

GET CHARACTERS -— Read n characters (byte aligned access).

The specified number of characters are read from the device/file to
the user supplied buffer. EOL characters have no termination feature:
when using this function: there may be no EOL: or many EOLs, in the
buffer after operation completion. There is a special case provided
that passes a zingle byte of data in the 6502 A register when the
buffer length is set to zero.

The following IDCB parameters are set by the user prior to calling
CIO:

40

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO16555

COMMAND BYTE $07
BUFFER ADDRESS = pointer to data buffer.

BUFFER LENGTH = number of bytes to read; if this is zero, the
data will be veturned in the &502 A register only.

The following IOCE parameters are altered by CIO as a result of the
GET CHARACTERE cperation:

STATUS = result of GET CHARACTERS operation
BYTE COUNT/BUFFER LENGTH = number of bytes read to the buffer.

The BYTE COUNT will always equal the BUFFER LENGTH except when an
error or an end-of-file condition occurs

PUT CHARACTERSE —~ Write n characters (byte aligned access)

The specified number of charactersz are written from the user supplied
buffer to the devices/file. EOL characters have no buffer terminating
properties, although they have their standard meaning to the
device/file receiving themi no EOLs are generated by CIO. There i1s a
special case that allows a single character to be passed to CIO in the
&£502 A register if the buffer length 15 zero.

The following IODCB parameters are set by the user prior to initiating
the PUT CHARACTERS ocperation:

COMMAND BYTE = 0B
BUFFER ADDRESS = pocinter to data buffer.
RBUFFER LENGTH = number of bytes of data in buffer.

The following IOCE parameter is altered by CID as a result of the PUT
CHARACTERS operation:

STATUS = result aof PUT CHARACTERS operation.

GET RECORD —— Read up to n characters (record aligned access)

Characters are read from the device/file to the user supplied buffer
until either the buffer i1s full or an EOL zharacter is read and put
into the buffer. 1f the buffer fills before an EOL is read, CIO
continues Teading chavracters Ffrom the device/file until an EDL is
read, then puts zan EDL at the end of the buffer, and sets the status
to indicate that a truncated vecord was read.

The following IDCR parameters are set by fthe user prior to calling
cCIn:

COMMAND BYTE = 2095

41

REPRODUCTION PROHIBITED WITHDOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO0146555

BUFFER ADDRESS = pointer to data buffer.

BUFFER LENGTH = maximum number of bytes to read (including the
EOL character).

The following IOCB parameters are altered by CID as a result of the
GET RECORD operatien:

STATUS = result of GET RECORD operation.

BYTE COUNT/BUFFER LENGTH = number of bytes tead to data buffer:

this may be less than the maximum buffer length.
PUT RECORD —- Write up to n characters (record aligned access/.
Characters are written from the user supplied buffer to the
device/file until either the buffer is empty or an EDL character is
written. If the buffer is emptied without writing an EOL character to
the device/file, then CIO will send an EOL after the last user

supplied character.

The following IOCB parameters are set by the user prior to calling
CIO:

COMMAND BYTE = %09
BUFFER ADDRESS = pointer to data buffer.
BUFFER LENGTH = maximum number of bytes in buffer.

The following IOCB parameter is altered by CIO as a rvesult of the PUT
RECORD operation:

STATUS = result of PUT RECORD operation.

GET STATUS —— Return device dependent status bytes

The device controller is sent a STATUS command. and the controller
returns four bytes of status information which are stored in DVETAT
[O2EA]. See the subsections of 5.3 for the status information mreturned
by each device.

The following IODCB parameters are set by the user prior to calling
CIO:

COMMAND BYTE = %0D
BUFFER ADDRESE = pointer to a device/filename specification if

the IOCE is not already OPEN;: see the
discussion of the implied OPEN cption below

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO14555

After a GET STATUS operation, CIO will have altered the following
parameters:

STATUS = result of GET STATUS operation; see Appendix B for a
list of the possible status codes

DVSTAT = the four byte response from the device controller.

SPECIAL ——- Special function

Any COMMAND BYTE value greater than %$0D is treated by CIO as a special
case. Since CIO does not know what the function is, CIO transfers
control to the device handler for complete processing of the
operation.

The following IOCB paramefers are set by the wuser prior to calling
CIO:

COMMAND BYTE > $0D

BUFFER ADDRESS = pointer to a device/filename specification if
the IOCB is not already OPEN; see the
discussion of the implied OPEMN option below.

Other IOCB bytes may be setup, depending upon the specific
SPECIAL command being performed.

After a SPECIAL operation, CIO will have altered the following
parameters:

STATUS = result of SPECIAL operation; see Appendix B for a list
of the possible status codes.

Other bytes may be altered, depending upon the specific SPECIAL
command.

The device specific sections in 5. 3 will detail the individual SPECIAL
commands supported by the system.

Implied OPEN option

The GET STATUS and SPECIAL commands are treated specially by CIO; they
may use an already OPEN IOCB to initiate the process or they may use
an unDOPENed IOCB. If the IDCB is wnOPENed, then the BUFFER ADDRESS
must contain a pointer to a device/filename specification, Just as for
the OPEN command; CIO will then OPEN that IRCB, perform the specified
command and then CLOSE the IOCB again.

43

REPRODUCTION PROHIBITED WITHDUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYETEM, C014555

Levice/filename specification

As part of the OPEN command, the IOCB buffer address parameter points
to a device/filename specification, which is a string of ATASCII
characters in the following format:

“specification ::= <devicel[<number>]: [<filename>l<eol
“devicel ::= CIDIEIKIPIRIS

<number = 1121314151461/71!8

<filename has device dependent characteristics

LTeolx ::= QP
The following devices are supported at this writing:

= Cassette drive

1 through D8 = Floppy diskette drives #
= Screen Editor

= Keyboard

= 40 column printer

P2 = 80 column printer #%

R1 through R4 = RS-232-C interfaces #

S = Screen display

TEMIOO

Devices flagged by asterisks (’%#’) are supported by non-resident
handlers.

If “number is not specified, it is assumed to be 1.

The following examples show valid device/filename specifications:

C: Cassette
D2: BDAT File "BDAT" on disk drive #2
D: HOLD File "HOLD" on disk drive #l1
K: Keyboard

I1/0 example

The example provided in this section illustrates a simple example of
an I/0D operation using the CIO routine.

i This code segment illustrates the simple example of reading
i text lines (records) from a disk file named "TESTER" on disk
i drive #1. All symbols used are equated within the program

i although many of the symbols are in the 0S equate file

The program performs the following steps:
OPENs the file ‘D1:TESTER’ using IOCB #3.

1
2. Reads records until an error or EOF is reached
2. CLOSEs the file.

T

i I/0 EQUATES

a4

EOL=
I0CB3=

ICHID=
ICDNO=
ICCOM=
ICSTA=
ICBAL=
ICBAH=
ICPTL=
ICPTH=
ICBLL=
ICBLH=
ICAX1=
ICAX2=

OPEN=
GETREC=
CLOSE=

DREAD=
OWRIT=

EOF=

CIOv=

FIRST

lcemD —

"OPEN"

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL

9B
%30

$0340

ICHID+1
ICDNO+1
ICCOM+1
ICSTA+1
ICEAL+1
ICBAH+1
ICPTL+1
ICPTH+1
ICBLL+1
ICBLH+1
ICAX1+1

INITIALIZE THE IOCB
LDX #10CE2
LDA #OPEN

5TA ICCOM, X
LDA #HNAME

STa ICBAL. X
LDA #NAME /2564
ETA ICBAH, X
LDA #OREAD
STA ICaXi, X
LDA #0

STA ICAXZE, X
THE FILE.

B S

~ii e Ceew s

DPERATING SYSTEM, CO014555

END OF LINE CHARACTER.

IOCE #2 OFFSET (FROM IOCR #0).

(HANDLER I.D.
(DEVICE # —-— SET BY CIOD).
COMMAND BYTE.

STATUS BYTE —-- SET BY CIOG.
BUFFER ADDRESS (LOW).
BUFFER ADDRESS (HIGH).

BUFFER LENGTH (LDOW).
BUFFER LENGTH (HIGH).
AUX 1.
AUX 2.

OPEN COMMAND.
GET RECORD COMMAND.
CLOSE COMMAND.

OPEN DIRECTION
OPEN DIRECTICN

READ.
WRITE.

END OF FILE STATUS VALUE.

CID ENTRY VECTOR ADDRESS.

FILE "“OPEN".

SETUP TO ACCESS I0OCDB #2.

SETUP OPEN COMMAND.

SETUP BUFFER POINTER TO .
POINT TO FILENAME.

SETUP FOR OPEN READ.

CLEAR AUX 22

-— SET BY CIO).

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

JSR cIiov i PERFORM "OPEN" OPERATION.
BPL TP10O i YES —— STATUE WAS POSITIVE.
JMP ERROR i NO --— "OPEN" PROBLEM.

i SETUP TO READ A RECORD.

TP10 LDA #GETREC i SETUP "GET RECORD" COMMAND
STA ICCOM, X
LDA #BUFF i SETUP DATA BUFFER PDINTER.
STA ICBAL, X
LDA #BUFF /256
STA ICBAH, X

i READ RECORDS.

i

LOOP LDA #BUFFSZ i SETUP MAX RECDRD SIZE ...
STA ICBLL, X i ... PRIOR TGO EVERY READ.
LDA #BUFFSZ/254
STA ICBLH, X
JSR cIov ; READ A RECORE.
BMI TP20 i NO -- MAY BE END OF FILE.

A RECORD IE NOW IN THE DATA BUFFER "BUFF" IT IS TERMIMATED BY
AN EOL CHARACTER, AND THE RECORD LENGTH IS IN "ICBLL"™ & "ICBLH".
THIS EXAMPLE WILL DO NDTHING WITH THE RECDRD JUST READ.

.~ me me we me

JMP LOOP ;i READ NEXT RECORD.
i NEGATIVE STATUS ON READ ——- CHECK FOR END 0OF FILE.
TP20 CPY #EOF i END OF FILE STATUS?
BNE ERROR ; NO —-- ERROR.
LDA #CLDSE i YEE —— CLOSE FILE.
STA ICCOM, X
JSR CIOV i CLOSE THE FILE.
HLT i ##% END DF PRDOGRAM 33

i DATA REGION OF EXAMPLE PROGRAM

44

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO16555

NAME BYTE “D1: TESTER", EOL
BUFFSZ= 80 i 80 CHARACTER RECORD MAX
(INCLUDES EOL).
BUFF= #* i READ BUFFER.
#= #+BUFFSZ
END

Device specific information

This section provides device specific information regarding device
handlers that interface to CIO.

Keyboard handler (K:)

The Keyboard device is a tead only device with a handler that supports
the following CIO functions:

OPEN

CLOSE

GET CHARACTERS

GET RECORD

GET STATUS (null function)

The Keyboard handler may produce the following error statuses:

$80 —— [BREAK] key abort.
$88 —— End-of—-file (produced by pressing CTRL-3).

The Keyboard handler is one of the resident handlers, and therefore
has a set of device vectors starting at location E420, as described
further in section 5.

The keyboard can produce any of the 256 codes in the ATASCII character
set as shown in Appendix F. Note that a few of the keyboard keys do
not generate data at the Keyboard handler level; these keys are
described below:

L/i{\] — The ATARI key toggles a flag which enables/disables the
inversion of bit—-7 of each data character read. The Screen
Editor editing keys are exempted from such inversion,
however.

CAPS - The CAPS key provides three functions:
SHIFT-CAPS —— Alpha caps lock.
CTRL-CAPS —-— Alpha CTRL lock.
CAPS —— Alpha unlock.
The system powersup and [S/RESET1s to the Alpha caps lock
option.

47

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO014555

Some key combinations are ignored by the handler, such as [CTRL1-4
through [CTRLI-9, [CTRLI-O, [CTRLI-1, C[CTRLI-/ and all key

combinations in which the [SHIFTI and L[CTRL] keys are depressed
simultaneously.

The [CTRLI-3 key generates an EOL character and returns EOF status

The [BREAK] key generates an EOL character and returns BREAK status

CIO function descriptions

The device specific characteristics of the standard CIO functions
(described earlier in this section) are detailed below:

OPEN

The device name is ‘K, and the handler ignores any device number and
filename specification: if included.

There are no device dependent option bits in AUX1 or AUXZ2.

CLOSE
No special handler actions
GET CHARACTERS and GET RECORD

The handler returns the ATASCII key codes to CIO as they are entered,
with no facility for editing

GET STATUS

The handler does nothing but set the status to $01.

Theory of operation.

Everytime a keyboard key is pressed, an IRQ interrupt is generated as
discussed in section & and is vectored to the Keyboard handler’s
interrupt service routine as shown later in section & The key code
for the key pressed is then read and stored in data base variable CH
[O2FC]; this occurs whether or not there is an active read request to
the Keyboard handler., thus effecting a one byte FIFD for keyboard
entry. See section 4 (EB) for a discussion of the auto-repeat feature

Whenever there is an active read request for the Keyboard handler, the
handler monitors the CH variable for not containing the value %FF
(empty state:. When CH shows non—empty., the handler takes the key code
from CH and sets CH to #FF again. The key code byte obtained from CH
is not ATASCII code and has the following form:

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO14555

7 0
s s T e S
iCiS! key code i
b — e — b — =t —
Where: C =1 if the CTRL key is pressed.
S =1 if the SHIFT key is pressed.
The remaining & bits are the hardware key code.

The key code obtained is then converted to ATASCII using the first of
the following rules which applies:

Ignore the code i+ the C % § bits are both set

If the C bit is set, process the key as a CTRL code

I+ the S bit is set, process the key as a SHIFT code.

If CTRL lock is in effect, process alpha characters as CTRL
codes, all others as lower case

IF SHIFT lock is in effect, process alpha characters as SHIFT
codes, all others as lower case.

&. Else, process as lower case character.

B

nd

Then, if the resultant code is not a Screen Editor control code,
and if the video invert flag is set:, set bit-7 of the ATASCII
code (causes inverse video when displayed)

The keycode to ATASCII conversion table is shown on the next
page. See also Appendix F.

4

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CGC14555

KEYCODE TO ATASCII CONVERSION TABLE

Key Key l.c. SHIFT CTRL Key Key 1.c. SHIFT CTRL
Code Cap Code Cap

(o]0 L &C 4C GC 20 : 2C 5B 00
c1 J bA 44 oA 21 SPACE 20 20 20
02 i 3B 2A 7B 22 2E 5D &0
03 = o] - 23 N &E 4E OE
04 == == —- = 24] == = -
G5 K &B 4p OB 25 M &D 4D oD
06 + 2B 5C 1E 26 / 2F 3F s
07 #* 24 SE 1F 27)i s=om e s
o8 0 &F 4F oF 28 R 72 52 2
09 == - =i == 29 —— —= . S
0A P 70 50 10 2A E 65 45 05
oB U 75 55 15 2B Y 79 59 19
ocC RET 9B FB B 2C TAB 7F 9F 9E
oD I &9 49 09 2D T 74 54 14
GE - 2D S5F 1C 2E W 77 27 17
OF = 3D 7C 1D 2F a 71 51 11
10 Vv 76 36 16 30 9 a9 28 e
11 — T S == a1 = == - -
12 C &3 43 3 32 0 30 29 -
13 — - —— s 33 7 27 27 =
14 . . s = 34 BACKS 7E QC FE
15 B 62 42 02 35 = 38 40 s
16 X 78 58 18 36 o 3C 70 70
17 Z 74 S5A 14 37 } 3E 2D FF
i8 4 34 24 == 38 F && 46 (o7
19 e i e e 39 H &8 48 (6]C]
1A 3 23 23 @B 24 D &4 44 04
iB & 26 24 = 2B == =4 R S
iC ESC 1B 1B 1B 3C CAPS —- s ==
iD 5 35 25 e 3D G &7 47 07
1E 2 32 22 FD 3E S 73 53 13
1F 1 31 21 == 3k A &1 41 01

[CTRLI-3 returns EDF status.

The inverse of this table (ATASCII to keystroke) is given in Appendix
F;

20

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM., CO16555

Display handler (S:)

The Display device is a read/wrife device with a handler that supports
the following CIO functions:

OPEN

CLOSE

GET CHARACTERS

GET RECORD

PUT CHARACTERS

PUT RECORD

GET STATUS (null function)

DRAW
FILL

The Display handler may produce the following error statuses:

$84 —— Invalid special command.

$8D —— Cursor out of range.

$91 —— Screen mode 2> 11,

$93 —— Not enough memory for screen mode selected.

The Display handler is one of the resident handlers, and therefore has
a set of device vectors starting at location E410.

Screen modes

The display screen may be operated in any of 20 configurations (modes
1 through B8, with or without split screen, plus modes O and 9 through
11 without split screen). Mode O is the text displaying mode and modes
1 through 11 are all different graphics modes (although modes 2 and 3
do display a subset of the ATASCII character set). Modes 9 through 11
require a GTIA chip to be installed in place of the standard CTIA
chip.

TEXT MODE (mode O)

In text mode the screen is physically comprised of 24 lines of 40
characters per line; however, the display area is limited by program
alterable left and right margins which default to 2 and 39 (of a
possible O and 39).

A program controllable cursor shows the destination of the next
character to be output. The cursor is visible as the inverted video
representation of the current character at the destination position.

The text screen data is organized internally as variable length
logical linesi when the screen is cleared, the internal representation
is 24 empty lines. As text is sent to the screen, each EOL marks the
end of a logical line; or if more than 3 physical lines of text are
sent, a logical line will be formed every 3 physical lines. The number

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
DPERATING SYSTEM, C016555

of physical lines used to comprise a logical line (1 to 3) is always
the minimum required to hold the data for that logical line. .

The text screen "scrolls" upward whenever a text line at the bottom
row of the screen extends past the right margin or a text line at the
bottom row is terminated by an EOL. Scrolling has the effect of
removing the entire logical line that starts at the top of the screen
and then moving all subsequent lines upward to fill in the void. The

cursor will also move vpward if the logical line deleted exceeeds one
physical line.

All data going to or coming from the text screen is represented in 8
bit ATASCII code as shown in Appendix E.

Text Modes 1 and 2

In text modes 1 and 2 the screen is physically comprised of either 24
lines of 20 characters (model) or 12 lines of 20 char acters (mode 2).
The left and right margins are of no con— sequence in these modes and
there is no visible cursor. There are no logical lines associated

with the data and in all regards these modes are treated as graphics
modes by the handler.

Data going to or coming from the screen is in the form shown below:

7 0

Where:C is the color/data set select field

C Color Color Character Character
Value (default) Register Set S
(see CHBAS=%EO CHBAS=%E2
appendix
K
O green P(PFI)
1 gold (PFQO) o) W e
2 gold (PFO) ¢ =il ¥
a green (PF1) AR Ec A
4 Ted (PF3) 6 Gt S
S blue (PF2) € ity
& blue {(PF2) 4 =
7 Ted {PF3) % =

I is a 5 bit ftruncated ATASKII code which selects the specific
character within the set selected by the C field. See Appendix
E for the graphics representations of the characters.

Datsbase variable CHBAS [02F4] allows for the selection of either
of two data sets. The default value of $EO provides the capital
letters, numbers and pubnctuation characters:i the alternate value

REPRODUCTION PROHIBITED WITHDUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO1463555

of $E2 provides lower case letters and the special character graph-
ics set.

GRAPHICS MODES {(modes 2 through 11)

The screen has varying physical characteristics for each of the
graphics modes as shown in Appendix H. Depending upon the mode, a 1 to
14 color selection is available for each pixel and the screen size
varies from 20 by 12 (lowest resolution) to 320 by 192 (highest
resolution) pixels.

There is no visible cursor for the graphics mode output

Data going to or coming from the graphics screen is represented as 1
to B bit codes as shown in Appendix H and in the GET/PUT diagrams
following.

SPLIT SCREEN CONFIGURATIONS

In split screen configurations, the bottom of the screen is reserved
for four lines of mode O text. The text region is controlled by the
Screen Editor, and the graphics rvegion is controlled by the Display
handler. Two cursors are maintained in this configuration so that the
screen segments may be managed independently.

In order to operate in split screen mode, the Screen Editor must first
be OPENed and then the Display handler must be OPENed using a separate
I0CB (with the split screen option bit set in AUX1).

CIO0 function descriptions

The device specific characteristics of the standard CIO functions
{described earlier in this section) are detailed below:

OPEN

The device name is ‘S‘, and the handler ignores any device number and
filename specification:, 1if included.

The handler supports the following coptions:

7 0
b —p ek — ok — o —+
AUX1 ! TCIEIWIRY H
F—t = k=t —
Where: C = 1 1i1ndicates to inhibit screen clear on OPEN.
€ =1 indicates to setup a split screen configuration {(for

modes 1 through 8 enly).
are the direction bits (read % write).

D
w
z

53

REPRODUCTION PROHIBITED WITHOUT PUBLICATIGNS DEPT. APPROVAL
OPERATING SYSTEM, C01&555

7 0
s S SR S S W T

AUX2 ' i mode H
s T T B SR S TS

Where: mode is the screen mode (O through 11).

Note: If the screen mode selected is O, then the AUX1 options are
ignored.

Because the Display handler dynamically allocates high address memory
for use in generating the screen display, and because different
amounts of memory are needed for the different screen modes, the
Display handler and the user must share memory utilization
information. Prior to initiating an OPEN command the variable APPMHI
[OOOE] should contain the highest address of RAM needed by the user;

the Screen handler will OPEN the screen only if no RAM is needed at or
below that address

Upon return from a screen DOPEN, the variable MEMTOP L[O2E5] will
contain the address of the last free byte at the end of RAM memory
prior to the screen required memory.

As a result of every OPEN command, the following screen variables are
altered:

The text cursor is enabled (CRSINH = 0).

The tabs are set to the default settings (2 & 39).

The color registers are set to the default values
(shown in Appendix H). Tabs are set at positiaons 7,15, 23, 31,39
47,55,63,71,79,87,95, 103,111, 119.

CLOSE
No special handler actions.
GET CHARACTERS and GET RECORD

Returns data in the following screen mode dependent forms, where each
byte contains the data for one cursor position {pixel); there 15 no
facility for having the handler return packed graphics data.

lspace 1lineed 20

7 (8]
e s e e S e A
! ATASCII H Mode O
B S e s s e TS
s s S e e e
i C H D i Modes 1,2 —— C = color, ata set
select.
g ket el e plapt et S g e I = truncated ATASCII.

24

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO016555

B i ok s St R

H Zern i D | Modes 3,5, 7 —— D = color.
B . s =
ettt —

' zeTo ‘D Modes 4,6,8 —— D = color.

F—d—t—b—f—f e —p
+

i zero ' D H Modes 2, 10,11 —— D = data.
+

As each data byte is returned, the cursor is moved to the next cursor
position. For mode O, the cursor will stay within the specified
margins; for all other modes, the margins are ignored.

PUT CHARACTERS and PUT RECORD
The handler accepts display data in the following screen mode

dependent forms; there is no facility for the handler to receive
graphics data in packed form.

7 0

PR R ST SO WS S S &

H ATASCII H Mode O

O S RN QU S R S

OO S QR SR G-y

i C | D H # Modes 1.2 —— C = color,
Qi e e Kl e S Sk el D = truncated ATASCII.
ettt —f—f—+

' ? i D | Modes 3,5, 7 —— D = color.
O S S A ST S S R o

S s ST S S T S

: ? iDI Modes 4,6,8 —— D = color.
o — e —

o e e e e o

H 2 H D ' Modes 9,10,11 —— D = data.
S S B S T

NOTE: For all modes, if the output data byte equals $9B (EOL) that
byte will be treated as an EOL character; and if the output data
byte equals %$7D (CLEAR) that byte will be treated as a screen
clear character.

As each data byte is written, the cursor is moved to the next cursor
position. For mode O, the cursor will stay within the specified
margins; for all other modes, the margins are ignored.

While outputting, the Display handler monitors the keyboard to detect
the pressing of the [CTRLI-1 key combination; when this occurs, the

REPRODUCTION PROHIBITED WITHDUT PUBLICATIONS DEPT. APPROVAL
OPERATING EYSTEM, CO16555

handler loops internally until that key combination is pressed again,
thus effecting a stop/start function to freeze the screen display.
Note that there is no ATASCII code associated with either the [CTRLI-1
key combination or the start/stop function; the stop/start function
may be controlled only from the keyboard (or by altering database
variable CH as discussed in Appendix K

GET STATUS
No handler action except to set the status to $01.
DRAW

This special command draws a simulated "straight" line from the
current cursor position to the location specified in ROWCRS [0054] and
COLCRS [0055]1. The color of the line is taken from the last character
processed by the Displey handler or Screen Editor. To force the color,
store the desired value in ATACHR [O2FBJ. At the completion of the
command, the cursor will be at the location specified by ROWCRS and
COLCRS.

The value for the command byte for DRAW is $i1.

FILL

This special command fills an area of the screen defined by two lines
with a specified color. The command is setup the same as in DRAW, but
as each point of the line is drawn, the rtoutine scans to the right

performing the procedure shown below (in Pascal notation):

WHILE PIXEL C[ROW,COL] = O DO

BEGIN

PIXEL C[ROW,COLJ := FILDAT:

COL = COL + 1;

IF COL » Screen right edge THEN COL := O
END;

An example of a FILL operation is shown below:

Where: ‘=’ represents the fill operation.
are the line points, with ‘+° for the endpoints.

1 —— set cursor and plot point.
2 —- set cursor and DRAW line

94

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C0O16555

3 —— set cursor and plot point.
4 —— get fill data value:, set cursor and FILL.

FILDAT L[O2FD] contains the fill data and ROWCRE and COLCRS ceontain the
cursor coordinates of the line endpoint. The value in ATACHR [0O2FB]
will be used to draw the linei ATACHR always contains the last data
read or written, so if the steps abtove are followed exactly, ATACHR
will not have to be modified.

The value for the command byte for FILL is #%12.

User alterable database variables

Certain functions of the Display handler require the user to examine
and/or alter variables in the 0S databasei the paragraphs that feollow
describe some of the more commonly used handler variables. There are
additional descriptions to be found in Appendix K B1-55.

CURSOR POSITION

The cursor position for the graphics screen or mode O text screen is
maintained in two variables: ROWCRE [00541, the display Tow number.
and CDOLCRS [00551, the display column number. Both numbers range from
O to the maximum number of rows/columns — 1. The cursor may be set
outside of the defined text margins with no ill effect; this region
may be read from and written to when the cursor is controlled by the
user. The home position (0,0) for both text and graphics is the uppem
left corner of the screen.

ROWCRS is a single byte: and COLCRS is two bytes with the leacst
significant byte being at the lower address

When these variables are altered by the user, the screen
representation of the cursor will not move until the next I1/0
operation involving the display is performed.

INHIBIT/ENABLE VISIBLE CURSOR DISPLAY

The user may inhibit the display of the text cursor on the screen by
setting the variable CRSINH [O2FO0] to any non-zero value. Subsequent
I/0 will not generate a visible cursor.

The user may enable the display of the text cursor by setting CRSINH
to zero. Subsequent I/0 will then generate 3 visible cursor.

TEXT MARGINS

As mentioned earlier, the text screen has wvser alterable left and
right margins, which are normally set to 2 and 39 by the 0S The
variable LMARGN [0052] defines the left margin and RMARGN [O00S533]
defines the rvight margin. The leftmost margin value is O and the
rightmost margin value is 39.

o
!

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO014555

The margin values inclusively define the useable portion of the screen
for all operations in which the user does not explicitly alter the
cursor location variables as described prior to this paragraph.

COLOR CONTROL

As part of normal stage 2VBLANK processing (as discussed in Section 6)
the hardware color registers are updated using data from the 0OS
database. Shown below are the database variable names, the hardware
register names and the function of each register; see Appendix H for
the mode dependent uses for the registers.

Database Hardware Function

COLORO COLPFO PFO —— Playfield O.

COLOR1 COLPF1 PF1 —— Playfield 1.

COLORZ2 COLPF2 PF2 —— Playfield 2.

COLOR2 COLPF23 PF3 —— Playfield 2.

COLOR4 COLBK BAK —— Playfield background.
PCOLRO COLPMO PMO —— Player/missile O.
PCOLR1 COLPM1 PM1 —— Player/missile 1.
PCOLRZ corLpmz PMZ2 —— Player/missile 2.
PCOLR3 coLPM3 PM3 —— Player/missile 3.

Theory of operation

The Display handler auvtomatically sets up all memory rTesources
required to create and maintain the screen display at OPEN time.

The screen generation hardware requires that two distinct data areas
exist for graphics modes: 1) a display list and 2) a screen data
region; a third data area must pexist for text modes which defines the
screen rtepresentation for each of the text charvacters. The ATARI
personal computer HARDWARE MANUAL must be referenced for a com—

plete undarstanding of the material that is to follow.

The simplified block diagram below shows the relationships between
the memory and hardware registers used to setup a screen display
(without player/missile obgyects) by the 0.S.; be aware that the
hardware allows for many other possibilities.

¥xxxy DATABASE HARDWARE
XXXXX VARIABLE REGISTER
(Updated every
VBLANK
MEMTOP
Display SDhL DLISTL
List
SbL DLISTH

se

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO16555

Screen Data SAVMEC

Graphics

and/or end of RAM memory
text
Char. EQCO CHBAS=EO CHEASE
Defs.
Specials and EQOO
numbers
in 0OS E3FF Capital E100
ROM Letters
Special E200
Color Color COLPFO Graphics
Color 1 regs. COLPFZ
Color 2 COLPF3
Color 2 COLBR Lower
Color 4 case E300
Letters

In the preceding diagram the following relationships are present:

Database variables SDL/STL/SDL/STH containthe address of the
current display listi as part of the Stage 1 VBlank process this
address isstored in the hardware display list address registers
DLISTL and DLISTH.

i The display list itself defines the characteristics of the
screen to be displayed and points to the memory containing the
data to be displayed.

Database variable CHEAS contains the msb ofthe base address of

the character represantations for the character data (text modes
only). The default value for this variable is $EO, which declares that
the character representations start at memory address EQOO (the charac
set provided by the D. S in ROM). Each character is defined as an

8X8 bit matrix:. requiring 8 bytes per character; since a character
code contains up to 7 significant bits (set of 128 characters), 1024
bytes are required to define the largest set. The 0.5. ROM con-

tains the default set in the region from EOCO to E3JFF.

All Character codes are converted by the handler from ATASCII
to an internal cocde and vice versa, as shown below:

ATASCII INTERNAL
CODE CODE
00-1F 40-5F
20-3F CO-1F

29

REPRODUCTION PROHIBITED WITHDUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO14555

40-5F 20-3F
60-7F 60-7F
80-9F CO-DF
AO-BF 80-9F
CO-DF AO-BF
EO-FF EO-FF

The character set in ROM is layed out in internal code order.

The reason for the internal code being different from the external
code (ATASCII) is based upon three considerations: 1) ATASCII
codes for all but the special graphics characters were to be sim—
ilar to ASCII, specifically the alphabetic,numeric, and punctuation
character codes are identical to ASCII, 2) in text modes 1 and 2 it wa
was desired that one haracter subset included capital letters:
numbers and punctiuvation and the other character subset include
lower case letters and special graphics characters and 3) the codes
for the capital and lower case letters were to be identical

in text modes 1 and 2.

Database variables COLORO through COLOR4 contain the current color
register assignments:; these are also stored in the hardware color
registers aspart of the stage 1 VBLANK process, thus providing
synchronized color changes. Appendix H provides more information
regarding the color registers.

Database variable SAVMSC points to the lowest memory address of
the screen data region, which corresponds to the data displayed
at the upper left corner of the display.

When the display handler receives an OPEN command, it first de-—
termines the screen mode from the OPEN IOCB. It then allocates mem-—
ory from the end of RAM (as specified by database variable RAMTOP)
downward; first for the screen data and then for the display list
I+ thereis sufficient memoryavailable, the screen data region is
cleared, the display list is created, and the display list address
is stored to the database

Screen Editor (E:)

The Screen Editor is a read/write handler that uses the Keyboard
handler and the Display handler to provide "line at a time"
input with interactive editing functions, as well as formatted
ouvtput.

The Screen Editor supports the following CID functions:

OPEN

CLOSE

GET CHARACTERS
GET RECORD

PUT CHARACTERS

&0

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. AFPROVAL
OPERATING SYSTEM, CO16555

PUT RECORD
GET STATUS (null function)

The Screen Editor may produce the following error statuses:
see Keyboard handler and Display handler.

The Screen Editor is one of the resident handlers, and therefore has a
set of device vectors starting at location E400.

The Screen Editor may be thought of as a program which reads key data
from the Keyboard handler and sends each character to the Display
handler for immediate display; and in addition, accepts data from the
user to send to the Display handler. In addition, the Screen Editor
reads data from the Display handler (not the Keyboard handler’) for the
user. In fact, the Keyboard handler, Display handler and the Screen
Editor are all contained in one monolithic hunk of code, and thus, are
even more closely rTelated than indicated

Most of the behaviors already defined for the Keyboard handler and the
Display handler apply to the Screen Editor, so the discussions in this
section will pertain to deviations from those behaviors or to
additional features that are part of the Screen Editor only. The
Screen editor deals only with text data (screen mode 0O) as described
in section 5. A split screen configuration is allowed which is also
explained.

Whereas the Display handler allows the graphics and text screens to be
readable on program demand., the Screen Editor gives the operator at
the keyboard the control of what portion of the screen is to be read
and when it is to be read. The choice of when is governed by the
[RETURN] key, and the choice of where is governed by the location of
the cursor when the [RETURNI key is pressed. When the [RETURNI key is
pressed, the entire logical line within which the cursor resides is
then made available to the calling program. Trailing blanks in a
logical line are never returned as data, however. After all of the
data in the line has been sent to the caller (this may entail multiple
READ CHARACTERS functions if desired), the cursor is positioned to the
beginning of the logical line following the one just read.

CID function descriptions

The device specific characteristics of the standard CIO functions
(described earlier in section 5) are detailed below:

OPEN

The device name is ‘E’, and the Screen Editer ignores any device
number and filename specification, if included.

The Screen Editor supports the following option:

&1

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
DPERATING SYETEM, CO14555

7 0

s e e e L T

AUX1] tWIRY IF!
F—t—d—d—t—t—F—F—+

Where: R % W are the direction bits (read and write}.
F =1 indicates that a "forced read" is desired (see GET
CHARACTER and GET RECORD for more information).
CLOSE

No special handler actions.
GET CHARACTER and GET RECORD

Normally the Screen Editor will return data to the caller only when
prompted to do so by having the operator at the keyboard press the
[RETURN] key. However, the "forced read" OPEN option, allows a caller
to read text data without operator intervention; when a read operation
is commanded, the Screen Editor will return data from the start of the
logical line in which the text cursor is located and then move the
cursor to the beginning of the following logical line. A rvead of the
last logical line on the screen will cause the screen data to scroll.

A special case occurs when characters are output without a terminating
EOL and then additional characters are appended to that logical line
from the keyboard. When the [RETURNI key is pressed, only the keyboard
entered characters are sent to the caller, unless the cursor has been
moved out of and then back into the logical line, in which case all of
the logical line will be sent.

PUT CHARACTER and PUT RECORD

The handler accepts ATASCII characters as one character per byte
Sixteen of the 2546 ATASCII characters are control codes; the EOL code
has wuniversal meaning: but most of the other control codes have
special meaning only to a display or print device. The Screen Editor
processing of the ATASCII control codes is explained below:

CLEAR (%$7D) —— The current display is cleared of all data and the
cursor is placed at the home position (upper left corner of the
scTeen).

CURSOR UP ($1C) —— The cursor is moved up by one physical line. The
cursor will wrap from the top line of the display to the bottom line

CUREOR DOWN ($1D) —— The cursor is moved down by one physical line.
The cursor will wrap from the bottom line of the display to the top
line.

CUREOR LEFT (%1E) —- The cursor is moved left by one column. The
cursor will wrap from the left margin of a line to the right margin of
the same line.

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

CURSDOR RIGHT (%1F) —— The cursor is moved right by one column. The
cursor will wrap from the tight margin of a line to the left margin of
the same line.

BACKSPACE ($7E) —— The cursor is moved left by one column (but never
past the beginning of a legicical line) and the character at that new
pasition is changed to a blank (%$20).

SET TAB ($9F) —-— A tab point is established at the logical line
position at which the cursor is residing. The logical line tab
position is not synonymous with the physical line column position
since the logical line may be up te 3 physical lines in length. For
example, tabs may be set at the 15th., 30th. 45th, &60th and 75th
character positions of a logical line as shown below:

0 2 9 19 29 29 Screen column #.
——l————— e Fromrm e e Fommm R L/R = margins.
S T T——————— A logical line.
O e e e e R R S T-———————————— T- Xx = inaccesible
A e i i columns.

Note the effect of the left margin in defining the limits of the
logical line.

The handler default tab settings are shown below:

o 2 Q 19 29 39 Screen column #.
Hel s R eayes S s R L/R = margins.
% X TP rmm oo Tommimmemmt Tt Temmmm—— T A logical line.
B S Tommmmemmmemes T T Tom——m—— T x = inaccesible
O T e mrimens Tromrmmammei e i Tiremsmmomomes T columns.
CLEAR TAB ($9E) —— The current cursor position within the logical line

is cleared from being a tab point. There is no "clear all tab points"
facility provided by %the handler.

TAB ($7F) —— The cursor 1is moved to the next tab point in the current
logical line, or to fthe beginning of the next line if no tab point is
found. Note that this function will not increase the logical line
length to accommodate a tab point outside the current length (e.g. the
logical line length is 38 characters and there is a tab point at
position 50).

INSERT LINE (%9D) —— The physical line in which the curszor resides,
and all physical lines below that line, are moved down by one physical
line; %the last leogical line on the display may be ftruncated as a
result. The blank physical line at the insert point becomes the
beginning of & new logical line. A logical line may be split into two
legical lines by this process, the last half of the original logical
line begin concatenated with the blank physical line formed at the
insert peoint

&3

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO014555

DELETE LINE (%$9C) —— The logical line in which the cursor resides is
deleted and all data below that line is moved upward to fill the void
Empty logical lines are created at the bottom of the display.

INSERT CHARACTER (%$FF) —— The character at the cursor position, and
all remaining characters in the logical line. are moved one positien
to the right and the character at the cursor position is set to blank.
The last character of the logical line will be lost when the logical
line is full and a character is inserted. The number of physical lines
comprising a logical line may increase as a tTesult of this function.

DELETE CHARACTER ($FE) —- The character on which the cursor resides is
removed, and the remainder of the logical line to the rtight of the
deleted character is moved to the left by one position. The number of

physical lines comprising a logical line may decrease as a result of
this function.

ESCAPE ($1B) —-— The next non—EOL character following this code is
displayed as data, even if it would normally be treated as a control

code. The sequence ESC ESC will cause the second ESC character to be
displayed.

BELL ($FD) —- An audible tone is generated; the display is not
modified.
END OF LINE (%9B) —— In addition to its record termination function,

the EOL causes the cursor to advance to the beginning of the next
logical line. When the cursor reaches the bottom line of the screen,
the receipt of an EOL will cause the screen data to scroll vpward by
one logical line.

Output start/stop using the [CTRLI-1 key is processed. as explained in
section S:Display handler (S:).
GET STATUS

The handler takes no action other than to set the status to $01.

User alterable database variables

See also the Display handler database variable discussion.
CURSOR POSITION (split screen)

When in a split screen configuration, ROWCRS and COLCRE are associated
with the graphics portion of the display and two other variables,
TXTROW L[02920]1 and TXTCOL [02911, are associated with the text windouw.
TXTROW is a single byte, and TXTCOL is two bytes with the least
significant byte being at the lower address. Note that the most
significant byte of TXTCOL should always be zero

64

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO0146555

The home position (0,0} for the text window is the upper left corner
of the window.

ENABLE/INHIBIT OF CONTROL CODES IN TEXT

Normally all text mode control codes are operated upon as received,
but sometimes it is desireable to have the control codes displayed as
if they were data characters. This is done by setting the variable
DSPFLG [O2FE] to any non—-zero value before outputting the data
containing control codes. Setting DSPFLG to zero restores normal
processing of text control codes

Cassette handler (C:)

The Cassette device is a read or write device with a handler
that supports the following CIO functions:

OPEN

CLOSE

GET CHARACTERS

GET RECORD

PUT CHARACTERS

PUT RECORD

GET STATUS (null function)

The Cassette handler may produce the following error statuses:

$80 —-- [BREAKJ] key abort.

$84 —— Invalid AUX1 byte on OPEN.

$88 -- End-of-file.

$8A—-20 —— SI0 error set (see Appendix C).

The Cassette handler is one of the resident handlers, and therefore
has a set of device vectors starting at location E440C.

CIOD function descriptions

The device specific characteristics of the standard CIO functions are
detailed below:

OPEN

The device name is ‘C‘, and the handler ignores any device number and
filename specification, if included.

The handler supports the following option:
7 0
+—t—t—t—t—t—t—+—+

AUX2 HI H
et b — b — b —+

65

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C0146555

Where: C = 1 indicates that the cassette is to be read/written without
stop/start between records (continuous mode).

When the cassette is OPENed for input, a single audible tone is
generated, using the keyboard speaker, as a prompt for the operator to
verify that the cassette player is setup for reading (power on, Serial
Bus cable connected, tape cued to start of file and PLAY button
depressed). When the cassette is ready, the operator may press any
keyboard key (except [BREAKI]I) to initiate tape reading.

When the cassette is OPENed for output, two closely spaced audible
tones are generated, using the keyboard speaker, as a prompt for the
operator to verify that the cassette player is setup for writing (as
above, plus REC button depressed). When the cassette is ready., the
operator may press any keyboard key (except [BREAK]) to initiate tape
writing. Note that there is no way for the computer to verify that the
REC button (or even the PLAY button) is depressed, so it is possible

for the file not to be written, with no immediate indication of this
fact.

There is a potential problem with the cassette in that when the
cassette is OPENed for writing, the motor keeps tunning until the
first record (128 data bytes) is written. If 128 data bytes are
written or the cassette is CLOSEd within about 30 seconds of the OPEN:
and no other serial bus I/0 is performed, then there is no problem.
However, if those conditions are not met, some noise will be written
to the tape prior to the first tecord and an error will occur when
that tape file is read later. If lengthy delays are anticipated
between the time the cassette file is OPENed and the time that the
first cassette record (128 data bytes) is written, then a dummy record
should be written as part of the file; typically 128 bytes of some
innocuous data would be written, such as all zeroes, all $FFs or all
blanks (%20).

The system will sometimes emit whistling noises after cassette I/0 has
occurraed. The sound can be eliminated by storing %03 to SKCTL C[D20F1,
thus bring POKEY out of the two—-tone (FSK) mode.
CLOSE
The CLOSE of a tape read stops the cassette motor.
The CLOSE of a tape write does the following:

Writes any remaining user data in the buffer to tape.

Writes an End-of—-file record.

Stops the cassette motor.

GET CHARACTERS and GET RECORD

The handler returns data in the following format:

&b

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO16555

7 0
Fmt—t bt == — bt
d data byte H
et —t— et —p—t——+

PUT CHARACTERS and PUT RECORD
The handler accepts data in the following format:

7 0
=t —t—F—F—t—t—F+—+
H data byte H
b —t—t— b —t—t—+—+

The handler attaches no significance to the data bytes written, a
value of $9B (EOL) causes no special action.

GET STATUS

The handler does no more than set the status to $01i.

Theory of operation.

The cassette handler writes and reads all data in fixed length records
of the format shown below:

b — b= —

i1 01010 11 Speed measurement bytes
+—t—t—t—t—t—F—t—+

ti01 01 010 1

=ttt —t—t—t—t—

i control byte |

=t =t —t—t—f—t—p ot

H 128 H

= data =

H bytes !

b —

H checksum H (Managed by SI0O, not the
+—t—t—t—t =ttt handler).

The control byte contains one of three values:
$FC indicates the rvecord is a full data record (128 bytes)
$FA indicates the tecord is a partially full data record; fewer
than 128 bytes were supplied by the user. This case may occur only
in the record prior to the End—of-file. The number of user
supplied data bytes in the record is contained in the byte prior

to the checksum.

$FE indicates the record is an End-of file rtecord; the data
portion is all zeroes for an End-of-file rTecord.

&7

REPRDDUCTION PROHIBITED WITHDUT PUBLICATIONS DEPT. APPROVAL
DOPERATING SYSTEM, CO16555

The checksum is generated and checked by the SI0 routine and is part
of the tape vecord, but is not contained in the handler’s record
buffer CASBUF [O3FD1].

The processing-oF the speed measurement bytes during cassette reading
is discussed in section 4:Central database description.

File structure

The Cassette handler writes a file to the cassette device with a file
structure that is totally imposed by the handler (soft format). A file
consists of the following three elements:

A 20 second leader of mark tone.
Any number of data record frames.
End—of file frame.

The cassette frames referred to above are formatted as shown below:
frame = pre-rtecord write tone (PRWT),
+ data record.

+ post—-record gap (PRG)

The non—-data portions of a frame have characteristics which are
dependent upon the write OPEN mode, i.e. continuous or start/stop.

Stop/start PRWT
Continuous PRWT

= 3 seconds of mark tone.

= .25 seconds of mark tone.

Stop/start PRG up to 1 second of unknown tones

Continuous PRG from O to n seconds of unkonwn tones, where n is
dependent upon user program timing.

o

The inter—-record gap (IRG) between any two records will thus consist
of the PRG of the first record followed by the PRWT of the second
record.

Printer handler (P:)

The Printer device is a write only device with a handler that supports
the following CIO functions:

OPEN

CLOSE

PUT CHARACTERS
PUT RECORD

GET STATUS

The Printer handler may produce the following error statuses:

B8A-720 -—- SI0 error set (see Appendix C).

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO016555

The Printer handler is one of the resident handlers, and therefore has
a set of device vectors starting at location E430.

CID function descriptions

The device specific characteristics of the standard CID functions are
detailed below:

OPEN

The device name is ‘P’, and the handler ignores any device number and
filename specification, if included.

CLOSE

The handler writes any data remaining in its buffer to the printer
device, with trailing blanks to fill out the line.

PUT CHARACTERS and PUT RECORD
The handler accepts print data in the following format:

7 (o]
s s St St S R
H ATASCII H
b o e — h —

The only ATASCII control code of any significance to the handler is
the EOL character. The printer device ignores bit-7 of every data byte
and prints a sub—set of the Temaining 128 codes, see Appendix G for
the printer character set

The handler supports the following print option:

7 ¢}
e — k=
AUX2 i print mode H
t=t—t—F—F—t—F—+—+

Where: $4E (‘’N’) selects normal printing (40 chars per line).
$53 (’S’) selects sideways printing (2% chars per lineJ.
$57 (‘W’) selects wide printing (not supported by printer
device. }.
Any other value (including 00) is treated as a normal (N) print
select, without producing an error status.

GET STATUS
The handler obtains a four byte status from the printer

controller and puts it in system location DVETAT [O2EAIJ. The
format of the status bytes is shown below:

69

REPRODUCTIDN PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C01&555

et — o — bk —

i command stat. | DVETAT + O
s S SRR S R W N G
i AUXZ of prev. | # 1
s S SRR S R S S
H timeout H + 2
s sl ST S S S S SR
H (unused) H + 3
s St S S S A R SR

The command sftatus contains the following status bits:

Bit-0 indicates an invalid command frame was received.
Pit—-1 indicates an invalid data frame was received.
Bit-7 indicates an intelligent controller (normally = 0).

The next byte contains the AUXZ2 value from the previous operation.

2 timeout byte contains a controller provided maximum timeout value
{in seconds:

Theory of operation.

The ATARI BZémgrinter is a line at a time printer, vtather than a
character at a time printer, so the user data must be buffered by the
handler and szent tc the device in records corresponding to one print
iine {40 characters for normal, 29 characters for sideways).

The printer device does not attach any significance to the EOL
character, so the handler dces the appropriate blank fill whenever it
sees an EOL.

Disk File Manager (D::

The Fila Management Subsystem (FMS) includes s disk boctable (RAM
resident) DFM which maintains a ccollection of named

files on diskettes. Up to 4 disk drives (D1: through D4:) may be
accessed, and up to 64 files per diskette may be accessed; the system
disks supplied by ATARI allow a single disk drive (D1) and up to 3
OPEN files, but these numbers may be altered by the user as described
later in this section. The Disk File Manager supports the following
CIO functions:

“

0

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C0146555

OPEN FILE

OPEN DIRECTORY
CLOSE

GET CHARACTERS
GET RECORD

PUT CHARACTERS
PUT RECORD

GET STATUS

NOTE
POINT
LOCK
UNLOCK
DELETE
RENAME
FORMAT

The Disk File Manager may produce the following error statuses:
$03 —— Last data from file (EOF on next read).

$88 ——- End-of-file.
$8A-90 —— SI0 error set (see Appendix C).

$A0 —— Drive number specification error.

$A1 —-— No sector buffer available (too many open files).
$A2 —— Disk full.

$A3 —— Fatal I/0 error in directory or bitmap.

$A4 —— Internal file # mismatch (structural problem).
$A5 —— File name specification error.

$A6 —— Point information in error.

$A7 —— File locked to this operation.

$A8 —— Special command invalid.

$A9 —— Directory full (64 files).

$AA —— File not found.

$AB —— Point invalid (file not OPENed for update).

CID function descriptions

The device specific characteristics of the standard CIO functions are
detailed below:

OPEN FILE

The device name is ‘D’ and up to 4 disk drives may be accessed (Di
through D4); the disk filename may be from 1 to 8 characters in
length with an optional 1 to 3 character extension.

The OPEN FILE command supports the following options:

+—+—+
AUX1 H WIRY
et

71

REPRODUCTION PROHIBITED WITHDUT PUBLICATIONS DEPT. APPROVAL
DPERATING SYSTEM, CO01655%5

Where: W 2 R are the direction bits.
WR = €O is invalid
61 indicates OPEN for read only.
10 indicates OPEN for write only.
11 indicates OPEN for read/write (update).

A =1 indicates appended output when W = 1.
The various valid AUX1 options are now explained.
OPEN input (AUX1 = $04)

The indicated file is OPENed for input. Any wild card characters are
used to search for the first match. If the file is not found, an error
status is returned, and no file will be OPENed.

OPEN output (AUX1 = $08)

The indicated file is OPENed for output starting with the first byte
of the file, if the file is not locked. Any wild card characters are
used to search for the first match. If the file already exists. the
existing file will be DELETED before OPENing the named file as a new
file. If the file does not already exist, it will be created.

A file OPENed for output will not appear in the directory until it has
been CLOSEd. If an output file is not properly CLOSEd, some or all of
the sectors that were acquired for it may be lost until the disk is
reformatted.

A file that is OPENed for output may not be OPENed concurrently
for any other access.

OPEN append (AUX1 = $09)

The indicated file is OPENed for output starting with the byte after
the last byte of the existing file (which must already exist), if the
file is not locked. Any wild card characters are used to search for
the first match.

If & file OPENed for append is not properly CLOSEd, the appended data
will be lost, the existing file will remain unmodified and some or all
of the sectors that were acquired for the appended portion may be lost
until the disk is reformatted.

DPEN update (AUX1 = %0C)
The indicated file (which must already exist) will be OPENed for

update provided it is not locked. Any wild card characters are used to
search for the first match.

The GET, PUT, NOTE and POINT operations are all valid, and may be
intermixed as desired.

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO16555

If a file OPENed for update is not properly CLOSEd, a sector’‘s worth
of information may be lost to the file. A file OPENed for update may

not be extended.

Device/filename specification

The handler expects to find a device/filename specification of the
following form:

DL<number»]: <filename<E0QL>

where:
<number> ::= 1121314
Zfilenamel ::= [<primary>1[. [extensionX]1]<terminator

an upper case alpha character followed by O to 7

alphanumeric characters. If the primary name is less

than 8 characters, it will be padded with blanks;, if
it is greater than B characters, the extra
characters will be ignored.

Cextension ::= Zero to 3 alphanumeric characters. If the
extension name is missing or less than 3 characters,
it will be padded with blanks;, if it is greater than
3 characters:, fthe extra characters will be ignored.

<terminator> ::= <{EOLZIblank:

Cprimaryl:

The following are all valid device/filenames for the disk:

Di: GAME. SRC
D: MANUALS
D: . WHY

D3: FILE.

D4: BRIDGE. 0C2

Filename wildcarding

The filename specification may be further generalized to include the
use of the "wildcard" characters ‘%7 and “*’. These wildcard
characters allow portions of the primary and/or extension to be
abhreviated as follows:

The ‘77 character in the specification allows any file name character
at that position to preoduce & "match'" For example:, WH? will match
files named WHD, WHY. WH4, etc., but not a file named WHAT.

The “#° character causes the vemainder of the primary or extension
field in which it is used to be effectively padded with 7
characters. Fer example, WH# will match WHO, WHEN, WHATEVER, etc.

Scome wvalid uses of wildcard specifications are shown below:

73

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO014&555

#. ERC Files having an extension of SRC.

BASIC. Files named BASIC with any extension.

*, 3# All files.

H#. 7 Files beginning with H and having a 0 or 1

character extension.

If wildcarding is used with an OPEN FILE command, the first file found

(if any) that meets the specification will be the one (and only one)
opened.

OPEN DIRECTORY

The OPEN DIRECTORY command allows the user to read directory
information for the selected filename(s), using normal GET CHARACTERS
or GET RECORD commands. The information read will be formatted as
ATASCII records, suitable for printing, as shown below Wildcarding
may be used to obtain information for multiple files or the entire
disk.

The OPEN DIRECTORY command uses the same CID parameters as a standard
OPEN FILE command:

COMMAND BYTE = %02

BUFFER ADDRESS = pointer to device/filename specification.

AUX1 = $06
After the directory is OPENed, a record will be rteturned to the caller
for each file that matches the OPEN specification. The record, which

contains only ATASCII characters, is formatted as shown below:

1
12345678901 22346520678

s e e S S A et e S S B S e =
isitbi primary name | ext !bicountiel
e s s S S S s et S S e e &
Where: s = ‘%’ or / 7, with 7"#7 indicating file locked
b = blank.
primary name = left justified name with blank fill.
ext = left justified extension with blank fill.
b = blank.
count = number of sectors comprising the file.

e = EOL ($9B).

After the last filename match record is returned, an additional record
is returned, which indicates the number of unused sectors available on
the disk. The format for this record is shown below:
/space 1lineed S
1
1 2345 678920123425 67
et —d = —pmf— b — b — b —F — b —F—F—F

74

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO16555

icount! F R E E SECTORSie:l
e s e R S e

Where: count = the number of unused sectors on the disk.
e = EOL ($9B).

The EOF statuses ($03 and $88) are rteturned as per a normal data file
when the last directory record is read.

The OPENing of another disk file while the directory read is OPEN will
cause subsequent ditrectory reads to malfunction, so care must be taken
to avoid this situation.

CLOSE

On closing a file read, the handler releases all internal resources
being used to support that file

On closing a file write, the handler writes any residual data from its
file buffer for that file to the disk, updates the directory and
allocation map for the associated disk, and releases all internal
resources being utilized to support that file

GET CHARACTERS and GET RECORD

Characters are read from the disk and passed to CID as a raw data
stream; none of the ATASCII control characters have any special
significance. A status of %03 is returned when the last byte of
file is rteturned and a status of $88 is returned if an attempt is
made to read past the last byte.

PUT CHARACTERS and PUT RECORD

Characters are obtained from CIO and written to the disk as a raw data
stream; none of the ATASCII control characters have any special
significance.

GET STATUS

The indicated file is checked and one of the following status byte
values is returned in ICSTA and register VY:

$01 —— File found % unlocked

$A7 —— File locked.
$AA —— File not found.

Special CIO functions

The DFM supports a number of SPECIAL commands: which are device
specifici these are explained in the paragraphs that follow.

NOTE (COMMAND BYTE = %295)

REPRODUCTION PROHIBITED WITHDUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C0O1&555

This command tTeturns to the caller the exact disk location of the next
byte to be read or written, in the variables shown below:

ICAX3 = 1l.s.b. of the disk sector number.
ICAX4 = m.s. b. of the disk sector number.
ICAXS = relative sector displacement to byte (0-124).

POINT (COMMAND BYTE = $26)

This command allows the user to specify the exact disk location of the
next byte to be read or written. In order to use this commmand, the
file must have been OPENed with the "update" option.

ICAX3 = 1.s.b. of the disk sector number.
ICAX4 = m.s.b. of the disk sector number.
ICAXS = relative sector displacement to byte (0-124).

LOCK

This command allows the user to prevent write access to any number of
named files. Locked files may not be deleted, renamed nor opened for
output unless they are first unlocked. Locking a file that is already
locked is a valid operation. The handler expects a device/filename
specificationi then all occurrences of the filename specified will be
locked, using the wildcard rules

The following IOCB paramters are setup by the user prior to calling
CIO:

COMMAND BYTE = %23
BUFFER ADDRESS = pointer to device/filename specification.

After a LOCK operation, the following IOCB parameter will have been
altered:

STATUS = result of LOCK operation; see Appendix B for a list of
possible status codes.

UNLOCK

This command allows the user to remove the lock status of any number
of named files. Unlocking a file that is not locked is a valid
operation. The handler expects a device/filename specification; then
all occurrences of the filename specified will be unlocked, using the

wildcard rules

The following IOCB paramters are setup by the user prior te calling
CID:

COMMAND BYTE = %24

BUFFER ADDRESS = pointer to device/filename specification.

76

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO16555

After an UNLOCK operation., the following IOCB parameter will have been
altered:

STATUS = resuvlt of UNLOCK operation; see Appendix B for a list of
possible status codes

DELETE

This command allows the user to delete any number of unlocked named
files from the directory of the selected disk and to deallocate the
disk space used by the files involved. The handler expects a
device/filename specification; then all occurences of the filename
specified will be deleted, using the wildcard rules

The following IOCB paramters are setup by the user prior to calling
CIO:

COMMAND BYTE = %21
BUFFER ADDRESS = pointer to device/filename specification.

After a DELETE operation, the following IDCE parameter will have been
altered:

STATUS = result of DELETE operationi see Appendix B for a list of
possible status codes

RENAME

This command allows the wuser to change the filenames of any number of
unlocked files on a single disk. The handler expects to find a
device/filename specification as shown below:

“device specr:<filename speck, Lfilename specCEOL>

All occurrences of the first filename will be replaced with the second
filename, using the wildcard rules. No protection is provided against
forming duplicate names, and once formed, duplicate names cannot be
separately renamed or deleted; however, an OPEN FILE command will
always select the first file found that matches the filename
specification, so that file will slways be accessible. The RENAME
command does not alter the content of the files involved, merely the
name in the directory.

Examples of soms valid REMNAME namz specifications are shown below:
Di:# SRC, % TXT
D: TEMP, FDATA
D2: Fs, F#. OLD

The #nllowing IDCDE paramters are setup by the user prior to calling
CIO:

COMMAND RBYTE = %20

77

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
DPERATING SYSTEM, CO014555

BUFFER ADDRESS = pointer to device/filename specification. .

After a RENAME operation, the following IOCB parameter will have been
altered:

STATUS = result of RENAME operation; see Appendix B for a list of
possible status codes

FORMAT

This command allows the user to physically format a diskette, which is
required before the diskette can be used to store data; the physical
formatting process writes a new copy of every sector on the "soft
sectored" diskette, with the data portion of each sector containing
all zeroes. When the physical formatting process is complete, the FMS
creates an initial Volume Table of Contents (VTOC) and an initial File
Directory; as part of this process the boot sector (#1) is permanently
reserved. The result of the FORMAT process will be the creation of an
"empty" non—-system disk.

The following IOCB paramters are setup by the user prior to calling
CIO:

COMMAND BYTE = %FE

BUFFER ADDRESS = pointer to device specification.

After a FORMAT operation, the following IOCB parameter will have been
altered:

STATUS = result of FORMAT operation: see Appendix B for a list of
possible status codes.

To create a system disk, a copy of the boot file must next be written
to sectors #2-n. This is accomplished by writing the file named

‘DOS. SYS’, which is a name that is recognized by the FMS even though
it is not in the directory initially.

Theory of operation

The resident OS5 initiates the disk boot process, as described in
section 10.2, by reading disk sector #1 to memory and then
transferring control to the "boot continuation address" (boot address
+ &). The boot continuation program contained in sector #1 then
continues to load the rtemainder of the File Management Subsystem to
memoTy using additional information contained in sector #1. The File
Management Subsystem loaded will contain a Disk File Manager and:
optionally:, a Disk Utilites (DDS) package

When the boot process is complete, the Disk File Manager will allocate
additional RAM for the creation of sector buffers. Sector buffers are
allocated based upon infeoermation in the boot Tecord as shown below: .

78

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO146555

Byte 9 = maximum number of OPEMN filesi one buffer per (the maximum
value is 8).

Byte 10 = drive select bitsi one buffer per (1-4 only).

The Disk File Manager will then insert the name ‘D’ and the
handler vector table address in the Device Table.

NOTE: There is a discrepancy between the Disk File Manager ‘s numbering
of disk sectors (0-719) and the disk controller’s numbering of
disk sectors (1-720)i as a result, only sectors 1- 719 are used

by the Disk File Manager.
The Disk File Manager uses the Disk handler to perform all disk reads

and writes; the DFM’s function is to support and maintain the
directory/file/bitmap structures as described in the following pages:

FMS DISK UTILIZATION

The map below shows the disk sector vtilization for a standard 720
sector diskette.

e ———————————— +
i BOOT record ! Sector 1
e +

H FMS BOOT i Sector 2 =

= file = H

H ‘DOS. 8YS”’ H Sector n +- Note 1
i + !

H User H Sector n+l -+

= File =

H Atrea 4 Sector 359 (%1467)
e —————————— e +

H VOTC(note 2) | Sector 360 ($148)
o ——————— e +

H File i Sector 361 ($1469)
= Directory =

' i Sector 368 ($170)
e e e e +

H User i

= File =

' Area i Sector 719 ($2CF)
o ——————— e +

H unused i Sector 720 ($2D0O)
o ———————————— e +

NOTE 1 - If the diskette is not a system diskette, then the User File
Area starts at sector 2 and no space is teserved for the FMS
BOOT file.

Note 2 —— VOTC stands for volume table of contents.

79

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C01&6555

FMS BOCT RECORD FORMAT

The FMSE BOOT record (sector #1) is a special case of disk booted

software as described in section 10.2. The format for the FMS BOOT
record is shown below:

e +
i boot flag = 0 | Byte O
e +
i # sectors = 1 g 1
o —————— e e +
H boot address H 2
+ +
' = 0700 |
A e e +
i init address i 4
+ +
I e e +
i JHMP = $4B g 6
+ +
H boot read i
+ continuation +
H address '
e + ———
i max files =2 | H ? Note 1
e e + '
! drive bits = 1 | H 10 Note 2
e —————————————— + !
i alloc dirc = 0 | H i1 Note 3
o + i
i\ boot image end | i
+ + { FMSE
\ address + 1 ' L e Ll Bt configuration
e pmem e e e + ! data
i boot flag <> O | i 14 Note 4
Fmm e —————— + b
i sector count | H 15 Note 5
e ————————— + H
H ‘DOS. 8YS” i H
+ starting + \
i sector number | ‘
e ————— + ———t
H code for 2nd i
i phase of boot |

NOTE 1 — Byte @ specifies the maximum number of concurrently OPEN

files to be supported. This value may range from 1 to 8.

20

NOTE

NOTE

NOTE

NOTE

BOOT

i

REPRODUCTION FPROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO16555

- Byte 10 specifies the specific disk drive numbers to be

supported using & bit enceding scheme as shown below:

&5 42210
et =t =ttt b=t

141312111 where a 1 indicates a selected drive.
F—t—t—t—t—t—+—+

Byte 11 specifies the buffer allocation direction. this byte
should equal O.

Byte 14 must be non—-zero for the second phase of the boot
process to initiate; this flag indicates that the file
‘DOS. 8YE’ has been written to the disk.

This byte is assigned as being the sector count for the
‘DOS. SYE’ file, but is in actuality an unused byte.

PROCESS MEMORY MAP

The diagram below shows how the boot sector (part of file DOS. SYS) and
suhsequent sectors are loaded to memory as part of the boot process.

e e e e + Memory address 0700
i data from boot '
= sector read by

077C

resident 08
B e +
i data from rest | 077D
t of ‘DOS. SYS” H :
{ read by the i H
= program in the = i
! boot sector. i 1
' i '
e e e A S S S + end of boot

VOLUME TABLE OF CONTENTS (VTOC)

The format for the FMS volume table of contents (VTOC, sector 3560) is

shown

in the diagram below:

o +
i directory type | Byte G Note 1
e -+
I maximum (lo) | 1 Note 2
+ sector # +
i = 02C5 (hi) |
e e +
{ number of (lo) | 2 Note 3
+ sectors -+

81

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO016555

10

Where the volume bit map is organized as shown below:

7 0
R ot Lt T SRS RS

i 11 23 456 71 Byte 10 of VTOC
t—d—t—t—d—t—t—f—t

8 9 i 11

' i 99

e s et S S S S

At each map bit position, a O indicates the corresponding sector is 1in
use and a 1 indicates that the sector is available

NOTE 1 - The directory type byte must equal O.

NOTE 2 - The maximum sector number is apparently not used because it
is incorrectly set to 709 decimal although the true maximum
sector number is 719, for the DFM.

NOTE 3 - The number of sectors available is initialily set to 7092 after
a diskette is freshly formatted; this number is adjusted as
files are created and deleted to show the number of sectors
available. The sectors which are initially reserved are 1
and 3&60-368.

FILE DIRECTORY FORMAT

There are eight sectors (361-368) rteserved for a file directory., each
sector containing directory information for up to eight files, thus
providing for a maximum of &4 files for any volume. The format of a
single 16 byte file entry is shown below:

82

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT.

Where the flag

Bit-
Bit-6
Bit-
Bit-0

7

S

1
i
i
i

I

OPERATING SYSTEM, C0146555

e +
H flag byte ¢ Byte O
e e +

H sector {(lo) | 1
+ count +

! (hi) 1
et +

i starting (lo) | 3
+ sector +

i number (hi) |

e ————————— e +

H (17 | 5
+ +

H (2) |

+ +

b (3) |

+ + B
! file (4) | :
-+ +

H name (9) |

+ +

H primary (&) |

+ +

H (7) |

+ +

H (8) |
et +

' file (1) | 13
+ +

H name (2) |

+ +

! extension (3) |
e +

byte has the following bits assigned:

£ the file has been deleted.
f the file is in use

f the file is locked.

f OPEN output.

The flag byte may take on the following values:

$00
$40
$41
$60
$80

entry
entry
entry
entry
entry

Sector count is

not yet used (no file).

in use (normal CLOSEd file).
in use (OPEN output file).

in use (locked file).
available (prior file deleted)

the number of sectors comprising the file.

APPROVAL

83

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
CPERATING SYETEM, CO1&5505

FMS FILE SECTOR FORMAT
The format of a sector in a user’s data file is shown below:

7 0
Fod b — b=t ——+
i data :
+—t b —d bt —f—+
i file # thi |
A e — o +
i forward pointeri +124
et — b — b — = —

S! byte count |
4

The file # is a redundant piece of information which is used to verify
file integrity; the file number field contains the value of the
directory position of that file. If there is ever a mismatch between
the file‘s position in the directory and the file number as contained
in each sector, the Disk File Manager will generate the error $A4.

The forward pointer field contains the ten bit value of the disk
sector number of the next sector of the file. The pointer will equal
zero for the last sector of a file.

The S bit indicates whether or not the sector is a "short sector" (one
containing fswer than 125 data bytes). § is equal to one when the
sector is short.

The byte count field contains the number of data bytes in the sector.

Mon CIO I/O

Some portions of the I/0 subsystem may or must be accessed
independently of the Central 1I/0 Utility (CIO); this section discusses
those areas.

Resident device handler vectors

All of the OS5 ROM resident device handlers may be accessed via sets of
vectors which are part of the 0S5 ROM. The primary reason for using
these vectors would be to increase the speed of I/0 operations which
utilize fixed device assignments, such as output to the Display
handler. For each resident handler there is a set of vectors ordered
35 shown below:

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM. CO0146555

e +
+— OPEN —+ +0
e +
+- CLOSE - +2
e +
+- GET BYTE —+ +4
e +
+- PUT BYTE —+ +6
e +
+- GET STATUS -+ +3
e —————————— +
+- SPECIAL —+ +10
e +
+- JMP ~+ +12
e INIT ~+
et +

See section @ for a detailed description of the data interface feor
each of these handler entry points.

Each of the vectors contains the address (lo,hi) of the handler entry
point minus one, so a technique similar to the one shown below is
requitred to access the desired routines:

VTBASE=$E400 i BASE OF VECTOR TABLE.
LDX #xx i OFFSET TO DESIRED ROUTINE.
LDA data
JSR GAVEC ;i SEND DATA TO ROUTINE
LDX #yy i OFFSET TO DIFFERENT ROUTINE.
JSR GOVEC i GET DATA FROM ROUTINE.
STA data

GOVEC TAY i SAVE REGISTER A.
LDA VTBASE+1, X i ADDREESE M. S. B. TO STACK.
PHA
LDA YTBASE, X i ADDRESS L.ES.B. TO STACK.
PHA
TYA i REETORE REGISTER A.
RTS i JUMP TO ROUTINE.

The JMP INIT slot in each set of vectors jumps to the handler
initialization entry (not minus one).

The base address of the vector set for each of the resident handlers
is shown below:

Screen Editor (E:) E400.
Display handler (S:) E410.
Keyboard handler (K:) E420.

REPRODUCTION PROHIBITED WITHDUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO16555

Printer handler (P:) E430.
Cassette handler (C:) E44GC.

The resident disk handler is not CIO compatible, so its
interface does not use a vector set; the disk handler interface
is discussed in section 5.

Resident Disk handler

The resident Disk handlier (not to be confused with the Disk File
Manager) is responsible for all physical accesses to the disk. The
unit of data transfer for this handler 1s a single disk sector
containing 128 data bytes

Communication between the user and the Disk handler is effected using
the system’s Device Control Block (DCB), which is also used for
nandler/SI0 communication as described in section 9. The DCB is twelve
bytes long:, in which some bytes are user alterable and some are for
use by the Disk handier and/or the Serial I/0 Utility (SI0). The user
supplies the vequired DCE parameters and then does a JSR DSKINV
CE452].

Each of the DCB bytes will now be described, and the system equate
file name for each will be given

SERIAL BUS I.D. —- DDEVIC [02001]

This byte is setup by the Disk handler to contain the Serial Bus I.D.
for the drive tec be accessad, and is not user alterable

DEVICE NUMBER -— DUNIT C[C2011]

This byte is setup by the user and contains the disk drive number to
be accessed (1 — 4.

COMMAND BYTE -- DCOMWND L[OZ2021]

This byte contains thes disk device command to be performed and is
setup by the user.

STATUS BYTE -- DSTATS L[O2031]

This byte contains the status of the command upon return to the
caller. See Appendix C for a list of the possible status codes.

EUFFER ADDRESE —— DBUFLO [0O2041 % DRBUFHI [0O2051

This two byte pointer contains the address of the source or
destination of the disk sector data. For the disk status command, the
user need not supply an address; the Disk handler will obtain the

status and insert the addrass of the status buffer in this field.

DISK TIMEOULUT VALUE -~ DYIMLD [O30&]

86

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO16555

This timeout value (in whole seconds) is supplied by the handler for
use by SIO.

BYTE COUNT —-— DBYTLO CO3081 & DBYTHI [O0O30%1]
This two byte counter indicates the number of bytes transferred to or
from the disk as a result of the most recent command, and is setup by
the handler.
SECTOR NUMBER -- DAUX1 [030A1 % DAUX2 [O030B1]
This two byte number specifies the disk sector number (0 - 719) to
read or write. DAUX1 contains the least significant byte, and DAUX2
contains the most significant byte
Disk handler commands
There are five commands supported by the Disk handler:

GET SECTOR

(PUT SECTOR ——##%#* not supported by handler 3#3xi#)

PUT SECTOR WITH VERIFY

STATUS REQUEST

FORMAT DISK
GET SECTOR (Command byte = %52)
The handler reads the specified sector to the user’s buffer and
returns the operation status. The following DCB parameters are set by
the user prior to calling the Disk handler:

COMMAND BYTE = $52.

DEVICE NUMBER = disk drive number (1-4).

BUFFER ADDRESS = pointer to user’s 128 byte buffer.

SECTOR NUMBER = sector number to read.
Upon teturn, several of the other DCB parameters will have been
altered, however, the STATUS BYTE will be the only one of interest to
the user.
PUT SECTOR (Command byte = $50)
##%# Not supported by current handler *#%
The handler writes the specified sector from the user’s buffer and
returns the operation status. The following DCB parameters are set by

the user prior to calling the Disk handler:

COMMAND BYTE = $50.

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO14555

DEVICE NUMBER = disk drive number (1-4).

BUFFER ADDRESS = pointer fte user’s 128 byte buffer.
SECTCR NUMBER = sector number to write.

Upon return, several of the other DCEB parameters will have been
altered, however, the STATUS BYTE will be the only one of interest to
the user.

PUT SECTOR WITH VERIFY (Command byte = $57)

The handler writes the specified sector from the user’s buffer and
returns the operation status. This command differs from PUT SECTOR in
that the disk controller reads the sector data after writing to verify
the write operation. (byte by byte compare???) Aside from the COMMAND
BYTE value, the calling sequence is identical to PUT SECTOR.

ETATUS REQUEST (Command byte = $53)

The handler obtains a four byte status from the disk controller and
puts it in system location DVSTAT [O2EA]. The operation status format
is shown below:

7 O
B s et (T T Ut S S S S
i command stat. | DVSTAT + O
T e NS S S RS
i hardware stat. ! + 1
et — b=t —
H timeout H + 2
b — e —f—f—
H (unused) H + 3

Fmt b —

The command status contains the following status bits:

Bit-0 = 1 indicates an invalid command frame was received
Bit-1 = 1 indicates an invalid data frame was received.
Bit-2 = 1 indicates that a PUT operation was unsuccessful.
Bit-3 = 1 indicates that the disk is write protected.
PBit-4 = 1 indicates active/standby

The hardware status byte contains the status register of the INS51771-1
Floppy Disk Controller chip used in the disk controller. See the

documentation for that chip for information relating to the meaning of
each bit in the byte.

The timeout byte contains a controller provided maximum timeout value
(in seconds) to be used by the handler.

The following DCB parameters are set by the user prior to calling the

Disk handler: ‘

28

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
DPERATING SYSTEM, CO146555

COMMARND BYTE ®53.

DEVICE NUMBER = disk drive number (1-4)

Upon return, several of the other DCB parameters will have been
altered, however, the STATUS BYTE will be the only one of interest to
the user.

FORMAT DISK {(Command byte = %$21)

The handler commands the disk% controller to format the entire disk and
then to verify it. All bad sector numbers, up to a maximum of &3, are
returned and put in the supplied buffer, followed by two bytes of all
ones ($FFFF). The following DCB parameters are set by the user prior
to calling the Disk handler:

COMMAND BYTE = #£21.
DEVICE NUMBER = disk drive number (1-43}.
BUFFER ADDREES = pointer fto user’s 128 byte buffer.

Upon teturn, the following DCB parameters will be of interest to the
USeT:

SETATUS BYTE = status of operation.

COUNT = number of bytes of bad sector information in
us ‘s buffer, not including the %FFFF terminator. If there
are no bad sectors, the count will equal zero.

Educational System Program Cassettes

Educational System Program Cassette tapes are recorded in 1/4 track
zsteren format at 1 7/8 inches petr second. The tape can be recorded in
hoth directions., where ftracks 1 and 2 are side A left and right; and

tracks 2 and 4 are side B right and left (industry standard). On each
side, the left channel (i or 4, outside tracks) is used for audio and
the right channel (2 or 3, inside tracks) is used for digital
information.

The audio channesl is recorded in the normal manner. The digital

channal is rvecorded wusing FSK =2ncoding and the recording is
asynchronous byite, with no record structure,

A1l data bits on the ftape (net including start/stop) are stored in bit
inverted form; that is, all zero bits are stored as one bits and vice
VET 53,

ATARI EDUCATIONAL SYSTEM CHARACTER SET

89

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CQ1&555

HEX CHAR NOTES

oo Null Reserved for Atari use——see text

01 SOH Dorsett screen hold character——see text.

o2 STX Inhibit marked text.

03 ETX Clear Screen

G4 EOT Stop Tape

05 ENG Enable marked text

06 ACK

07 BEL End of tape

o8 BS Select left response

c9 HT Select middle response

oA LF Select right response

0B VT Select any response

GC FF Reserved for Dorsett

oD CR Carriage rteturn

GE S0 Reserved for Dorsett

GF SI Reserved for Dorsett

i0 DLE -

11 DC1 Border Brown (note: colors may not match
this description.

12 DC2 Border red

13 DC3 Border Orange

14 DC4 Border Yellow

15 NAK Border Green

16 SYN Border Blue

17 ETB

18 CAN

19 EM Text background brown

1A SUB Text Background ted

iB ESC Text background orange

iC FS Text background yellow

iD GS Text background green

iE RS Text background blue

iF us

20 Space

21 -

22 "

23 Pi

24 3

25 %

264 Dverline

27 4

28 (

29)

2A Wheel

2B +

2C ’

2D -

2E :

2F /

30 Centered pericd

31 1

32 2

20

33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

41
42
43
44
45
46
47
48
49
4n
4B
ac
4p
4E
4F
50
51
52
53
54
55
54
57
58
59
SA
SB
5C
5D
SE
SF
60
61
62
63
b4
45
66
&7
68

SOoONCORQ

-~ e

N\

N<LYXECCHWNIARITOZIrxCHITMMOO@D> A I I N

7

>

ouQa HM OMNn on

REPRDODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL

OPERATING SYSTEM,

"Head "

"Torso"
(actually somewhat lowered)

Double parallel vertical slashes

C01655%

21

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSETEM. CO14555

49 i

LA J

&B k

&C 1

&D m

&E n

&F 0

7 p

71 q

72 5

73 =

74 t

75 u

76 v

T w

78 %

PATS Y

g 7A

7 "Re—entrant! {(dotted) slash

7C "Re—entrant"” (dotted) backslash

7C Right—-justified vertical slash

7D n—tilde {(for spanish)

7F three parallel horizontal lines

NOTE: All characters above are the same character

but “flagged’ (see text) if the top bit
is set, except that the flag bit is ignored
on all control characters except the fol-
lowing (flag is not allowed on NULL):

99 EM Inset Brown

FA SUB Inset Red

@B ESC Iinset Orange

GC FS Inset Yellow

2D GS Ingset Green

g = RE Inset Rlue

Serial bus I/O (SIO)

Input/Output to devices other than: the keyboard, the screen and the
ATARI controller pert devices must utilize the Serial I/0 bus. This
bus contains data, cantrel and clock lines to be used to allow the
computer to communicate with external devices on this "daisy chained"
tus. Every device on the bus has a unique identifier and will respond
only when directly addressed.

The resident syzftem nrovides a Serial I/0 Utility (SI0N), which
provides a standardized high—level program interface to the bus. SIO
is vtilized by the resident Disk, Printer and Cassette handlers and is
intended to be used by non-resident handlers (as described in section
?) or by applications, as well. For a detailed description of the
program/SI0 interface and for a detailed bus specification refer to
section 9.

Device characteristics

This section describes the physical characteristics of the devices
that interface to the ATARI 40C and ATARI 200 Personal Computer

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO16355

Systems. Where applicable, data capacity, data transfer rate, storage
format. SI0 interface and cabling will be detailed.

Keyboard

The keyboard input rate is limited by the 0OS keybeoard reading
procedure to be 40 characters per second. The code for each key is
shown in Table 7%, section 5. A picture of the ATARI 400 Personal
Computer System keyboard is shown on the following page. The keyboard
hardware has no buffering and is rate limifted by the debounce
algorithm used.

Display

The television screen display generator has many capabilities that are
nct used by the Display handler (as described in section 5 and shown
in Appendix H); there are additional display modes, object generators,
hardware display scroliing and many other features which are described
in the ATARI Personal Computer System HARDWARE MANUAL.

Since all display data is stored in RAM, the display data update rate
is limited primarily by the software routines that generate and format
the data and access the RAM. The generation of the display from the
RAM is accomplished by the ANTIC and CTIA chips wusing Direct Memory
Access (DMA) to access the RAM data.

The internal storage formats for display data for the various modes
are detailed in the ATARI Personal Computer System HARDWARE MANUAL.
ATARI 410 Program Recorder

The ATARI 410 Pragram Recorder has the following characteristics:

DATA CAFPACITY:

x%¥ characters per C-60 tape (unformatted).
xx characters per C—40 tape (formatted, continuous).
xx characters per C—-4C tape (formatted., stop/start)

DATA TRANSFER RATES:

nd (unformatted;’.

rx characters perv co
cond, average (formatted, stop/start).

xx characters per s
STORAGE FORMAT:
Tapes are rtecerded in 1/4 track stereo format at 1 7/8 inches per
second. The taps can be vecorded in both directions:, where tracks 1

and 2 are =zide A left and rtight: and tracks 3 and 4 are side B right
and left (industry standard). On each side. the left channel (1 or 4)

93

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO01&£55%

is used for audio and the right channel (2 and 3) is used for digital
information.

The audio channel is recorded the normal wsy. The digital channel 1is
recorded using the POKEY two—-tone mode producing FSK data at up to 600
baud. The MARK frequency is 5327 Hz and the SPACE frequency is 3995
Hz. The transmission of data is asynchronous byte serial as seen fraom
the computer; POKEY reads or writes a bit serial FSK sequence for each
byte, in the following order:

1 start bit (SPACE)
data bit-0 —+
data bit-1 '
+- O = SPACE. 1 = MARK.
data bit-6 |
data bit-7 —+
1 stop bit (MARK)

The only control the computer has over tape moticn is motor
start/stop; and this only i1f the FPLAY button is pressed by the user.
In order for recording to take place, the user must press both the REC
and PLAY buttons on the cassette. The computer has no way to sense the
position of these buttons, nor even if a 410 is cabled to the

computer, so the user must be careful when using this device
SI0 INTERFACE

The cassette device utilizes portions of the serial bus
hardware, but does not follow any of the protocol as defined in
section 9.

ATARI 820 Printer

The ATARI B20 printer has the following characteristics:

DATA CAPACITY:

40 characters per line (normal printing)
29 characters per line (sideways printing’

DATA TRANSFER RATES:

Bus rate: xx characters per second.
Print time (bursti: xx characters per second.
Print time (average): xx characters per second.

STORAGE FORMAT:

3 7/8 inch wide paper.
9X7 dot matrix, impact printing.

Normal format —-—
40 characters per line.

94

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO016555

& lines per inch (vertical).
12 characters per inch (horizontal).

Sideways format ——
29 characters per line.
6 lines per inch {vertical)
Q@ characters per inch (herizontal).

SI0 INTERFACE
The controller serial bus I.D. is $40.

The controller supports the following 5I0 commands (see section 5 for
morTe information regarding the handler and section 9 for a general
discussion of bus commands):

GET STATUS
The computer sends a command frame of the format shown below:

Device I.D. = $40,

Command byte $53.

Aduxilliary doesn’t matter.
Auxilliary doesn’t matter.

Checksum checksum of bytes above.

N e
L HE L

The printer controllay responds with a data frame of the format shown
in earlier in this section as part of the GET STATUS discussion.

PRINT LINE

The computer sends a command ¥rame of the format shown below:
Device I.D. = $4Q.
Command byte $57.
Auxilliary 1 = doesn’t matter.

Auxilliary 2 $4E for normal print or $53 for sideways.
Checksum checksum of bytes above.

]

The computer sends a data frame of the format shown below:
Laftmost character of line (column 1).
Next character of line {(column 22).
Rightmost character of line (column 40 or 29).

Checksum byte.

Note that the data frame size is variable, either 41 or 30 bytes in
length. depending vpon the print mode specified in the command frame.

95

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO1&555

ATARI €10 Disk Drive
The ATARI 81G™isk has the following characteristics

DATA CAPACITY:

720 sectors of 128 bytes each (Disk handler format).
709 sectors of 125 data bytes each (Disk File Manager format).

DATA TRANSFER RATES:

Bus rate: xx characters per second.
Seek time: xx msec. per track + xx msec.
Rotational latency: xx msec maximum (xx Tpm).

STORAGE FORMAT:

2 1/4 inch diskette, soft sectored by the controller.

40 tracks per diskette.

18 sectors per track

128 bytes per sector.

Controlled by National INS1771-1 formatter/controller chip.
Sector interlace factor =

SI0 INTERFACE

The controller serial bus I.D. s range from $31 {(for ‘D1‘) to $34
(for ‘D4’).

The controller supports the following SI0 commands (see earlier in
this section for information about the disk handler and section 9 for
a general discussion of bus commands):

GET STATUS
The computer sa2nds a command frame of the format shown below:

Device I.D. = $£31-24.

Command byte $53.

Auxilliary 1 doesn’‘t matter.
Auxilliary 2 doesn‘t matter.

Checksum checksum of bytes atove.

inomwnn

The disk controller responds with a data frame of the format shown
earlier in this section as part of the STATUS REGUEST discussion.

PUT SECTOR (WITH VERIFY!
The computer sends a command frame of the format shown below:
Device I.D. = $31-34

Cdmmand byte 37
Auxilliary 1 low byte of sector number

?6

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
DPERATING SYSTEM, C0O16555

Auxilliary 2 = high byte of sector number (1-720).
Checksum = checksum of bytes above.

The computer sends a data frame of the format shown below:

128 data bytes.
Checksum byte.

The disk controller writes the frame data to the specified sector,
then reads the sector and compares the content with the frame data.
The COMPLETE byte value indicates the status of the operation.

PUT SECTOR (NO VERIFY)
The computer sends a command frame of the format shown below:

Device I.D. = $31-34

Command byte $50.

Auxilliary 1 low byte of sector number.
Auxilliary 2 high byte of sector number (1-720).
Checksum checksum of bytes above.

The computer sends a data frame of the format shown below:

128 data bytes.
Checksum byte.

The disk controller writes the frame data to the specified sector,
then sends a COMPLETE byte value which indicates the status of the
operation.

GET SECTOR
The computer sends a command frame of the format shown below:

Device I.D. = $31-34

Command byte $52.

Auxilliary 1 low byte of sector number.
Auxilliary 2 high byte of sector number (1-720).
Checksum checksum of bytes above.

The disk controller sends a data frame of the format shown below:

128 data bytes
Checksum byte.

FORMAT DISK
The computer sends a command frame of the format shown below:
Device I.D. = $31-24

Command byte $21.
Auxilliary 1 doesn’t matter.

37

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYETEM, CO1&555

Auxilliary 2 = doesn‘t matter.
Checksum = checksum of bytes above.

The disk controller completely formats the disk (generates 40 tracks
of 18 soft sectors per track with the data portion of each sector
equal to all zeroes) and then reads each sector to verify its
integrity. A data frame of 128 bytes plus checksum is returned in
which the sector numbers of all bad sectors (up to a maximum of 63
sectors) are contained, followed by two consecutive bytes of $FF If

there are no bad sectors on the disk the first two bytes of the data
frame will contain %$FF

ATARI 250™Mnterface Module

See ATARI 850 Interface Module Manual.

I8

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYETEM, CO16959

6 — INTERUPT PROCESSING. .

Introduction

There are three general interrupt types processed by the 6502
microcomputer: chip reset, non—maskable interrupts (NMI) and maskable
interrupts (IRQ). The IRQ type may be enabled and disabled using the
6502 CLI and SEI instructions, whereas the NMI type may not be
disabled at the processor level; the NMI interrupts other than
[S/RESET] key may be disabled at the ANTIC chip, however.

The system events that can cause interrupts are listed below:
Chip reset - Power up

NMI - Display list interrupt (unused by 0OS)
Vertical blank (50/60 Hz)
[S/RESET] key

IRG@ - Serial bus output ready
Serial bus output complete
Serial bus input ready
Serial bus proceed line (unused by system)
Serial bus interrupt line (unused by system)
POKEY timers 1, 2 & 4
Keyboard key
[BREAK] key
6502 BRK instruction (unused by 0S)

The chip reset interrupt is vectored via location FFFC to E477 where a
JMP vector to the power up routine is located. All NMI interrupts are
vectored via location FFFA to the NMI interrupt service routine at
E7B4 and all IRQ interrupts are vectored via location FFFE to the IRG
interrupt service routine at E6F3, at which point the cause of the
interrupt must be determined by a series of tests. For some of the
events there are built in monitor actions and for other events the
corresponding interrupts are disabled or ignored. The system provides
RAM vectors so that the user may interceptf interrupts when necessary.

The remainder of section & will describe system actions for the
various interrupt causing events, define the many RAM vectors and
provide recommended procedures for dealing with interrupts

Chip reset

Chip reset is generated in response to a power up condition. The

system is completely initialized as described in section 7.

Non—maskable interrupts (NMI)

99

REFPRODUCTIDON PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO14555

When an NMI interrupt occurs, control is transferred through the ROM
vector directly to the system NMI interrupt service routine, where a
cavuse for the interrupt is determined by examining hardware register
NMIST [D40OF]1. If a display list interrupt is pending, a Jump is made
through the global RAM vector VDSLST [0200]; the 0S5 does not use
display list interrupts so VYDSLST is initialized to point to an RTI
instruction and must be changed by the user before a display interrupt
is allowed to be generated.

If the interrupt is not a display list interrupt, then a test is made
to see if 1t is a [S RESET] key interrupt; if so, then a jJump is made

to the [S RESEET] initialization routine (see section 7 for details of
[S RESET] initialization).

If the interrupt is neither a display list interrupt nor a [S/RESET]
key interrupt then it is assumed to be a vertical blank (VBLANK)
interrupt and the foliowing actions occur:

Registers A, X % Y are pushed to the stack.
The interrupt request is cleared (NMIRES [D40OF1)

A Jump is made through the "immediate" vertical blank global RAM

vector VVBLKI [0222]1 which normally points to the stage 1 VBLANK
PTOCESSOT,

Assuming that VYVBLKI has not been changed by the user. the following
actions occur:

The stage 1 VBLANK processor is executed (see section 6.3.1).

Tests are made to see if a critical code section has been
interrupted; if so, all registers are restored and an RTI
instruction returns from the interrupt to the critical section. A
critical section is determined by examining the CRITIC flag
[0042] and the processor I bit; if either are set then the
interrupted section is assumed to be critical.

If the interrupt was not from a critical section, then the stage
2 VBLANK processor is executed (see section 4.3. 2).

A Jump is then made through the "“deferred" vertical blank global
RAM vector VVELKD [G2241]1 which normally points to the VBLANK exit
routine.

Assuming that VVBLKD has not been changed by the user, the following
actions occur:

The 4502 A, X % Y registers are restored.
An RTI instruction is executed.

NMote that theres are ROM vectors to the stage 1 VBLANK processor and to .
the VBLANK exit routine available to the user who alters the deferred

100

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO14555

and immediate VBLANK RAM vectors but still wants to enable normal
system processes as well or rTestore the original vectors without
having to save them. The instruction at E45F is a JMP to the stage 1
VBLANK processori the address at [E460,21 is the value normally found
in VWBLKI. The instruction at E442 is a JMP to the VBLANK exit
routine; the address at [E4&63,2]1 is the value normally found in
YVBLKD.

Note also that a jump is made through vector YVBLKI on every VBLANK
interrupt, but a yump is made through vector VVBLKD only on interrupts
from non—critical code sections

Stage 1 VBLANK process

As part of the stage 1 VBLANK processing which will be performed at
every YBLANK interrupt are the following:

The 3 byte frame counter RTCLOK [0012-00141 is incremented;
RTCLOK+0O is the MSE and RTCLOK+2 is the LSB. This counter wraps
to zero when it overflows (every 77 hours or so) and continues
counting.

The Attract mode variables are processed as described in section
4 B10O-12.

System timer 1 CDTMVI [0218,2]1 is decremented if it is non-zero;
if the timer goes from non—-zero to zero then an indirect JSR 1is
performed via CDTMAL [0226, 2].

o

Stage 2 VBLANK process

As part of the stage & VBLANK processing which will be performed at
those VELANK interrupte which do not interrupt critical sections are
the following:

The &3S02 processor I bit is cleared, thus enabling the IRQ
interrupts.

Various hardware registers are updated with data from the 0S
database as shown belou.

Database item Hardware reg. Reason for update
SDLETH [0Z2313 DILISTH [D4031] Display list end.
SDLETL. {02302 DLISTL [D4021]

SPDMCTL [OZ2F] DMACTL [D40O]

CHBAS [GQF41] CHBASE [D407]

CHaCT LO2FR1] CHACTL. [D4Q11

GPRIOR L[O2&F] PRIOR [DOIR]

COLORC [C2C41] COL.PFO (DO1&3 Attrace mode
COLOR1 [OR2C51] COLPFi CDO171]

COLORZ [02C&] COLPF2 [DO18]

101

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO1&555

COLDORE [02C7] COLPF3 [DO121
COLOR4 [02C8] COLBK [DO1A1]
PCOLRO [O2CO01] COLPMC L[DO121]
PCOLR1 [O2C11 COLPM1 CDO1313
PCOLR2 [02C21 COLPMZ C[DO14]
PCOLRZ [02C21 COLPME LCLDO151]
Constant = 8 CONSOL [DOiF1 Console speaker off

System timer 2 CDTMV2 [021A,2]1 is decremented if it is non—zero;
if the timer goes from non-zero to zero then an indirect JSR is
performed through CDTMAZ2 [0228,21.

System timers 3, 4 % 5 are decremented if non—zero; the
corresponding flags are set to zero for each timer that changes
from non—zero to zero.

Timer Timer value Timer flag
3 CDTMV3 L[O21C, 21 CDTMF3 L[022A, 11
4 CDTMV4 [O21E. 21 CDTMF4 [O22C, 11
5 CDTMVS [0220, 2] CDTMFS [O22E, 1]

A character is read from the POKEY keyboard register and stored
in CH CO2FC] if auto-repeat is active.

The keyboard debounce counter is decremented if not equal to zero
and if no key is pressed.

Keyboard auto-repeat is processed as described in section 4.5 EB.

Game controller data is read from the hardware to the RAM
database as shown below.

Hardware reg. Database item Function
PENV [D40D1 LPENV L[02351] Lightpen.
PENH (D40C] LPENH [02341
PORTA [D3001] STICKO L[O2781 Joysticks ¥
STICK1 LOR791]
PTRIGN pot triggers

PTRIGO [0OR27C]
PTRIG1 [0O27D]
PTRIG2 [0O27E]
PTRIG3 L[O27F]
PORTB ([D3011 STICKZ [02741
STICK2 [027B1
PTRIGN
PTRIG4 [QR2B0)
PTRIGS [OR2811]
PTRIGSL [0O2E2]
PTRIG7 [02831]
PQTO CLD2001] PADDLGC L[OR701 Pot controllers

102

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

POT7 CD2071 PADDL7 [02771
TRIGO [DOO11] STRIGO [0284] Joystick triggers.
TRIG3 [DO04] STRIG3 [0287]

Maskable interrupts (IRQ)

When an IRQ interrupt occurs control is transferred through the
immediate IRQ global RAM vector VIMIRG [0216]1; ordinarily this vector
points to the system IRQ handler whose actions are described below.

A cause for the interrupt is found by examining the IRQST [D20E]
register and the PIA status registers PACTL [D3021 % PBCTL [D3031. For
the interrupt found, the interrupt status bit is cleared. One
interrupt event is cleared and processed for each interrupt service
entry; if multiple IRGs are pending a separate interrupt will be
generated for each until all are serviced.

The rest of this section describes how the system IRQ interrupt
service routine deals with each of the possible IRQ causing events.

The 6502 A register is pushed to the stack.

If the interrupt is due to serial I/0 bus output ready., then
clear the interrupt and Jjump through global RAM vector VSEROR
LO20C1.

If the interrupt is due to serial I/0 bus input ready, then clear
the interrupt and yjump through global RAM vector VSERIN [020A1].

If the interrupt is due to serial I/0 bus output complete, then
clear the interrupt and jump through global RAM vector VSERQOC
[O20E].

If the interrupt is due to POKEY timer #1, then clear the
interrupt and jump through global RAM vector VTIMR1 [02101].

If the interrupt is due to POKEY timer #2, then clear the
interrupt and jump through global RAM vector VTIMRR [0212].

If the interrupt is due to POKEY timer #4, then clear the
interrupt and fall into the following test due to @ bug in the 0S
interrupt processor!

If the interrupt is due to a keyboard key being pressed (other
than [BREAK], [STARTI]1, [OPTION1, [SBELECTI]), then clear the
interrupt and jump through global RAM vector VKEYBD [O2081.

If the interrupt is due to the [BREAK] key being pressed, then
clear the interrupt, set the BREAK flag BRKKEY [0011] to zero,
and clear the following: start/stop flag SSFLAG [ORQFFJ, cursor
inhibit flag CRSINH [O2F0] and Attract mode flag ATRACT [0QQ04D].
Then return from the interrupt after restoring the 4502 A
register from the stack.

103

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C0O16555

If the interrupt is due to the .serial I/0 bus proceed line, then
clear the interrupt and jJump through global RAM vector VPRCED
[02021].

If the interrupt is due to the serial I/0 bus interrupt line,
then clear the interrupt and jump throcugh global RAM vector
VINTER L[02041].

If the interrupt is due to a 46502 BRK instruction, then jump
through global RAM vector VBREAK [C2061.

If none of the above, restore the 6502 A register and return from
the interrupt (RTI).

Interrupt initialization

Whenever the system is powered up or the [S/RESET] key is pressed, the
interrupt subsystem is completely re—initialized. The hardware
registers are all cleared and the interrupt global RAM vectors are set
to the following configurations:

Vector Value Type Function

VDSLST [02001 E7B3 NMI RTI —— ignore interrupt
VVBLKI [0222]1 E7D1 & System stage 1 VBLANK.
CDTMA1 [02261 EBFO " SI0 timeout timer.
CDTMAZ2 [02281 0000 " Noe system function.
VVBLKD [0O224]1 E93E " System return from int.
VIMIRQ [02161 E6Fé6 IRQ System IRQ processor.
VSEROR [O020C1 EA9C " SIO.

VSERIN [020A1 EB11 " SI0.

VGEROC [O20E1 EADI1 i S10.

VTIMR1 [02101 E7B2 " PLA, RTI —— ignore int.
VTIMR2 [0212]1 E7B2 " PLA,RTI —— ignore int.
VTIMR4 [0214]1 E7B2 " #%*# doesn’t matter #i#x
VKEYBD [02081 FFBE u System keyboard int. handler.
VPRCED C[02021 E7B2 " PLA,RTI —-- ignore int.
VINTER [0204] E7B2 " PLA,RTI —— ignore int.
VEREAK [0Q020&1 E7B2 BERK PLA, RTI —- ignore int.

After system initialization is complete, the interrupt enable
situation is as follows:

NMT VBLANK enabled, Display list disabled
IRQ [BREAK] key and data key interrupts enabled, all others
disabled.

104

REPRODUCTION PRDOHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO016555

System timers

There are five general purpose software timers plus a frame counter
supported by the 0S5 The %fimers are two bytes in length (lo,hi) and the
frame counter RTCLOK L[CO012] is three bytes in length (hi,mid, lo). The
timers count downward from any non—zero value to zeroc and upon
reaching zero then either clear an associated flag or JSR through a
RAM vector. The frame counter counts upward, wrapping to zero when it
overflows. The table below shows the timers and the frame counter
characteristics:

Timer name Flag/vector Use

CDTMV1I [02181 CDTMAL [02241
CDTMV2 [021A1 CDTMAZ2 (02281

byte vector —— SI0 timeout
byte vector

CDTMV3 [021C] CDTMF3 [OZ2A] flag
CDTMV4 [0Q21E]1 CDTHMF4 [022C] byte flag
CDTMVS [02201 CDTMFS [O22E] byte flag

A b
o
uo
ot
D

RTCLOK [0012] byte frame counter.

Thesze timers are maintained as part of every VBLANK interrupt (stage
1 process); the other ftimers are subject to the critical section
test (stage 2 process) which may defer their updating to a later
VBLANK interrupt.

Usage notes

This swubsection describes the "tricks" that must be known in
order for the user to uftilize interrupts in conjunction with the
operating system.

FOKEY intertupt mask

ANTIC (display list % wvertical blank) and PIA (interrupt % proceed
iines!) interrupts may be masked directly as described in the Hardware
Manual. However, the POKEY interrupts (L[BREAK] key, data key:. serial
input ready, serial output ready. serial output done and timers 1,2 %
4y are all masked by the eight bits of a single byte IRQEN [D20E]
which happens to be a write—-only register. Thus, in order to
selectively vpdate individual interrupt mask bits, while not changing
the other bits, we must maintain a current value of that register in
RAM. The name of the variable wsed is PDKMSK L[O010] and it is used as
shown in the examples below:

EXAMPLE OF INTERRUPT ENARLE

SEI i 170 AVOID CONFLICT WITH IRQ ..
LDA POKMSK ; ... PROCESSOR WHICH ALTERS VAR.
ORa& #$rx i ENABLE BIT(S).

STA POKMER

STA IRGEN i 10 HARDWARE REG TOD.

CL.I

105

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

i EXAMPLE OF INTERRUPT DISABLE

SEI i TO AVOID CONFLICT WITH IRQ ..
LDA POKMSK i ... PROCESSOR WHICH ALTERS VAR.
AND #sFF-xx ;i DISABLE BIT(S).

STA POKMSHK

STA IRGEN i TO HARDWARE REGISTER TGO.

CLI

Note that the 0OS IRQ service routine uses and alters POKMSK, so
alterations to the variable must be done with interrupts inhibited. If
done at the interrupt level there is no problem, as the I bit is
already set: if done at & background level then the SEI and CLI
instructions should be used as shown in the examples

Setting interrupt and timer vectors

Because vertical blank interrupts are generally kept enabled so that
the frame counter RTCLOK is maintained accurately, there i1s a problem
with setting the VBLANK vectors (VVBLKI % VVRBLKD) or the timer values
(CDTMV1 through CDTMVYS) directly. A VBLANK interrupt could occur when
only one byte of the two byte value had been updated, leading to
undesired consequences. For this teason:, the SETVBY [E45F] rtoutine is
provided to perform the desired update in safe manner. The calling
sequence is shown below:

A = update item indicator
1 - 5 for timers 1 - 5.
6 for immediate VBLANK vector VVBLKI
7 for deferred VBLANK vector VVBLKD.
X = MEB of value to store.
Y = LSB of value to store.
JSR SETVBV

The A/ X % Y registers may be altered.
The display list interrupt will always be enabled on
return, even if disabled upon entry.

Note that it is possible that a vertical blank interrupt may be fully
processed during a call to this routine.

When working with the system timers, the vectors for timers 1 % 2 and
the flags for timers 3,4 % 5 should be set while the assocciated timer

is equal to zero, then the timer should be set to its (non—zero)
value.

106

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. AFPROVAL
OPERATING SYSTEM, C0146555

Stack content at interrupt vector points

. The table below shows the stack content at every one of the RAM
interrupt vector points:
VDSLST [02001 Display list return, P
VVBLKI [0222] =* VBLANK immed. return, P, A, X, Y
CDTMAL1 [0226] System timer 1 rteturn, P, A, X, Y, Teturn
CDTMA2 [02281] System timer 2 Treturn, P, A X, Y, veturn
VVBLKD [0224] # VBLANK defer. return, P, A, X, Y
VIMIRQ [0214]1 * IRG immediate return, P
VSEROR [020C1]1 Serial out rdy. rteturn:. P
VSERIN [020A] # Serial in rdy. return, P
VSEROC [OR20E] Serial out cmp. return, F
VTIMR1 [02101] POKEY timer 1 return, P
VTIMR2 [0212] POKEY timer 2 return, P
VTIMR4 [0214] POKEY timer 4 return, P
VKEYBD [0208]1 #* Keyboard data return, P
VPRSED [0202] Serial proceed return, P
VINTER [0204] Serial interr. return, P
VBREAK [0206] BRK instr. return, P

Entries flagged with ‘#‘ are initialized by the operating system at
power up; changing these vectors will alter system performance if not

done properly.

Miscellaneous considerations

The following paragraphs list a set of miscellaneous considerations
for the writer of an interrupt service Toutine.

RESTRICTIONS ON CLEARING OF ‘I’ BIT

Display list, immediate vertical blank and system timer #1 routines
should not clear the 6502 I bit. If the NMI leading to one of these
routines occurred while an IRQ was being processed, then clearing the
I bit will cause the IRQ to re—-interrupt with unknown result.

The 0S VBLANK processor carefully checks this condition after the
stage 1 process and before the stage 2 process

INTERRUPT PROCESS TIME RESTRICTIONS

If the serial I/0 bus is being used, then any user defined interrtupt
routine plus the stage 1 VBLANK routine should not exceed 400 usec.
SI0 sets the CRITIC flag while serial bus I/0 is in progress

INTERRUPT DELAY DUE TO "WAIT FOR SYNC"
Whenever a key is read from the keyboard, the Keyboard handler sets

. WSYNC [D40A] rtepeatedly while generating the audible click on the
console speaker. A problem occurs when interrupts are generated during

107

REPRODUCTIDN PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
CPERATING SYETEM. CO1i4&555

the wait for sync period: the processing of such interrupts will be
delayed by one horizontal scan line. Since this condition cannot be
prevented, a solution available to the user is to examine the line

count YCOUNT [D40CB1 and delay interrupt processing by one line when no
WSYNC delay has occurred.

Flowcharts

The following pages contain process flowcharts showing the main events
that occur in the NMI and IRQ interrupt processes

108

IRQ INTERRUET PROCESS

' VIMIRQ>_l

PUSH REG A
TO STACK

SERIAL CLEAR
OUT RDY? STATUS —> VSEROR
N
ERIAL
11 ROES Y] CLEAR VSERIN
- STATUS
CLEAR
>, VSER
STATUS o

CLEAR
VTIMR
STATUS [%

CLEAR VTIMR2
STATUS

HEOOE

POKEY
TIMER 47

CLEAR
STATUS

VTIMR4

5

CLEAR XKBD
sTATUS [VKEYBD

oy
o]
o]
(o
=
()

l108-a

BRK
INSTRUCT?

EXIT

CLEAR STATUS,

SET BREAK FLGp=»4 PULL A

CLEAR S/S
CLEAR
-
STATUS VPRCED
CLEAR —>1 VINTER

STATUS

VBREAK

PULL REG A
FROM STACK

108-B

NMI INTERRUPT PROCESS

VDSLST

N

PUSH REG A
TO STACK

VERTICAL
BLANK?

PUSH X & Y, | .
‘ CLEAR STATUS VVBLKI STAGE 1

CLEAR STAGE 2 VVBLKD
I BIT

XITVBLDy Y =

RESTORE
REGISTERS

l1o08-C

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING EYETEM., C0146555

7 System initialization

Introduction

System initialization takes place automatically in two circumstances:
power up (also called coldstart) and the pressing of the [S/RESET] key
{(warmstart). In addition, there are vectors for these processes at)
E474 (LS/RESET1) and E477 (power up) so that they may be user
initiated.

The power up initialization process is a superset of the [S/RESET]
initialization process; power up initializes both the 08 and user RAM
regions whereas [S/RESET] initializes only the 0S5 RAM region. In both
cases the outer level software initialization entry points are called
to allow the application to initialize its own variables

Pressing the S Reset key produces an NMI interrupt and does not
perform a 6502 chip S RESET. If the processor is locked up, S RESET
may not be sufficient to unlock it, and the system may have to

have power cycled to clear the problem.

The remainder of section 7 will discuss the details of the power up
and [S/RESET] processes. Because they have many common functions
(actually sharing common code), the power up process will be explained
first and then the [S/RESET]1 process will be explained in terms of its
differences from the power up process.

Power up initialization (coldstart)

The functions listed below are performed, in the order shown., as part
of the power up initialization process:

1. The following 6502 processor functions are performed.
IRQ@ interrupts are disabled using the SEI instruction.

The decimal flag is cleared using the CLD instruction.
The stack pointer is set to FF.

n

The warmstart flag WARMST [00081 is set to O (false).

3. A test is made to see if a diagnostic cartridge is in the "A" slot:
Cartridge address BFFC = 007%
The memory at BFFC is not RAM?
Bit-7 of the byte at BFFD = 17

If all of the above tests are true, then control is passed to the
diagnostic cartridge via the vector at BFFE, no return is expected.

4. The lowest memory address containing non—-RAM is determined by
testing the first byte of every 4K "block" to see if the content
can be complemented. If it can be complemented, then the original
value is restored and testing continues; if it can’t be

109

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO1&555

complemented, it is assumed to be the first non—-RAM address in the
system. The MSB of the address is stored temporarily in TRAMSZ
LOOCA].

2. Zerc 1is stored to all of the hardware register addresses shouwn
belcw (most of which aren’t decoded by the hardware):

DOGO through DOFF
D2CG0 through DZEFF
D200 through D3FF
D4C0 through D4FF

& RAM is cleared from location 0008 to the address determined in step
4 above.

7. The default value for the "non-cartridge® control vector DOSVEC
[O00A] is set to point to the blackbeoard rcutine. At the end of
initialization, control is passed through this vector if a
cartridge does not take control.

€. The coldstart flag CCLDST [0244] is set to -1 (local use).

?. The screen margins are set; left margin = 2, rvight margin = 29 for
a 3B character physical line (the maximum line size of 40
characters would be obtained by setting the margins to O &% 39). The
left margin is inset because many TV sets are manufactured such
that the two leftmost columns of the video picture are not entirely
visible on the screen.

10. The interrupt RAM vectors VDSLET [02001 through VVBLKD [0224] are
initializad;, =see section & for the initialization values.

11, Portions of the 0% RAIM are set to their reguitred non—zero values
as shown below:

The [BREAK] key flag BRKKEY [0CG111 = —-1i (false)

The ftop of memory pointer MEMTUP [O2E5] = the lowest non— RAM
address (from step 43, MEMTOP will be altered later when the
Screen Editor is OPENed in step 15

The bottom of memory pointer MEMLO [O2E73 = 0700; MEMLO may be
changed later if there is eithey a disk or cassette boot
operation.

The following veszident routines are called for initialization
—— Screen Editocr, Display handler, Keyboard handler, Printer
handier, Cassette handler. Central 1/0 Monitor (CID), Serial
I/0 tionitor (£1I0) and the Intervupt processor.

The ZTART key is checked, and if pressed. the cassette boot
request flag CKEY [OC4A] is set

H
X

&202 IRE interrupts sre enabled using the CLI instruction.

11C

13.

14.

15.

16.

i 8

ie.

19.

REPRODUCTION PROHIBITED WITHDOUT PUBLICATIONS DEPT. APPROVAL
DPERATING EYSTEM, CO146555

The Device Table HATABS [O031A] is initialized to point to the
resident handlers. See section 9 for information rTelating to the
device handler table

The cartridge slot addresses for cartridges "B" and "A" are
examined to determine if cartridges are inserted, if RAM does not
extend into the cartridge address space.

If the content of location PFFC is zevo, then a JSR is executed
through the vector at 9FFE., thus initializing cartridge "B". The
cartridge is expected to return.

If the content of location BFFC 1s zero, then a JSR iz executed
through the vector at BFFE, thus initializing cartridge "A" The
cartridge is expected to return.

IOCB #0 is setup for an OPEN of the Screen Editor (E) and the OFEN
is performed. The Screen Edifor will use the highest portion of
RAM for the screen and will adjust MEMTOP accordingly. I+ this
operation should fail, the enftire initialization process is
repeated.

A delay 1s effected to assure that a VELANMK interrupt has
cccurred. This 1s done so that the screan will be established
before continuing.

If the cassette boot request flag is set
a cassette bcot operation is attempted. Se
of the cassette boot operation

see step 11 above), then
e section 10 for details

I+ any of the fthree conditions stated below exists, an attempt is
made to boot frem the disk.

There are no cartridges in the slots

Cartridge "B" is inserted and bit—-0 of PFFD is 1.

Cartridge "A" is inserted and bit-0 of BFFD is 1.
See section 10 for deftails of the disk boot operation.

The coldstart flag COLDST is reset to indicate that the coldstart
process went to completion.

The initialization process is now compiete, and the contrelling
application is now determined via fthe remaining steps.

I+ there i3 an "A" cartridge inserted asnd it—-2 of BFFD is 1, +then
a JMP is executed through the vector at BFFA.

Else, if there is a "B" cartridge inserted and bi1t-2 of QFFD is 1,
then a JFMP is executed through the vectcr at FFFA.

111

REPRODUCTION PROHIBITED WITHDUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO01&555

Else a jump is executed through the vector DOSVEC which may point .
to the blackbosrd routine (default case), cassette booted software

or disk booted software. DOSVEC may be altered by the booted

software as explained in section 10.

[S/RESET] initialization (warmstart)

The functions listed below are performed, in the order shown. as part
of the [S/RESET] initialization process:

4. Same as power up step 1.

E. The warmstart flag WARMST [CO0R] is set to -1 (true).

€C. Same as power wup steps 3 through 5.

. 0S RAM is zeroed from locations 0O200-03FF and 0010-007F.

E. Same as power up steps 9 through 16.

F. If a cassette boot was successfully completed during the power up

initialization. then a JSR is executed through the vector CASINI
[O002]. See section 10.3 for details of the cassette boot process.

software, a JSR is executed through the vector DOSINI [OQ0C] if the
disk boot was successfully completed during the power up
initialization. See section 10 for details of the disk boot
process.

G. Same as power up step 18, except instead of booting the disk .

H. Same as power up steps 192 and 20.

Note that the initialization procedures and main entries for all
software entities are executed at every [S/RESET] as well as at power
up (see steps 14, 17, 18, 20, F and G). If the user supplied
initialization/startup code must behave differently in response to
[S/RESETI than it does to power up: then the warmstart flag WARMST

[00CR2] should be interrrogated; WARMST = O means power up entry, else
[S/RESET] entry.

112

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C0O14555

8 Floating point arithmetic package.

This section describes the BCD floating point package that is
resident in the 0S5 ROM in both the models 400 and 800.

Introduction

The floating point package maintains numbers internally as & byte
quantities; a 5 byte (10 BCD digit) mantissa with a 1 byte exponent.
BCD internal representation was chosen so that decimal division would
not lead to the rounding errors typically found in binary
representation implementations.

The package provides the following operations:

ASCII to F.P. conversion.

F.P. to ASCII conversion.

Integer to F.P. conversion.

F.P. to integer conversion.

F.P. add, subtract, multiply and divide.

F.P. logarithm, exponentiation and polynomial evaluation.
F.P. zero, load, store and move.

A floating point operation is performed by calling one of the provided
routines (each at a fixed address in ROM) after having set one or more
floating point pseudo registers in RAM. The result of the desired
operation will also involve floating point pseudo rtegisters. The
primary pseudo registers are described below and their addresses given
within the square brackets:

FRO [O0OD4]1 = 6 byte internal form of £.p. number.

FR1 [OOQOEQ] = 6 byte internal form of f£.p. number.

FLPTR [OOFC] = 2 byte pointer (lo,hi) to a f.p. number.

INBUFF [OOF3] = 2 byte pointer (lo,hi) to an ASCII text buffer

CIX [O0OF2]1 = 1 byte index, used as offset to buffer pointed to
by INBUFF L[OOF21.
LBUFF L[0580] = result buffer for the FASC rtoutine.

Functions/calling sequences

In the paragraphs that follow are the descriptions for all of the
routines; unless specifically mentioned in the calling sequence, it is
assumed that a pseudo register is not altered by a given routine. The
numbers in square brackets [xxxx] are the ROM addresses of the
Toutines.

ASCII to floating point conversion (AFP)

Function: This routine takes an ASCII string as input and produces a
floating point number in internal form.

i13

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
CPERATING SYETEM, CO14555

Calling sequence:
INBUFF = pointer to buffer containing the ASCII

representation of the number.
CIX = the buffer offset to the first byte of the ASCII

number.
JSR AFP [DBGO]
BCE first byte of ASCII number is invalid

FRO floating point number.
CIX = the buffer offset to the first byte after the ASCII
number,

Algorithm: The routine takes bytes from the buffer until it encounters
a byte which cannot be part of the number. The bytes scanned to that
point are then converted to a floating point number. If the first byte
encountered is invalid. the carry bit 1s set as a flag.

Floating point to ASCII conversion (FASQC)

Function: This Toutine converts a fleating point number from internal
form to its ASCII representation

Calling sequence:
FRO = floating point number
JER FASC [DEE&]
INBUFF = pointer to the first byte of the ASCII number.
The last byte of the ASCII representation has the most
significant bit (sign bit! set; no EOL follows.
Algorithm: The rToutine converts the number from its internal floating
point representaticon to a printable form {(ATASCII). The pointer INBUFF
will point to part of LBUFF, where the result is stored.

Integer to floating point conversion (IFP)

Functien: Thiz toutine converts a two byte unsigned integer (0O to
£5535) to floating point internal rTepresentation.

Calling sequence:
FRO = integer (FBO+C = LSE, FRO+1 = MSB}.

JER IFP [D94AA]

-
0
(@]
It

floating peint representation aof integer

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO016555

Floating point to integer conversion (FPI)

' Function: This routine converts a posifive floating point number from
its internal representation to the nearest two byte integer.

Calling sequence:

FRO = floating point number.

JSR FPI L[D?D21

BCS f.p. number is negative or = &£5535. 95
FRO = two byte integer (FRO+0 = LSB, FRO+1 = MSB).

Algorithm: The routine performs true rounding, not iruncation, during
the conversion process.

Floating point addition (FADD)

Function: This routine adds two floating point numbers and checksz the
result for out of Tange.

Calling sequence:

FRO = #loating point number.
FR1 = floating point number.

’ JSR FADD [DA&&]

BCS out of Tange tTesult.

FRO = result of FRO + FRI1.
FR1 is altered.

Floating point subtraction (FSUBE:

Function: This voutine subtracts two floating point numbers and checks=
the result for out of rTange

Calling sequence:

FRO = floating point minuend.
FR1 = floating point subtrahend.
JSER FSUB L[DA&O]

BCE out of Tange resulft

FRO = result of FRO - FR1
FR1 is altered.

Floating point multiplication (FMUL)

Function: This routine multiplies two floating point numbers and
. checks the tesult for out of rTange.

115

REPRDDUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO14555

Calling sequence:

FRO = floating point multiplier.
FR1 = floating point multiplicand.
JER FMUL LCDADRI1

R2CS out of rTange Tesult.

FRO = result of FRO # FR1.

FR1 is altered.
Floating point division (FDIV)

Function: This routine divides two floating point numbers and checks
for division by zero and for result out of range

Calling sequence:

FRO = floating point dividend.

FR1 = floating point divisor.

JER FDIV LC[DB281

BCS out of range result or divisor is zero.

FRO = re2sult of FRO / FR1.
FR1 is altered.

Floating point logarithms (LOG % LOG10)

Function: These routines take the natural or base 10 logarithms of a
floating point number.

Calling sequence:

FRO = floating point number.

JSR LOG [DECD] for natural logarithm
oT

JER LOG10 [DED1] for base 10 logarithm

BCS negative number or overflow.

FRO = floating point logarithm.
FR1 is altered.

Algorithm: Both logarithms are first computed as base 10 logarithms
uysing a 10 term polynomial approximation; the natural logarithm is
computed by dividing the base 10 tesult by the constant LOG10(e).

The logarithm of a number Z is computed as follouws:
F 3% (10 #3% Y) = Z where 1 <= F < 10 (normalization).

L = LDOG1O(F) by 10 term polynomial approximation.
LOG1O(Z) = Y + L.

LOG(Z) = LOG10(Z) / LDOG10(e).

114

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. AFPROVAL
OPERATING SYSTEM, C0146555

NOTE: This rtoutine does not return an error if the number input is
zero; the LOGL1O result in this case is approximately -129. 5,
which is not useful.

Floating point exponentiation (EXP and EXP1GC)

Function: This routine exponentiates.

Calling sequence:

FRO = floating point exponent (Z)

JSR EXP C[DDCO] for e #3 Z

or
JSR EXP10 L[DDCCJ for 10 %% Z
BCS overflow.

FRO = floating point result.
FR1 is altered

Algorithm: Both exponentials are computed internally as base 10, with
the base e exponential using the identity:

e #% X = 10##(X % LOG1O(e)).
The base 10 exponential is evaluated in two parts using the identity:

10 ## X = 10 ## (I + F) = (10 #% I) % (10 ## F} -— where I is the
integer portion of X and F is the fraction.

The term 10 ## F is evaluated using a polynomial approximation, and i0
##%¥ I is a straightforward modification to the floating point exponent.

Floating point polynomial evaluation (PLYEVL)
Function: This toutine performs an n degree polynomial evaluation.
Calling sequence:
X:Y = pointer (X = LSB) to list of f.p. coefficients (A{(i))
ordered from high order to low order.

A = number of coefficients in list.
FRO = floating point independent variable (Z).

JER PLYEVL L[DD40Q1]

BCE overflow or other error.

FRO = tesult of A(n)x*Z%%¥n + A(n—-1)#Zx#n-1 ... + A(1)%#Z +
ACO).

FR1 is altered.

Algorithm: The polynomial P(Z) = SUM{i=0 to n) (A{i)#Z##i) is computed
using the standard method shown below:

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO016555

P(Z) = (... (A(nY=Z + A(n=1))%Z + ... + AC(L)}#Z + ACO)
Clear FRO (ZFRO)

Function: This routine sets the contents of pseudo register FRO
to all zeroes

Calling sequence:
JER ZFRO [DA44]
FRO = zero.
Clear page zero floating point number {(ZF1:

Function: This routine sets the contents of a zero page floating point
number to all zeroes.

Calling sequence:
X = zero page address of f.p. number to clear.

JER ZF1 [DA44]

zero page f.p. number (X} zero.
Load floating point number to FRO (FLDOR and FLDOP)

Function: These rtoutines load pseudo rvegister FRC with the floating
point number specified by the calling sequence.

Calling sequences:
X, ¥ = pointer (X = LEB} to f.p. number
JER FLDOR [DD8?]

orT

FLPTR = pointer to f.p. number.

JSR FLDOP [DDEL32
FRO = floating pcint number {(in either caze;:.
FLPTR = pointer to f.p. number (in either case}.

Load floating peoint number to FR1 (FLDIR and FLIiP)
Function: These routines load ps :

eud
floating point number specified by

m oI
[
(SR

—mn

T FR1 with the
ng sequance.

[

0o r2gil
the ca

118

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO016555

Calling sequences:

As in prior description, except the result goes to FR1
instead of FRO. FLDIR [DD981 and FLD1iP L[DD9C1J.

Store floating point number from FRO (FSTOR and FSTOP)

Function: These routines store the contents of pseudo register FRO to
the address specified by the calling sequence:

Calling sequence:

As in prior descriptions, except the floating point number is
stored from FRO rather than loaded to FRO. FSTOR [DDA71 and FSTOP
CDDAB].

Move floating point number from FRO to FR1 (FMOVE)

Function: This routine moves the floating point number in FRO to
pseudo register FRI1.

Calling sequence:
JSR FMOVE L[DDBé]1

FR1 = FRO (FRO remains unchanged}.

Resource utilization

The floating point package uses the following RAM locations in the
course of performing the functions described in this section:

00D4 through OOFF
O57E through OSFF

If the floating package is not utilized, all of those locations are
available for the user program.

Implementation details

Floating point numbers are maintained internally as & byte quantities,
with 5 bytes (10 BCD digits) of mantissa and 1 byte of exponent. The
mantissa is always normalized such that the most significant byte is
non—zero (note "byte" and not "BCD digit").

The most significant bit of the exponent byte provides the sign for
the mantissa, O for positive and 1 for negative. The rtemaining 7 bits
of the exponent byte provide the exponent in excess 64 notation; the
resulting number represents powers of 100 decimal (not powers of 10).
A result of this storage format is that the mantissa holds 10 BCD
digits when the value of the exponent is an even power of 10 and holds
? BCD digits when the value of the exponent is an odd power of 10.

119

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM. CO14555

The implied decimal peoint is always to the immediate Tight of the
first byte so that an exponent that is less than 64 indicates a number
less than 1 and an exponent greater than or equal to 64 represents a
number greater than or equal to 1.

Zero is rvepresented by a zero mantissa and a zero exponent. In testing
for a result from any of the standard routines, it is sufficient to
test either the exponent or the first mantissa byte for zero.

The absolute value of fleoating point numbers must be greater than
10##-98 and less than 10##+98 or be equal to zero. There is perfect
symmetry between peositive and negative numbers with the exception that
negative zerc is never generated.

Although the precision of all computations is maintained at 2 or 10
decimal digits, the accuracy is somewhat less for those functions
involving polynomial approximations (logarithm and exponentiation).
Also, the problems inherent in all floating point systems are present
here; for example: subtracting twe very nearly equal numbers, adding
numbers of disparate magnitude, or successions of any operation will
all result in a loss of significant digits. For some types of
applications an analysis of the data range and the order of evaluation
of expressions may be rtequired.

The remainder of this section will give some examples of the internal
representation of some floating point numbers as an aid to
understanding the storage format. All numbers prior to this point have
been expressed in decimal notation, but the examples will use
hexadecimal notation (note that &4 decimal, the excess number of the
exponent, 15 40 when expressed in hexadecimal).

Number: +0.02 = 2 % 10##-2 = 2 % 100%%-1
Stored: 3F 02 CO OO0 CO OO0 (f.p. exponent = 40 - 1)

Number: —-0.02 = -2 # 10#%-2 = -2 % 100#x-1
Stored: BF 02 00 00 CO 00 (f.p. exponent = 80 + 40 - 1)

Number: +37.0 = 3.7 % 10#%#1 = 37 % 100%#x%0
Stored: 40 37 00 00 GO OO (f.p. expanent = 40 + 0O}

Number: -—4. 60312484 # 10%%x11 = —-46.03. .. #* 100#x%5
Stored: C5 44 02 01 24 B4 (f.p. exponent = 80 + 40 + 35)

Number: 0.0
Stored: OO0 00 Q0 OO GO 0OC (special case)

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C0146555

@ — Adding new device handlers/peripherals
. This section describes the interface requirements for a non resident

device handler that is to be accessed via the Central I/0 utilituy
(CIO); further, the Serial bus I/0 utility (SI0) interface is de@ined
for those handlers which vtilize the Serial I/0 bus
The I/0 subsystem is organized with three levels of software between
the user and the hardware. At the outer level is CIO, which performs
the following functions:

Logical device name to device handler mapping (on OPEN).

I/0 Contrel Block (IOCB) maintenance

Logical record handling.

User buffer handling.

Below CIO are the individual device handlers, which perform the
following functions:

Device initialization on power up and [S/RESET]
Device dependent support of OPEN and CLOSE commands
Byte at a time data input and output.

. Device dependent special operations.
Device dependent command support.
Device data buffer management.

At the bottom level (for Serial I/0 bus peripheral handlers) is SIO,
which performs the following functions:

Control of all Serial bus I/D, conforming to the bus proteocol as
described in section 9.

Bus operation retries on errors
Return of unified error statuses on error conditions.

At each interface there is a separate controcl structure used for
communication, as shown below:

User/CIO I1/0 Control Block (IOCH)
CI0O/Handler Zero page IOCB (ZIOCE:
Handler/SI0O Device Control Block (DCB)
‘ These relationships are shown graphically on the next page.

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM., CO014555

I/0 SUBSYSTEM FLOW DIAGRAM

o ——————— +
] user i
| PROGTFAR, [t e e G2
Fom——————— + i
e + i]
H I0CBs HEE 2T TR !
e s + i i
B T + !
i CID | N e 5 i
i utility | i DCB DR
e ———— + e H :
H * i
' A 1
1 ”~ 1
e ——————— + o e + e et % '
i ZIDCB | i Device | iDisk File] # i
S e + i Table i +~—-=-—1 Manager |-———— +
e + ! Fo e ——— + v
* i | I
B ettt LT e gom s R b
H i | i £
e + e + T et M S T
i Printer | i Cassettel - : i Keyboard! i Disk :
i Handler | i Handler | i Handler | i Handler | i\ Handier |
Fm S T — + B T + o ———— +
] 1 [} 1
] 1 ' 1
e o e e R
|
m—————— + !
H DCB L S L L
e — + !
e +
i SI0 i
v Utility |
e +
Where: ———- shows & control path
p

##¥#% shows the data structure required for a path.
Note the following:

1. The Keyboard/Display/Screen Editor handlers don‘i use
SI0.

2. The Disk handler is not callable directly from CIO.

3. The DCB is shown twice in the diagram.

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
DPERATING SYSTEM, C0O14555

Device Table

The Device Table is a RAM tesident table that contains the single
character device name (2. g. K, D, C, etc.) and the handler address for
each of the handlers known te CID. The table is initialized at power
up (and [S/RESETI) to contain entries for the following resident
handiers: Keyboard (K), Display (S), Screen Editor (E), Cassette (C)
and Printer (FP) To install a new handler, some procedure must insert
a Device Table entry after the table is initialized.

The table format 1s shown below:

e e e e e + -
HATAEBS [O031A3] i device name i H
S e i e e + :
i handler vector | +— one entmny
-+ + !
table address i i
A o i e e e e i e e s e + T
! moTe H
: antries H
o e e +

tes long and will hold a maximum of 12 entries. with
being zerc. CIO scans the table from the end to the
low address)i 30, in the case of multiple

a device name, the eniry nearest the end of the table

adence.

[IS s e |
m T T
m D

3 —=

e

o
)2}

e I
oo v
(= N =

N oHin T

b 2T =
(54

ct b
Lo T (R

L ol
[R =]
0 of
Mo~ E e

— M0
[=
=3 +
et 3L W
[R

ot
- |

Te

\J]
p=

E

The device name for each en%try 1z a single ATASCII character, and the
handler address points to the handler ‘e vector table, which will be
described in the following section.

CIlil/Handler interface

)

This zectien deszscribes the interface between the Central I/0 utility
and tne individual device handiers that are represented in the Device
Table :¢3s described in the preceding section).

Calling mechanism

Each handlemT has a vector table as shown below:
space lineed 14

e e o e +
+ OPEN vector -+ (low address)
-}. ______ e —— - — — - ————— +
+ CLUOSE vector -+

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
DPERATING SYSTEM, CO14555

+ GETSTAT vector +
+ SPECIAL vector +

e +
+ JMP init code +
+ + (high address)
e e -+

The Device Table entry for the handler points to the first byte of the
vector table.

The first six entries in the table are vectors (lo,hi) which contain
the address - 1 of the handler routine which handles the indicated
function. The seventh entry is a 6502 JMP instruction to the handler
initialization routine. CIO uses only the addresses contained in this
table for handler entry; each user/CI0 command translates to one or
more calls fto one of the handler entries defined in the vector table

The vector table provides to CID the handler addresses for certain
fixed functions to be performed; but, in addition, operation
parameters must be passed for most functions. Parameter passing is
accomplished using the 6502 A, X and Y registers and an IOCB in page O
named ZIOCB [00201. In general, rtegister A is wused to pass data,
register X contains the index to the originating IOCB and register Y
is used to pass status information to CIO. The zero page IOCB is a
copy of the originating IOCB; but in the course of processing some
commands, CID may alter the buffer address and buffer length
parameters in ZIOCE {(but not in the originating IOCB). see section
5.2.2 for information relating to the originating IOCB.

Reference Appendix B for the standard status byte values to be
returned to CIO in register V.

The following sections will describe the CIO/handler interface for
each of the vectors in the handler vector table.

Handler initialization

This entry doesn’t appear to have any function for non-resident
nandlers due to a bug in the current 0OS —— the Device Table 1is
cleared in responge to both [S/RESET] and power up: instead of just
power up, fthuse preventing this entry point from ever being

called. The rest of this section discusses the intended, but

not implemented, use of this entry point; conformation would be

in order to alliow compatibility with possible corrected versions

of the 0SS in the future.

The entry was tc have been called on all occurrences of power up and
5/

h
S/RESETI1; the handler is to perform initialization of its hardware

'y
R
5

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM., CO14555

and RAM data so as to assure proper processing of all CI0O commands
that follow.

Functions supported

This section describes the functions assseccisted with the first six
vectors from the handler vector table. A brief, device independent,
description of the CIO/handler interface and recommended actions are
given for each function vector.

OPEN

This entry is called in response to an OPEN command to CIO; the
handler is expected to validate the DOPEN parameters and perform any
required device initialization associated with a device OPEN.

At handler entry, the following parameters may be of interest:

X = index to originating IOCB.
Y = $92 (status = function not implemented by handler).

ICDNOZ [0021] = device number (i—-4, for multiple device
handlers).
ICBALZ/ICBAHZ L[0Q024/00C25]

address of device/filename
specification.

ICAX1Z/ICAX2Z [002A/0C2B1 device specific information.

The handler will attempt to perform the indicated OPEN and will
indicate the status of the operation by the value of the Y register.
The responsibility for checking for multiple OPENs to the same device
or file, where it is illegal, lies with the handler

CLOSE

This entry is called in response to a CLOSE command to CIO; the
handler is expected to release any held resources that rtelate
specifically to that device/filename, and for output filies to: 1) gsend
any data remaining in handler buffers to the device, 2) mark the end
of file, and 3) update any associated directories, allocation maps,
etc.

At handler entry, the following parameters may be of interest:

X = index to originating IOCB.
Y = $92 (status = function not implemented by handler).

ICDNOZ [0021]1 = device number (1-4, for multiple device
handlers).
ICAX1Z/ICAX2Z [C02A/002B]1 = device specific information.

The handler will attempt to perform the indicated CLOSE and will
indicate the status of the operation by the value of the Y register.

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO1&550

CI0O will release the associated IOCE after the handler rteturns,
regardless of the operation status value.

GETBYTE

This entry 15 c£alled in response to a GET CHARACTERE or GET RECORD
command teo CIO. The handler is expected to rteturn a single byte in the
A tegister or return an error status in the Y register.

At handler entry, the following parameters may be of interest:
X = inde2z toc originating ICCB.
Y = %22 {(status = function not implemented by handlier).

ICDNOZ £C021]1 = device number (1-4, for multiple device handlers?).
ICAXLIZ/ICAX2Z [OO2A/C02E] = device specific information.

The handler will obtain a data byte directly from the device or from a
handler maintained buffer and return to CIO with the byte in the A
register and the operaticon status in thes Y register.

Handlers which do not have short timeouts associated with the reading
of data (such as the Keyboard and Cassette handlers), must monitor the
[LBREAK]I key flag BRKKEY [O011] and return with a status of $80 when a
[BREAK] condition occurs. Ses section 4 E5 and section 12 for a
discussion of [BREAKX] key monitoring.

CIO checks for reads from device/files that have mot been OPENed or
OPENed for output only;: the handier will mnot be called in those cases

PUTBYTE

This entry
command to ¢
& register o

calied in rvesponse to a PUT CHARACTERS or PUT RECORD
he nhandley 13 expected to accept a single byte 1n the
return an error status in the Y rvegister.

At -handler entry, the following parameters may be of interest:

X = index to originating I10CB.

Y = €92 {status = functiocn not implemented by handler).

A = data puyte

ICDNDZ LC0211 = device number (1-4, +or multiple device
nandlersl,

ICAXIZ/ICAX2Z [CC2A/C02E] = device specific information.

The handler will zend the data byte divectly to the device or to a

handler maintained buffer and veturn to CIO with the operation status
in the Y register. IFf a handler maintained buffer fills, the handier
will send the bufferad data to the device before returning te CIO.

Cl0 checks for writes tao device/files that have not been OPENed or
OPENed for input only; the handler will net be called in those cases

et
n
o

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO016535

Now that the normal operation of PUTBYTE has been defined, a special
case must be added; any handler that will operate within the
environment of the 8K BASIC language interpreter has a different set
of rules. Because BASIC can call the handler PUTBYTE entry directly,
without going through CID, the zero—page IOCE (ZIOCB) may or may not
have a relation to the PUTBYTE call; thus the handler must use the
outer level IOCB to obtain any infeormatien that would normally be
obtained from ZIOCB. Note also in this case that the OPEN protection
normally provided by CID is bypasszed (i.e. PUTBYTE to a non-0OPEN
device/file and PUTBYTE to a read—-cnly OPEN}.

GETSTAT

This entry is called in response to a GET STATUS command to CID. The
handler is expected to return four bytes of status to memory or return
an error status in the Y register

At handler entry, the following parameters may bz of interest:

X = index to originating IOCE. Y = %92 (status = function not
implemented by handler)

ICDNDZ [00213 = device number (1-4, for multiple device handliers)
ICRALZ/ICBAHZ [0024/0023] = address of
device/filename specification.
ICAX1Z/ICAXEZ
LOO2A/002B] = device specific information.

The handler will get device status information Ffrom the device
controller and put the status bytes in DVETAT L[O2EAI] through DVSTAT+3
and return to CIO with the operaftion status in register Y.

The IOCE need not be DPERNed nor CLOSEd in order for the user to
request CIO to perform a GET STATUS operation: the handler must check
where there are restrictions. See section 9. 2. 2 for a discuszion

of
the CID actions involved with a GET STATUE cperation using both OPEN

and CLOSEd I0OCBs, and note the impaci of this on the use of the buffer
address parameter.

SPECIAL

This handler entry 1s wused to support all functions not handled by the
other entry points, such as disk file RENAME, display DRAW, etc
Specifically, 1f the IOCB command byte valu= is greater than %00, then
CI0O will use the SPECIAL entry point. The handler must interrogate the
command byte to determine if the requested cperation is supported.

At handler entry, the following parameters may be of interest:

X
Y

index to originating IOCE
$92 (status = function not implemented by handler).

[

ICDNOZ [O0021]1 = device number (1-4, for multiple device
handlersi.

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM. CO1&555

ICCOMZ L[00221 = command byte.

ICBALZ/ICBALH [0024/0025] buffer address
ICBLLZ/ICBLHZ [0028/002%] buffer length.

ICAX1Z/ICAX2Z [O02A/002R1 device specific information.

The handler will perform the indicated operation, if possible, and
return to CIO with the operation status in register VY.

The IOCB need not be OPENed nor CLOSEd in order for the user to
request CID to perform a SPECIAL coperationi the handler must check
where there are restrictions. See section 5 for a discussion of the
CIO actions involved with a SPECIAL operation using both OPEN and

CLOSEd IOCBs, and note the impact of this on the use of the buffer
address parameter.

Error handling

Error handling has been simplified somewhat by having CID handle outer
level errors and having SI0 handle Serial bus errors, leaving the
handler to process the Temaining errors. These errors include:

Out of range parameters.
[BREAK] key abort.
Invalid command.

Read after end of file.

The current handlers respond to errors wsing the following guidelines:
Keep the rtecovery simple (and therefore predictable % repeatable).
Do not interact dirvectly with the user for recovery instructions.
Lose as little data as possible.

Make all attempts to maintain the integrity of file oriented
device z=torage —— this involves the initial design of the
structural elements as well as error recovery techniques.

Resource allocation

Mon-resident handlers needing code and/or data space in RAM should use
the techniques listed below, in order %o assure nonconflict with other
parts of the 0S8, including other nonresident handlers

ZERO-PAGE RAM

There are no spare bytes of zero page RAM, and even if there were,

there is no allocation scheme to support multiple program assignment

of the spares. Therefore, the non—-resident handler must save and

restore the bytes of zero—page RAM it is going to use. The bytes to ‘
use must be chosen carefully, according to the following criteria:

128

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO16555

The bytes may not be accessed by an interrupt routine.
The bytes may neot be accessed by any non—interrupt code between
the time the handler modifies the bytes and then restores the

original values.

A simple save/restore technique would utilize the stack in a
manner similar to that shown below:

LDA COLCRS i (for example)

PHA i SAVE ON STACK.

LDA COLCRS+1

PHA

LDA HPOINT i HANDLER’S POINTER.
STA COLCRS

LDA HPOINT+1

STA COLCRS+1

XXX (COLCRS): Y ; DO YOUR POINTER THING.
PLA i RESTORE DLD DATA.
STA COLCRS+1

PLA

STA COLCRS

Note that for the example above, it would not be Jjudicious to call the
Display handler or the Screen Editor before restoring the original
value of COLCRS, as COLCRS is a variable used by those routines.

NON-ZERO-PAGE RAM

Again, there is no allocation scheme to support the assignment of
fixed regions of non-zero—-page RAM to any specific process: so0 the
handler has three choices:

1. Make a dynamic allocation at initialization time by altering
MEMLO [O2E71.

2 Include the variables with the handler for RAM resident
handlers; this still involves altering MEMLO at the time the
handler is booted.

3. If the handler is to be rTeplacing one of the rtesident handlers
by removing the resident handler’‘s entry in the Device Table,
then the new handler may use any RAM that the formerly rTesident
handler would have used.

STACK SPACE

In normal situations there are no rvestrictions on the use of the, stack
by a handler; however, if the handler is planning on pushing more than
a couple of dozen bytes to the stack, it should do a stack overflow
test and always leave stack space for interrupt processing.

REPRODUCTION PROHIBITED WITHDUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO01&555

Handler/SI0 interface

This section describes the interface between serial bus device
handlers and the serial bus I/0 wtility (SI0Y. SID completely handles
all bus transactions following the device independent bus protocol.
SI0 is rTesponsible for the following functions:

Bus data format and timing Ffrom computer end
Error detection, retries and statuses.
Bus timeout.

Transfer of data between the bus and the caller®s buffer.

Calling mechanism

€I0 has a single entry point SIOV [E459] for all operations, and all
parameters passed to S10 are contained in the Device Control Block
(DCB) [O0O3CC3, which contains the following bytes:

DEVICE BUS I.D. —-—- DDEVIC [0300C]

The bus I.D. of the dewvice is set by the handler prior te calling SIGO
{see Appendiz 1I3J.

DEVICE UNIT # —— DUNIT C[O03011

This byte indicates which of n unifts of a given device ftype to access
and is set by the handler prior to calling SI0i in general this value
comes from ICDNOZ. SIO will access the bus device whosze address is
equal to the wvalue of DDEVIC plus DUNIT minus one (the lowest unit
number is normally egual to one)

DEVICE COMMAND -- DCOMND L0302

This byte is set by the handler prior to calling SID and will be sent
to the bus device as part of the command frame i{zee section 9 for a
discussion of the command frame. and Appendix I for device command
byte values).

DEVICE STATUS -- DSTATS [0O3ZCZ2]

This byte is bi~directional; the handler will use 1t to indicate to

SI0 what to do after the command frame is sent and acknowledged. and
SI0 will use it to indicate to the handler the status of the rtequested
aperation.

Prior to an SI0O call:

130

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO016555

7 0
s ks ek LT SR SRR R S
TWIR unused H
B s ks r (Tl S S S

Where: W,R = 0,0 indicates neo data transfer is associated with the
operation.

1 indicates a data frame is expected from the device.

C indicates a data frame is to be sent to the device.

1 is invalid.

After an SI0 call:

7 O
B L LT STSSIY A Sue B &
H status code '

ot e S SRR S RS
See Appendix C for the possible SI0 operation status codes
HANDLER BUFFER ADDRESES —-- DBUFLO/DRBUFHI [0304/03051

This two byte pointer is set by the handler and indicates the source
or destination buffer for device data or status information.

DEVICE TIMEOUT —-- DTIMLO L[O20&1]

This byte is set by the handler and specifies the device timeout time
in units of 64/40ths of a second. For example, a count of & specifies
a timeout of 4.4 seconds.

BUFFER LENGTH/BYTE COUNT —- DBYTLO/DBYTHI [O308/020%1]

This two byte count 13 set by the handler and indicates the number of
data bytes to be tramnsferred into or out of the buffer, for the
current operation. This parameter is not rtaquired if the STATUS byte W
and R bits are both z2ro, indicating that no data transfer is to take
place.

in SI0D that causecs incorrect actions when the last

There 13 a bua
r uffer 15 in a memory address ending 1in $FF, such as
et

letE.‘ 2t a b
13EF, A2FF,

AUXTILIARY INFORMATION -—- DAUX1/DAUXZ2 [OI0A/C20B]

These two bytes are set
t

b
command frame by SI0; the

y the handler and are included in the bus
y have device specific meanings.

Functions supported
SI0 does not examine the COMMAND byte it s=nds to the device, as

all bus transactians are expected to conform to a universal
protocol which inciudes 3 forms. These formsz are stated below

131

REPRODUCTIDON PROHIBITED WITHDUT PUBLICATIONS DEPT. APPROVAL
DPERATING SYSTEM, CGC14£555

(as seen from the computer):
Send command frame.
Send command frame and send data Fframe.
Send command frame and rteceive data frame.

The command form is selected purely by the values of the W and R
bits in the ETATUS byte as described earlier.

Error handling

SI0 does the bulk of the error handling for the handler, in terms of
Serial bus errors, as indicated belouw:

Bus timeout —-- SI0 provides a uniform command frame and data frame ACK
byte timeout of 1/&60th of a second — O / + 1/60th. The handler
specifies the maximum COMPLETE byte timeout value in DTIMLO as
described earlier.

Bus errors —— SI0 detects and reports UART overrun and framing errors;
the sensing of these errors in any received byte will cause the entire
associated frame to be considered bad.

Data frame checksum error —— SI0 validates the checksum on all

received data frames and generates a checksum for all transmitted
frames.

Invalid response from device —— In addition to the error conditions
stated above, S5I0 checks that the ACK and COMPLETE responses are
proper (ACK = %41 and COMPLETE = $43). ACK stands for acknowledge

Bus operation retries —— SID will attempt one complete command retry
if the first attempt is not error free, where a complete command try
consists of up to 14 attempts to send (and acknowledge’) a command
frame, followed by a zingle attempt to receivethe COMPLETE code and
possibly a

data frame.

There is a bug in the rvetry logic for data writes, such that if the
command frame is ACKed by the controller, but the data frame is not
ACKed, then EI0 will retry indefinitely.

Unified error status codes —— SI0D provides device independent error
codes as shown in Appendix C. '

Serial I/0 bus characteristics and protocol
This section describes the electrical characteristics of the ATARI 400

and ATARI 800 Personal Computer Systems serial bus, the use of the bus
to send byftes of data, the organization of the bytes as "frames"

132

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO14555

(records), and the overall command sequences which utilize frames and
response bytes to provide computer/peripheral communication.

Hardware/electrical characteristics

The ATARI 400 and the ATARI B0O0O Personal Computer Systems communicate
with peripheral devices over a 19,200 baud asynchronous serial port.
The serial port consists of a serial DATA OUT (transmission) line, a
serial DATA IN (receiver) line and other miscellaneous control lines

Data is transmitted and received as 8 bits of serial data (LSE sent
first) preceded by a logic zero start bit and succeeded by a logic cne
stop bit. The serial DATA OUT is transmitted as positive logic (+4v =
one/true/high, Ov = zero/false/low). The serial DATA OUT line always
assumes its new state when the serial CLOCK OUT line goes high:; CLOCK
OUT then goes low in the center of the DATA DUT bit time.

An end view of the Serial bus connector at the computer or peripheral
is shown below {(the cable connectors would of course be a mirror
image):

0 o o o o o
0 0 0 o 0 0 0
1 3 S 7 2 11 13
where: 1 = computer CLOCK IN.
2 = computer CLOCK QOUT.
3 = computer DATA IN.
4 = GND.
5 = computer DATA OUT.
& = GND.
7 = COMMAND-
8 = MOTOR CONTROL.
? = PROCEED-
10 = +5v/READY.
11 = computer AUDIO IN.
12 = +12v.
13 = INTERRUPT-

CLOCK IN is not used by the present 0S and peripherals. This line can
be used in future synchronous communications schemes

CLOCK OUT is the serial bus clock. CLOCK OUT goes high at the start of
each DATA OUT bit and returns to low in the middle of each bit

DATA IN is the serial bus data line to the computer.

Pin 4 GND is the signal/shield ground line

133

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO146555

DATA DUT 1is the serial bus data line from the computer.
Pin & GND 1s the signal/shield ground line

COMMAMD— is normally high and goes low when a command frame is being
sent from the computer.

MDTOR CONTROL is the cassette motor control line (high=on, low= off).

PROCEED- is not used by the present 0S and peripherals (this line
is pulled high.

+3v/READY indicates that the computer is turned on and rteady. This
line may also be used as a +5 volt supply of3CmA current rating
for ATARI peripherals only

AUDIO IN accepts an audio zignal from the cassette

+12V is a +12 volt swupply of unknown current rating for ATARI
peripherals conly

INTERRUPT— is not used by the present D5 and peripherals (this line
iz pulled high

There are no pin reassignments made in the Serial bus cable, so pin 3,
the computer’‘s DATA IN line, is the peripheral s data output line; and
similarly for pin 3.

Serial port esiectrical specifications

Peripheral input:

ViH = 2. Gv min.

Vit = 0. 4v max.

IiH = 2Cua. max. @ ViH = 2. 0v
IlL = Sua. max. @ V1L = . 4v

Peripheral output {(open collector bipolar):

VoL G o4v max., @ 1.& ma.
VOH v min. with external 10CKohm pull-up

H!
4 1

Yoo /READY input.

ViH
V1L s
Input goes to logic zera when open.

Il4 = Ima. max.

i
n
oy
<
=1
s

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C01&555

Bus commands
The bus protocol specifies that all commands must originate from the
computer, and that peripherals will present data on the bus only when
commanded to. Every bus operatioen will go to completion before
another bus operaticon is initiated (no overlap!). An error detected at
any point in the command sequence will abort the entire sequence
A bus operation consists of the following elements

Command frame from the computer.

Acknowledgement (ACK) from the peripheral.

Optional data frame to or from the computer.

Operation complete (COMPLETE) from the peripheral.
COMMAND FRAME
The serial bus protocol provides for three types of commands: 1) data
send, 2) data receive and 3) immediate (no data —— command only)
There is a common element in all three types, 3 command frame
consisting of five bytes of information sent from the computer while

the COMMAND—- line is held low. The format of the command frame is
shown below:

o e e +
i device I.D. H
o e e e +
H command H
e +
i auxilliary #1 '
R +
i auxilliary #2 |
o e +
H checksum i
e +

serTial bus devices is being

The device I.D. specifies which of e
11 of device [.D. s).

th
addressed (see Appendix I for a t

The command byte contains a device dependent command (see Appendix I
for a list of device commands).
The auxilliary bytes contain more device dependent information.

The checksum byte contains the arithmetic sum cof the first four bytes
(with the carry added back after =2very addition).

COMMAND FRAME ACKNOWLEDGE

The peripheral being addressed wowuld normaily respond to a command
frame by sending an ACK byte ($41! to the computeri if there is a

-
Y]
Ui

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CGO145355

problem with the command frame, the peripheral should not respond.
DATA FRAME

Following the command frame (and ACK) may be an optional data frame
which is formatted as shcwn below:

e o e e +
' data H
i bytes H
S S ——— +
H checksum '
e —————— +

This data frame may originate at the computer or at the device
controller, depending upon the command. Current device controllers
expect fixed length data frames as does the computer, where the data
frame length is a fixed function of the device type and command.

The checksum value in the data frame is the arithmetic sum of all of
the frame data preceding the checksum, with the carry from each
addition being added back (the same as for the command frame).

In the case of the computer sending a data frame to a peripheral, the
peripheral iz expected to send an ACK if the data frame is acceptable,
and send a N&K ($4E) or do nothing if the data frame is unacceptable
See the first flowchart at the end of section 9.

OPERATION COMPLETE

4 peripheral 1is also expected to send an operation COMPLETE byte ($43)
2t the time the commanded operation is complete. The location of this
byte in thes command sequence for each command type is shown in the
timing diagrams which follow If the operation cannot go to
normal, error-—free completion, the peripheral should respond with an
ERROR byte ($45) instead of COMPLETE.

Eus timing

Thiz section provides timing diagrams for the three types of command
sequences: data send. data receive and immediate

DATA SEND seguence:

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL

OPERATING SYSTEM, CO14555

s +
COMMAND- i '
F——————— +
f———— + t———f ==t
DATA OUT i cmnd ! i dats |
————+frame +-————-— //——+ frame AH-——————————————
+—+ +—t +—
DATA IN HE P HE
——————————————— B it S Sy S S
ACK ACK CMPL
[} [}] 1 1 [} 1 1]
tO t1 t2 t3 t4 t5
DATA RECEIVE sequence:
s o e e e e e ————— e ———————— e
COMMAND- ' i
Fm———————— +
o ————— +
DATA OUT i cmnd |
————+frame +-—————m——
-t =t d————) [m———
DATA IN I A data '
——————————————— + +==f)==F +—+ frame e ———————
ACK CMPL
[) [} [}] [}
t0 t1 t2 5

REPRODUCTIDON PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
DPERATING SYSTEM, CO14&555

IMMEDIATE sequence:

—— _+ i e et (o e e o e S e ot e B (e St i T e St S S . e e e i
COMMAND - ! i
+F—————— — e
o ———— +
DATA QUT i cmnd |
it R TV RS oo i e s S e e e e e e T e e
-t +—+
DATA IN Eo HE
_____________________ B et L
ACK CHMPL
[it 1 i
! L} 1 i
£C t1 2 9
£t0 is the delay betwsan the lowering of COMMAND- and the transmission
of the first byte of the command frame. The computer generates this
delay
computer t£0O (min) = 750 ussc.
computer t0 (max? = 1&00 usec.
tl1 1s the delay between the transmission of thz last bit of the
command frame and the rTaising of the COMMAND- line. This delay is
generated by the computer.
computer tl (minid = &50 usec.
computer ti (max) = 938 usec.

£t2 is the delay betwsen the raising of COMMAND- and the transmission
cf the ACK tyte by the peripheral. The peripheral generates this
deliay

m

computer t2 (min) = G y
computer £2 (mary) = -

m oM
u

-t
i)
3
n

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. AFPROVAL
OPERATING SYSTEM, CO14555

t3 is the delay between the receipt of the iast bit of the ACK buyte
and the transmission of the first bit of the data frame by the
computer. The computer generates this delay.

1600 usec.
1800 usec.

computer t3 (min)
computer t3 (max)

peripheral t3 (min?
peripheral t2 (max}

nu

t4 is the delay between the transmission of the last bit of the data
frame and the receipt of the first bit of the ACK byte by the
computer. The peripheral generates this delay.

computer t4 (min) = B50 usec.
computer t4 (max) = 16 msec.

peripheral t4 (min]
peripheral t4 (max:’

e

t5 is the delay between the the veceipt of the last bit of the ACK
byte and the first bit of the COMPLETE byte by the computer. The
peripheral generates this delay.

250 usec.
255 sec. {(handler dependent:

computer t5 (min)
computer t5 (max)

peripheral t5 (min) 7
N/ &

peripheral t5 (max)

Handler environment

Non—-resident handlers may be Installed in at least three different
manners:

1. As booted software from disk or cassette
2. Resident in a cartridge (& or B}
3. Downloaded from a serial bus device.

This section will discuss The basic mechanisms Ffor handler
installation for these envirenments. In ovder to fully utilize the
information in thisz secticn: you must have vead and understood the
following sections:

Program environments. .. section &

RAM region...section 4

Memory dynamics...section 4

System initialization...section

Adding new device handlers/peripherals. .. section 9
Program environment and initialization...section 10

139

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO0163555

9.5. 1 Bootable handler

The disk or cassette booted software will want to insert the handler’s
vector table pointer and name to the Device Table whenever the booted
software’s initialization entry peoint is entered (on power up and
[S/RESET1). Remember that both power up and [S/RESET] clear the Device
Table of all but the resident handler entries.

Cartridge resident handler

The cartridge software will want to insert the handler’s vector table
pointer and name to the Device Table whenever the cartridge’s
initialization entry point is entered (on power up and [S/RESETI1).
Remember that both power up and [S/RESET] clear the Device Table of
all but the resident handler entries:; therefore the device table. must
be reestablished by the handler initialization code upon every entry.

Flowcharts

The following pages contain process flowcharts showing the SID and
peripheral actions for the Serial bus command forms.

140

PERIPHERAL'S COMMAND FRAME PROCESSING

WAIT FOR
HIGH TO LOW
TRANSITION
ON COMMAND-

v

GET NEXT 5
BYTES ON TIMEOUT

THE BUS

v

WAIT FOR
COMMAND -
TO GO HIGH

CHECKSUM

VALID
COMMAND?

SEND NAK

VALID
AUX DATA?

SEND ACK

l40-A

DATA FRAME TO PERIPHERAL

Y

SETUP TO
READ DATA
FRAME

v

GET N BYTES TIMEOUT
FROM BUS

NO SEND NAK -
YES

SEND ACK

v

ATTEMPT TO
PERFORM
INDICATED
OPERATION

SEND ERR S—

SEND
COMPLETE

-
U
=
M

140-B

DATA FRAME TO COMPUTER

ATTEMPT TO
PERFORM
INDICATED
OPERATION

OPERATION
OK?

SEND ERR

SEND
COMPLETE

v

SEND DATA
FRAME

v

140-C

140-D

IMMEDIATE

ATTEMPT TO
PERFORM
INDICATED
OPERATION

OPERATIO
OK?

SEND ERR

SEND
COMPLETE

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

10 Program environment and initialization

. This section discusses several of the different software environments
that are possible using the 05 Configurations other than those
discussed here are possible, and a thorough understanding of the power
up and [S/RESET] processes (as described in section 7) will be
necessary to evaluate other alternatives.

Cartridge

Mast games (and some language processors) are supported via the
cartridge environment. The cartridge resident software is in control
of the system, sometimes using the 0S and sometimes not. A cartridge
can specify whether the disk is to be booted at power up time, whether
the cartridge is to provide the controlling software, or whether the
cartridge is a special diagnostic cartridge. These options are
specified by bits in the cartridge header, as shown below:

space lineed 13

e +
H cartridge i BFFA (9FFA for cartridge B)
+— -
i start address H
o ——————— e +
H 00 i
e e e +

! init address | BFFF (9FFF for cartridge B)

The byte of "00" is used to allow the 0OS to determine when a cartridge
is inserted; locations BFFC and 9FFC will not read zero when there is
neither RAM at those locations nor a cartridge inserted. RAM is
differentiated from a cartridge by its ability to be altered.

The option byte has the following option bits:

RBit-0 = 0O, then do not boot the disk.
1, then boot the disk.
Rit-2 = ¢, then init but do not start the cartridge
i, then init and start the cartridge.
Bit-7 = 0, then cartridge is not a diagnostic cartridge.

1, then cartridge is a diagnostic cartridge % control
will be given to the cartridge before any of the 0S5
is initialized (JMP (BFFE)).

The cartridge init address specifies the location to which the 0S8 will

JSR during all power up and [S/RESET] operations. As a minimum, this
. vector should point to an RTS instruction.

141

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING EYSTEM, CO016£555

The cartridge start address speéecifies the location to which the 0§

will JMP during all power up and [S/RESET] operations, if bit—1 of the .
cption byte is = 1. The application should examine the variable WARMST

LO00B]1 if [S/RESET1 action is to be different than power up (WARMST

will be zern on power up and non—zero thereafter).

Cartridge without booted support package
A cartridge which does not spacify the disk boot option and does not
support the cassette boot possibility may use lower memory (from 0480
to the address in MEMTOP [O2ES5]) in any way it sees fit
Cartridge with booted support package
A cartridge which does specify the disk boof option or does support
the cassette boot possibility must use some care in its use of lower
memory. The following rTegions are defined:

0480-06FF 1is always available to the cartridge.

MEMLO/MEMTOP region is always available te the cartridge

Disk booted software

Software may be booted from the disk at power up time in
response to one of the following conditions:

Neither Cartridge A nor E is inserted.

Cartridge A is inserted and has bit-0 of its option byte
[BFFD1 = 1.

Cartridge B is inserted and has bit-0 of its option byte
LPFFD] = 1.

If any of these conditions are met, the US will attempt to read the
boot record from sector #1 of disk drive 1 and then transfer control
to the software that was read in. The exact sequence of pperations
will be explained later in this section

Disk boot file format

The key region of a disk boot file is the first & bytes, which are
formatted as shown below:

142

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYETEM, CO014555

e +
H flags H 1st byte
e +
i # of sectors H
e +
i memory address |
+- -
i to start load ‘
A e +
! init ‘
+— -
i address t &th byte
e +
i boot H
| continuation i
1 code H

The 1st byte is stored in DFLAGSE [02401, but is otherwise unused. It
should equal zero.

The 2nd byte contains the number of 128 byte disk sectors to be read
as part of the boot process (including the record containing this
information). This number may range from 1 to 255, with O meaning 256&.

The 3rd and 4th bytes contain the address (lo,hi) at which to start
loading the first byte of the file

The S5th and é6th bytes contain the address (lo,hi) to which the booter
will transfer control after the boot process is complete and whenever
the [S/RESET] key is pressed.

The Disk File Management System (FMS) has extra bytes assigned to its

boot tecord, but this is a special case of the generalized disk boot
and is discussed in section S5

Disk boot process

The disk boot process is described step by step for a configuration in

—

which no cartridge is installed. For the general case see section 7.
i. Read the first disk Tecord to the cassette buffer L[04001].
2. Extract infermation from the first & bytes:
Save the flags byte to DFLAGS [024C, 11].
Save the # of sectors to boot to DBEECT [0241,13.
Save the load address to BOOTAD [O242, 2].
Save the initialization address in DDOSINI L[O0OOC, 2].

3. Move the rvecord just read to the load address specified.

4. Read the vemaining records dirtectly to the locad area.

143

REPRODUCTIDON PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
DPERATING SYSTEM, C0O16555

5. JSR to the load address+é where a multi-stage boot process may
continue; the carry bit will indicate the success of this
operation {(carry set = error, carry reset = success).

4. JSR indirectly through DOSINI for initialization of the
application; the application will initialize and return.

~

JHMP indirvectly through DOSVEC to transfer control to the
application.

Pressing the [S/RESETJ] key after the application is fully booted will
cause steps & ¥ 7 to be rTepeated.

Regarding step 5 —— After the initial boot process is complete: the
booter will transfer control to the 7th byte of the first record; at
this peoint the software should continue the boot process:, if it is a
multi—-stage boot. The value of MEMLO [02E71, which should point to the
first free RAM location beyond the software Jjust booted, should be
established by the booted software as shown below:

LDA #END+1 i SETUP LSB.
STA MEMLO

EThA APPMHI

LDA #END+1/2556 i SETUP MSB.
STA MEMLO+1

STA APPMHI+1

I*f the booted software is to take control of the system at the end of
the boct cperation, the vector DOSVEC [O00A] must be setup by the
application at this time; DOSVEC points to the restart entry for the
booted application. If the booted software is not to take control,
then DOSVEC should remain unchanged.

LDA #RESTRT i RESTART LSB.
STA DOSVEC
LDA #RESTRT /2546
STA DOSVEC+1
Regarding step & —— The initialization point is entered on every

[S/RESET] and power upi internal initialization may take place here.
For contrelliing applications initialization may also be deferred until
step 7.

Sample disk bootable program listing

Shown below is a skeletal program which can be booted from the disk
and which tetains control when it is entered.

i THIS IS THE START OF THE PROGRAM FILE.

PST= %0700 i (OR SOME OTHER LOCATION).
#= PST i (. 0RG)

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO14555

i THIS IS THE DISK BOOT CONTROL INFORMATION.

.BYTE O i
.BYTE PND-PST+127/128 i NUMBER OF RECORDS.
. WORD PST i MEMORY ADDRESS TO START LOAD.

.WORD PINIT PROGRAM INIT.

i THIS IS THE START DF THE BOOT CONTINUATION.

LDA #PND i ESTABLISH LOW MEMORY LIMITS.
STA MEMLO

STA APPMHI

LDA #PND/2564

STA MEMLO+1

STA APPMHI+1

LDA #RESTRT i ESTABLISH RESTART VECTOR.
STA DOSVEC

LDA #RESTRT/256

STA DOSVEC+1

CLC i SET FLAG FDR SUCCESSFUL BOOT.
RTS

i APPLICATION INITIALIZATION ENTRY POINT.

PIMIT RTS i NOTHING TO DO HERE FOR ..
i ... CONTRDLLING APPLICATION.

i THE MAIN BODY OF THE PROGRAM FOLLOWS.
RESTRT=%#
;i THE MAIN BODY OF THE PROGRAM ENDS HERE.
PND= #* i ‘PND‘ = NEXT FREE LUCATION.

END
Program and procedure to create disk boot files
This section provides a procedure that may be used to make boctable
files on disks. The procedure given is not the only one possible, and
no claims are made as to its elegeance. The dialogue shown assumes
that one is logged onto the PDP-11/34 computer from one of the
development systems in the laboratories and is wusing LNBUG 2. 0. An

ATARI 400 or an ATARI 800 Personal Computer System with a disk drive
is Tequired.

User: 0OSL <cr>
Comp: loads the operating system.

User: DLOAD BOOTDY <cri

REPRODUCTION PROHIBITED WITHDOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSETEM, CO014559%5

Comp: loads the boct file maker.

User: <CTRL-PZ g0 to LNBUG control.
X ower

LNEG: rtesponds with LNBUG prompt.
User: put a formatted dizk in the drive
User: E477G <cri starts 05 and initializes mem.

LNBG: responds with LNBUG prompt in tesponse to BRK in ‘BOOTDY’.

User: R verify BRK address

User: ¢ <cvl <grl returns to PDP-11/34 control.
Comp: POP-11 prompt.

User: DLOAD xxxxx <crl xxx¥xx = name of application file

Comp: loads the application file,

User: <CTRL-PZ g0 to LNBUG control.
X <erd

LNBG: responds with LNBUG prompt.

User: BCO1G<crir resume ‘BOOTDY’

s

User: wait Ffor completion of the disk file write
LNEG: rvesponds with LNBUG prompt in response to BRK in ‘RBOOTDY”.
User: R verify BRK address

User: fto write another boot file, type BOOIG <ol

Shown below is a listing of the program referred to as ‘BOOTDY’ in
procedurs apove:

i THIS PROGRAM WRITES A SINGLE "FILE" TD THE DISK aND IS

i USED IN CONJUNCTION WITH & FROCEDURE TO MAKE DISK

i BOOTABLE FILES. THE FOLLOWING TWD SYMBOLS MUST RBE EQUATED
USING THE MEMORY LIMITE DF THE PROGRAM TQ BE COPIED:

: ‘PST " = PROGRAM STARY ADLDREES (SEE SAMPLE PROGRAM).
i ‘PND = PROGRAM END ADRDRESE (SEE SAMPLE PROGRAM)
SECEIZ=i28 i DISK SECTOR SIZE.

PET= EQ700

PND= 1324

FLEN= PND-PST+SECSIZ-1/SECSIZ ; # OF SECTORS IN FILE.

the

H*=

B0OOTB

i

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. AFPPROVAL

$B0O00O j

BRK i

OPERATING SYSTEM,

THIS PROGRAM'S ORIGIN.

##4# LOAD APPLICATION 333

SETUP DEVICE CONTRDL BLDOCK FOR DISK HANDLER CALL

LDA #FLEN i
STA COUNT
LDA #1 i
STA DUNIT
LDA #W i
ETA DCOMND
LDA #PST i
STA DRUFL.O
LDA #PST/256
STA DBUFHI
L.DA #01 i
ETA DAUX1
LDA #00
STA DAUX2
i NOW WRITE THE FILE ONE SECTOR
BOTO10 JSR DSKINV i
BMI DERR i
LDA DBUFLO i
CLC
ADC #S5ECSIZ
STA DBUFLO
LDA DBUFHI
ADC #0O
STA DBUFHI
INC DAUX1 i
ENE BOTC20
INC pauXxa
BOTO20 DEC COUNT i
ENE BOTO10 i
BRK i
DERR ERK i
COUNT #*=%+1 i
i THIS IS THE CARTRIDGE HEADER

$BFF9 j

OF SECTORS TO WRITE.
DISK DRIVE #1.

SETUP FOR WRITE WITH CHE

POINT TO START OF APPLIC

SETUP STARTING SECTOR #

AT A TIME.

WRITE
ERRDR.

ONE SECTOR.

C0i6555

CK.

. PROG.

= 0001.

INCREMENT MEMDRY ADDRESS.

INCREMENT SECTOR #.

MORE SECTDORS TO WRITE™
YES.

STOP WHEN DONE.

STOP ON ERROR:

SECTOR COUNT.

“a" CARTRIDGE.

147

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO16555

INIT RTS
. WORD BOOTE
.BYTE (., 4
. WORD INIT
. END

Caszsette booted software

Software may be booted from the cassette at power up time in much the
same way as from the disk, as described in the previous section. The
following requirements must be met in order to boot from the cassette:

The operator must be pressing the START key as power is applied
to the system.

A cassette tape with a proper boot format file must be installed
in the cassette drive, and the PLAY button must be pressed..

When the operator is given the audio prompt by the cassette
handler he must press the [RETURNI] key.

If all of these conditions are met, the 0S will read the boot file
from the cassette and then transfer control to the software that was
read in. The exact sequence of operations will be explained later in
this section.

Cassette boot file format

The key region of a cassette boot file is the first & bytes, which are
formatted as shown below:

it +
H H 1st byte
PFmmmm e e s s +
i # of records |
e +
i memory address |
+— -+
i to start load i
o +
H init '
+— —+
i address i &6th byte
B T +

The 1st byte is not used by the cassette boot process

The 2nd byte contains the number of 128 byte cassette records to
be read as part of the boot process (including the record

148

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. AFPROVAL
CPERATING SYSTEM, CO14555

containing this information). This number may range from 1 to
255, with O meaning 256&.

The 3rd and 4th bytes contain the address (lo,hi) at which to start
loading the first byte of the file

The S5th and &6th bytes contain the address (lo.hi) to which the booter
will transfer control after the boot process is complete and whenever
the [S/RESET] key is pressed

Cassette boot process

The cassette boot process is described step by step for a
configuration in which no cartridge is instalied and no disks are
attached. For the general case see Section 7.

1. Read the first cassette record to the cassette buffer.
2. Extract information from the first & bytes:

Save the # of records to boot.
Save the load address.
Save the initialization address in CASINI [O00QQ21].

3. Move the record just read to the load address specified.
4. Read the remaining records directly to the load area.

5. JSR to the load address+é& where a multi-stage boot process may
continue; the carry bit will indicate the success of this
operation (carry set = error, carry reset = success).

&, JSR indirectly through CASINI for initialization of the
application; the application will initialize and return.

7. JMP indirectly through DOSVEC to transfer control to the
application.

Pressing the [S/RESET]1 key after the application is fully booted will
cause steps & % 7 to be repeated.

Regarding step 5 —— After the initial boot process is complete, the
booter will transfer control to the 7th byte of the first record;: at
this point the software should continue the boo%t process (if it is a
multi-stage boot) and then stop the cassette drive, which due to a
system bug will still be running, using the following instruction
sequence:

LDA #$3C
ETA PACTL [D3021]

The application should then set a value in MEMLD [O2E7] which points
to the first free RAM location beyond the software jJust booted, as

149

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT.

DPERATING SYSTEM, C01655%5

shown below:
LDA HEND-+1 i SETUP LSB.
STA MEMLO
STA APPMHI
.DA #END+1 /254 i SETUP MSEB.
STA MEMLO+1
STA APPMHI+1

If the booted softuware
the boot operation, the vector DOSVEC [OO0A]l must
application at this time; DOSVEC points
buvoted application. If the booted software
then DOSVEC should remain unchanged.

is not

LDA #RESTRT i RESTART LSE.
8TA DGEVEC
D& HRESTRT/25&
574 DOSVEC+1
Regarding step & —— The initislizaticn point is
[(S/RESET] and power up; internal initialization
For controliing applications
step 7.

Sample cassette boctable program listing

to the res

APPROVAL

is to take control of the system at the end of

be setup by the
tart entry for the
to take control,

entered on every
may toke place here.
initialization may also be deferred until

START LOAD.

LIMITS.

Shown below i3z a skeletal program which can be booted from the
cassette and which retains control when it is entered.
i THIS IS THE START OF THE PROCGRAM FILE.
PET= #0700 ; (OR SOME OTHER LOCATIONG.
w= PST i ORGY.
THIS IS THE CASSETTE BODT CONTROL INFORMATION.
.BYTE O i (DDESN'T MATTER)
BYTE FND-FPST+127/128 + NUMBER OF RECORDE.
WORD PRET MEMORY ADDRESE TO
WORD PINIT i PRDGRAM INIT.
THIS IS THE START DOF THE ECSDOY CONTINUATION,
LDA #E3C i STOP THE CASSETTE.
ETA PACTL
LLDA #PND i ESTARLISH LOW MEMDRY
SThA MEMI_T
ST4 APPMHI
LA #FND/ZESE

REPRODUCTION PROHIBITED WITHOUT PUELICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO14&555

STA MEMLO+1

STA APPMHI+1

LDA #RESTRT i ESTABLISH RESTART VECTOR.

ETA DOSVEC

LDA #RESTRT/256&

STA DOSVEC+1

CLC i SET FLAG FOR SUCCESSFUL BOGT.
RTS

i APPLICATION INITIALIZATION ENTRY POINT.

PINIT RTS i NOTHING TO DO HERE FOR

;... CONTROLLING APFLICATION.

i THE MAIN BODY OF THE PROGRAM FDOLLOWS.

RESTRT=#

i THE MAIN BODY OF THE PROGRAM ENDS HERE.

PND=

#* i "PND‘ = NEXT FREE LOCATION.
END

Program and procedure to create cassette booft fiies

This section provides a procedur=s and a program listing that may be
vsed to make bootable files on caszsette tapes. The procedure given is
not the only one possible. and no claims are made as to its elegeance.
The dialogue shown assumes that one is logged onto the PDP-11/34
computer from one of the development systemz in the laboratories and
is using LNBUG 2.0. An ATARI 400 or ATARI 200 Personal Computer System

with

User:
Comp:
User:
Comp:

User:

LNBG:
User:
User:

User:

an ATARI 41C Program Recorder 15 also vequired.

0sSL <crl

loads the operating system.
DLOAD BODTCY <lcri

loads the boot file maker.

CCTRL-PZ go tc LNBUG control.
X <crl

responds with LNRBUG prompt.
E477G <crl starts 0SS and initislizes mem.
wait for tone indicating caszsette write rtequest

<CTRL-CZ intarrupts ths initialized prog.

REPRODUCTIDON PROHIBITED WITHDUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CG16555

LNBG: rtesponds with LNBUG prompt.

User: € <crmlx <“cr returns te PDP-11/24 control.
Comp: POP—-11 prompt.
User: DLOAD =zxxxx <ol xxxxx = name of application file.

Comp: loads the application file

User: <CTRL~-PI: go to LNBUG control.
X #or

LNBG: responds with LNBUG prompt.

User: P resume “BOOTCY’.

User: setup cassette drive to record on tape

User: press the [RETURNI] key on the Model 400/200 keyboard.
User: wait for completion of the cassette file write

LNBG: responds with LNBUG prompt in rtesponse to BRK in ‘BOOTCY’.
User: R verify BRK address

User: to write another boot file, type BOOOG <crl.

Shown below is a listing of the program referred to as ’‘BOOTCY’ in the
procedure above:

THIS PROGRAM WRITES A SINGLE FILE TD THE CASSETTE AND IS

USED IN CONJUNCTION WITH A PROCEDURE TO MAKE CASSETTE

BOOTABLE FILES. THE FOLLOWING TWO SYMBOLS MUST BE EQUATED
USING THE MEMGORY LIMITS OF THE PROGRAM TO BE COPIED:

e s s s we w. e

‘PST’ = PROGRAM START ADDRESS (SEE SAMPLE PROGRAM).
‘PND‘ = PROGRAM END ADDRESS (SEE SAMPLE PRDGRAM)

PST= %0700

PND= $1324

FLEN= PND-PST+127/128#128 i ROUND UP TO MULTIPLE OF 128.

#= $BO0O i THIS PROGRAM’S DRIGIN.

BODTE LDX #$10 i USE I0CB #1.

i FIRST OPEN THE CASSETTE FILE FOR WRITING.

LDA #0PEN i SETUP FOR DEVICE "OPEN".
STA ICCOM, X

REPRODUCTION

LDA #OPNOT
ETA ICAX1, X
LDA #$80

STA ICAX2: X
LDA #CFILE
STA ICBAL, X
LDA #CFILE/256
STA ICBAH. X
JER cIov

BMI CERR

PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL

i

i

DPERATING SYSTEM, C016355
DIRECTION IS "OUTPUT".

SELECT SHORT IRG.

SETUP POINTER TO DEVICE NAME.

ATTEMPT TOD OPEN FILE.
ERROR.

i NDW WRITE THE ENTIRE FILE AS ONE OPERATION.

LDA
STA

LDA
STA
LDA
STA

LDA
ETA
LDA
STA

JER
BMI

#PUTCHR
ICCOM, X

#PST
ICBAL., X
#PST/254
ICBAH, X

#FLEN
ICBLL, X
#FLEN/256
ICBLH, X

cIiov
CERR

i

i

i

SETUP FOR "PUT CHARACTERS".

POINT TO START OF APPLIC. PROG.

SETUP # OF BYTES TO WRITE.

WRITE ENTIRE FILE.
ERROR.

i NOW CLOSE THE FILE AFTER SUCCESSFUL WRITE.

CERR
CFILE

i THIS

INIT

LDA
STA

JSR
BMI

BRK
BRK
BYTE
IS THE

$BFF9

RTS

. WORD

. BYTE
. WORD

#CLOSE
ICCDOM, X

cCIov
CERR

“C:",CR

CARTRIDGE

BOOTB
G, 4
INIT

i

i

i

i

i

i

HEADER

SETUP FOR "“CLOSE".

CLOSE THE FILE.
ERROR.

STOP WHEN DONE.
STOP ON ERROCR.

FILE NAME.

"A" CARTRIDGE.

153

REPRODDUCTION PROHIBITED WITHDUT PUBLICATIONS DEPT APPROVAL
DOPERATING SYSTEM. CO1&555

END

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO14555

11. Advanced techniques and application notes

This section presents information which may be of use to the
user who wishes to use the capabilities of the 0S and use some
of the hardware capabilites that aren’t directly available
through the 0S and, in fact, may be in direct conflict with
parts of the 0S.

Sound generation

The 0S uses the POKEY sound generation capabilities only in the I/O
subsystem, for cassette FEK tone generation and for the "noisy bus"
option in SIO.

Capabilities

The hardware provides 4 independently programmable audio channels
which are mixed and sent to the television set as part of the
composite video signal. The POKEY registers shown below are all
concerned with sound control (as described in the ATARI Personal
Computer System HARDWARE MANUAL).

AUDCTL [D2081 Audio control.

AUDC1 [D2011 % AUDF1 C[D2001 Channel 1 control.
AUDC2 [D2031 % AUDF2 [D2021 Channel 2 control.
AUDC3 [D205]1 & AUDF3 [D2041] Channel 3 control.
AUDC4 [D2071 % AUDF4 [D20&41] Channel 4 control.

Conflicts with 0S

There are two potential conflicts with the 0S involving sound
generation:

The 0S may generate its own sounds and then turn off all sounds as
part of I/0 operations to the cassette and the serial bus
peripherals.

The 0S does not turn off sounds on [S/RESET] or [BREAK]; if the
sounds are to be turned off under those conditions, the
controlling program must provide that capability

Screen graphics

Hardware capabilities

The hardware capabilities for screen presentations are quite

versatile; the 0S uses a very small amount of the capability provided

The means of extension: however, are non—trivial: and making changes
to a screen format while still utilizing the resident Display handler

155

REPRODUCTIDN PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
DPERATING SYSTEM., C014£555

the ATARI Personal Computer System HARDWARE

will be difficult. See
ion vegarding screen presentations

MANUAL. for informat

0S capabilities

The resident Display handler arbitrarily supports 8 of the 11 possible
full screen modes (11 of 14 modes if the GTIA chip is used in place of
the CTIA), and allows for an optional "split screen” text window of
fixed size. The hardware allows for many more options than the Display
handler supports, as will be seen by reading the ATARI Personal
Computer System HARDWARE MANUAL.

Cursor control

The Display handler text and graphics cursors may be directly
controlled by the user as described in section 5 and in Appendix K.
BE1-4.

Coleor control

The color register aszsignments that the Display handler makes vpon all
OPEN commands may be altered by the user as described in Appendix K
and elsewhere. Note that every [S/RESET] or Display handler OPEN

will reset the values back to the system default.

Hlternate Character Sets

In zcreen text modes 1 and 2, two character sets are available,

the sets being selectable by the value stored in database variable
CHBAS [02F41/ tthe default value of %$EO provides capital (upper
crase) letters, numbers and the punctuation characters)corresponding
to dizplay codes $20 through $5F in Appendix E); the alternate

value of $E2 provides lower case letters and the special character
graphics set (corresponding to display codes %&0 through $7F and

§00 through #1F in appendix E).

In additien: user defined character sets may be obtained for text
modes O, 1 and 2 by provided the character matrix definitions in
RAM and setting CHEAS to point to those definitions. CHBAS always
contains the most significant bits of the memory address of the
start of the character definitions, as shown below:

7]
+omb b — b — e~ —

H H \ Test mode C©
b=t —F— b —t—F—+—+

]
T
cd
p

n

e s e TN S SR S o

+o b — bbbt —t—+

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C01&555

Where X indicates an ignored address bit (assumed = 0).

‘ Each character is defined by an 8 x 8 bit matrix; the character
‘ is defined as shown below:
7 O DByte
0
1
2
3
4
3
1)
7

The storage for the character seft involves 8 consecutive bytes
for each character with characters ordered consecutively by their
internal code value (see the discussion in appendix K relating

to BSS).

Character base Character for
Code%00 8 bytes

Character for
Code %0/ increasing addresses

Character for
Code $7E

Character for
Code %$7F

Players/missiles

The 0S makes no use of the player/missile generation capability of the
hardware; but, luckily, it may be used independently of the 0SS with no
conflict.

Hardware capabilities

The hardware allows a number of independently moveable screen objects
(of limited width) to be positioned and moved about the screen without
affecting the "playfield" (bit mapped graphics or character) data.
Priority control allows the various objects to have a display
precedence in case of conflict (overlap).

157

REPRODUCTIDN PRORIBITED WITHDUT PUBLICATIONS DEPT. APPROVAL
DPERATING SYSTEM., CO14555

Conflicts with 0S

The only poftential problem is that the user must assure that the
player/missile data is address aligned as required by PMBASE L[D40G73;
and finding a suitable free aresa that is guaranteed to be free under
all environments could be a problem.

Reading game contreollers

The game controllers shown beleow are read by the 0S as part of the
stage 2 VELANK process (see Appendix K JI1-9):

Joysticks/triggers 1-4.

Paddle controllers/triggers 1-8.
Driving controllers/triggers 1-4.
Lightpen/trigger.

158

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM. C0O146555

In addition to these controllers, other information may, be sensed ar
sent using the PIA chip to which the console connectors are
interfaced.

Keyboard controller sensing

The PASCAL procedure below shows how to rtead data from an ATARI
keyboard controller which is connected to %the first port; the hardware
register and 0S database names used

are from the 0S esquate file

FUNCTION READKEY (DRIVEVAL:RYTE): BYTE:

BEGIN

PORTA : = DRIVEWVAL { set rtow select };

DELAY {1 wait for OS to read data ¥
KCODE := O { preset fovr no key read ¥;

IF PADDLx 2> 10 THEWN KCODE := 1 £ column 1 X;

IF PADDLx > 10 THEN KCODE = 2 { column & 2;

IF STRIGx = O THEN KCODE := 3 4 column 3 ¥;

READKEY := WCDDE i{ set function value ¥

END;
BEGIN
(setup PIA port A for 4 bits out }:;110010/10025setup Fla
. port A for 8 bits out 1}

PACTL := %30 { direction register select i
PORTA : = %FF { set direction bits for output *;
PACTL := %324 { data register select 2;

{ setup of driving values, each selects a different row }
DVALLO] : = $EE;

DVALL1] := $DD;

DVALLZ2] := $DBB;

DVALCL3] := %77

REPEAT £ 1loop to read the controller keys 3

I := 0;
REPEAT

KEY : = READKEY (DVALLI]1) £ read a row ¥;

IF KEY <> O THEN KEY := KEY + (I*3Z) { encode };

I =1+ 1 { next rouw X

UNTIL (I > 3) OR (AEY < O}
IF KEY < O THEN WRITELN (“KEY VALUE = /, KEY)

UNTIL FALEE £ forever! *
END.

The table below shows the variable/register values used for reading a
keyboard controller from each of the four cantrolier ports

‘ P Port 2 Port 3 Part 4

ort 1
. A s e ST e S e S S S S SES

REPRODUCTIDN PROHIBITED WITHDUT PUBL.ICATIONS DEPT. APPRDVAL
OPERATING SYSTEM, CQ16359

i Port A i OF i FO ' H H
'dlrecflonl i ' H !
ithits H ' ' :
B s s e e S R B e S s s e e B e e S
i Port B : - H o= ; OF H + FO |
idirection! H ' H i
itbits] ' ' ' i
e e T S T L T S e e e s Tt &
t Port A i FE,FD, 'EF. DF : H '
i row sl | FB,F7 1 BF.7F | = H - i
i ect ' i H H i
s e T e e e R e h s e S S e e e e S e
i Port B ' : \FE,FD,FB, IREF.DF., |
! Tow ze- | ' i F7 i BF.,7F i
i lect ! ' ' H !
e T e S S S e S S s s ety ST T e e e e &
i Column 1/PADDL 1!PADCL SIPADDL 5 \PADDL 7 |
! Sense H H] i H
e e T e e S e e e s s e T S S S s e S e
i Column 2iPADDL CIPADDL 2IPADDL 4 iPADDL & !
i Sense | i | H |
s s iy ST S S T s M s e S e e L S Mty S N
i Column 3ISTRIG OISTRIG 1ISTRIG 2 1STRIG 3 !
i Sense ' H H H i
B s T L S S e B e e

Front panel connectors az I/0 ports

The three pages that follow show how some of the pins in the front

panel (game. controller) connectors can be used as general I/0 pins.
00

ATARI 400/200 Front Panel {(Controller) Jack as I/0 Ports

Hardware Information:

PIA (&B20 /7 68B20)
Out: TTL levels, 1 load
In TTL lewvels:. 1 load For more information tefer

to 6520 chip manual.

Port A Circuit (typical): 1 2
L] [] [] L L]
(A) ‘22¢ | \ ° e . ® j
6520 Port ANi]_ PP l Jack 6 9
1; Male connector, FRONT view

Port B Circuit (typical): Pin 8= Ground

+5 Pin 7= Veec (+5v ¥)
%4.7K |

(B)
5580 pork [T |

* Note: 50ma maximum
total external drain
on pover supply allowed

Jack

160

"Trigger" Port Circuit (typical):

]
CTIA Trig NNNfJ;

Software Information:

652@ PIA: (this also pertains to all of the following: **)
Port A control (address $ D3@2)

76543216
[A]g]1]1[1[x[@[B| Mrite this into this register

A __port A Data/Data direction addressing control
B= Address data direction at $ D3@g
1= Address data at $ D3@g

** Port A data direction (address $ D3g@)

765432148
XIxIx[x[x[XxIx[X] Write this into this register
i Data direction control for Port A
1= Out
@= In

Port A data (address $ D3pg)

2
Read or Write this register

3214
4 321

Jack 2 Jack 1
Pin Numbers

Port B control (address $ D3¢3)
(B[d[1]1[1]X{p[g |

161

652@ PIA:
Port B control (address $ D3@2)

765432149
[B[@[1][1]1]x[@[@{ Write this into this register

Q———Port B Data/Data direction addressing control
@= Address data direction
1= Address data

———————

Port B data direction (address $ D3@@)

7654321
LALXIXfXjX[XIXTi] Write this into this register
AAAAADA D

Data direction control for Port B
1= Out
@= In

Port B data (address $ D3@1)

3214
U rLLLIH

43214321
P s 2

Jack #4 Jack #3
Pin Numbers

Four "trigger" ports: ($ D@1¢, $ D@11, $ D@12, $ D@13)
76543213 Read this port

(2[p[o[g]a[dA[a[x]

4 __Trigger value
$ D@1P¥ = Port 1 pin 6
$ D@13 = Port 4 pin 6

162

Other miscellaneous Software information:
1). The 0.5 sets up all PIA ports as inputs during initialization

2). The 0.8. usually reads the above once per TV frame
vertical blank) into RAM as follows:

Database name Address Data Pins S

STICKO 0278 7 & 5 4 3 2 1
[OJoJoJo [X][X[]X[X]
STICK1 0729 Jack2,
STICK2 0274 Jack 3,
STICK2 0278 Jack 4,
STRIGO 0284 Jack 1,
7 6 5 4 3 2 1 0
STRIG1 0285 [loJoJoloJo[oTJo [x]vack 2,
STRIG2 0284 Jack 3,
STRIG3 0287 Jack 4,
PADDL 1 0270 7 & S 4 3 2 1 0
[x [x]x]x]x[x]x]x Jack 1,

PADDL3 0272 Jack 2,
PADDLS 0274 Jack 3,
PADDL7 0276 Jack 4,
PADDLO 0271 Jack 1,
PADDL2 0273 Jack 2,
PADDL 4 0275 Jack 3
PADDL & 0277 Jack 4,

Pins 4, 3, 2,1

Pins 4, 3,2, i

Pin

Pin
Pin

Pin

Pin
Pin
Pin
Pin
Pin
Pin
Pin

Pin

(during

(0] Jack 1:pins 4,3,2,1
X

Pins 4, 3, 2, i

&

0 g 9 O v o a W u

Pins 5 and 9 are read through the paddle controller circuitry
(or floating)

a nominal value of

7
and a nominal value of 228 indicates that the pin

indicates that the pin is high

is pulled low.

163

REPRODUCTIDN PROHIRITED WITHOUT PUBLICATIONS DEPT. APPROVAL
DPERATING SYSTEM, CO1&5595

Appendix A -—— CIO COMMAND BYTE values

The following hex values are knouwn to be legitimate CIO commands

Most handlers:

P03 —— OPEN

05 -- GET RECGRD

107 == GET CHARACTERS
709 —-— PUT RECORD

/OB -— PUT CHARACTERS
0C —-- CLOSE

0D —— GET STATUS

Display handler only:

]
¢ 1ld == FILL
12 -— DRAMW

Disk File Manager only:

20 -— RENAME

21 -— DELETE
122 —— FORMAT
123 -- LOCK

24 —-— UNLOCK
25 —— POINT
24 -— NOTE

l64

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT.

DPERATING SYSTEM, CO0146555

Appendix B —-— CIOD STATUS BYTE values.

Shown below are the kneown CIO STATUS BYTE values.

01 (001) —— OPERATION COMPLETE (ND ERRORS:

80 (128) —-- [BREAKI1 KEY ARORT

81 (129) —— I0CB ALREADY IN USE (OPEN)

82 (130) —— NON-EXISTENT DEVICE

83 (131) —-—- OPENED FOR WRITE ONLY

B84 (132) —- INVALID COMMAND

85 (132) —-— DEVICE OR FILE NOT GPEN

86 (134) —- INVALID IOCB NUMBER (Y Teg only)
87 (135) —-- OPENED FOR READ ONLY

88 (134&) —- END OF FILE

89 (137) —- TRUNCATED RECORD

8A (138) —- DEVICE TIMEDUT (DOESN’'T RESPOND)
8B (139) ——- DEVICE NAK

8C (140) —-- SERIAL BUS INPUT FRAMING ERROR

8D (141) —- CURSOR OUT OF RANGE

BE (142) -- SERIAL BUS DATA FRAME OVERRUN ERROR
8F (142) —-—- SERIAL BUS DATA FRAME CHECKSUM ERROR
90 (144) —— DEVICE DONE ERROR

21 (145) -—- BAD SCREEN MODE

?2 (1446) ——- FUNCTION NOT SUPPORTED BY HANDLER
23 (147) —-- INSUFFICIENT MEMORY FOR SCREEN MODE
A0 (160) —- DISK DRIVE # ERROR

Al (161) —-- TOD MANY OPEN DISK FILES

A2 (162) —-—- DISK FULL

A3 (163) —-- FATAL DISK I/0 ERROR

A4 (164) —— INTERNAL FILE # MISMATCH

A5 (165) ——- FILE NAME ERROR

A& (1646) —— POINT DATA LENGTH ERROR

A7 (167) —— FILE LOCKED

AB (168) —— COMMAND INVALID FOR DISK

A9 (169) ——- DIRECTORY FULL (64 FILES)

AA (170) —— FILE NOT FOUND

AB (171) —— POINT INVALID

AFPROVAL

165

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
CPERATING SYETEM, CG14&555

Appendix C —- SI0 STATUS BYTE values.

Shown below are the known SI0 STATUS BYTE wvalues

C1 (001) —-- OPERATION COMPLETE (NO ERRORS)

8A (138) —— DEVICE TIMEOUT (DOESN’T RESPOND)

8B (139) —— DEVICE NAK

8C (140) —-- SERIAL BUS INPUT FRAMING ERROR

BE (142) —-- SERIAL BUS DATA FRAME OVERRUN ERROR
BF (143) ——- SERIAL BUS DATA FRAME CHECKSUM ERRODR
?0 (144) -- DEVICE DONE ERROR

166

¢d
Y]
b2
$3
¢4
Xy
%6
&7
¢8
¢ 9
A
B
&C
¢D
$E
&F
X
I
12

B |
1y
16
17
18
19
LA
13
IC
ID
1E
IF

Appendix D -- ATASCII codes

[2X YX bX & X AX CX EX
N b @ 4
| A o
1] 'B b
, 4F C c
H | 2 D d
% E e
& F 3
b,] G_ 3
(A h
) T i
X I J
+ K K
9 L L
- M M
anam * N n
N £ o) 0
s ¢ P P
| Q q
e 2 R r
2 3 < S
S q T t
| St 5 @) v
e vV v
7 W w
8 X x
13 9 Y Y
i : Fa 3,
Esc - C é Eol.
A < N I N
v = 1 |ecwzae | dne BELL
& > ~ |encese | $5B B
S ? | ™8 L e

167

Appendix E -- Display codes (ATASCII)

&x AX Cx EX

>
x

¢d v
Pl
$2
¢3
¢ 4

$6
¢
38 4
¢9
¢A
¢B
¢C
¢D
15
$dF
I¢
I
12
)3

N
Lo 4+ X = A& ="-U*>‘\é

i

copes B¢-F- Stow RS
THE INVEXTE VIDE O
Gt codes ¢¢—7F.

mlxds

-

R
16
1
18
19
LA
)
Ic
ID
1€
IF

| LU/ AN <X E<XC 4N PRO0ZIrryHE=RNMNY N > E|E
‘C"AJ._.,b\,a(_chCCd-us-s;.o-ooSSr-'nc..-.S‘wﬁ(D e n s p &l

RWYVY [Aur or OO Jd e =W N—IN\

V[MN<]>] 45

168

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL

OPERATING SYSTEM, C01&555
Appendix F —— Keyboard codes (ATASCII)
GO : 20 <{space> 40 @ A0 i 20-92A /1N 00-1A00-14A
01 A 21 ! 41 A &1 a @B <return> & 3
e E 22 " 42 B 62 b ?C sidell
03 (& 23 # 43 C £3 ¢ 2D s<insertl:
04 D 24 % 44 D 64 d FE “<tabl»
05 E 295 %4 45 E 45 e PF g<tab>
0& F 26 % 44 F Y-S AO-FC /i\ 20-7C
07 G 27 47 G &7 g FD =2
(015} 4 28 (48 H A8 h FE “<dellr
09 I 29) 49 I 65?2 i FF ™Zinsert>
04 J 24 # 44 J LA
oR K 2B + 4B K &k
oC L 2C 4C L 6C 1
oD M 2D - D ™ &0 m
0OE N 2E 4E N GE n
OF 0 2F /7 4F O &F o
10 P T30 0 50 P 70 p
11 Q 31 1 51 Q@ 71 q
12 R 32 2 52 R 72 T
13) 33 3 53 § 73 s
14 T 34 4 54 T 74 t
15 U 3% 5 55 U 75 u
16 v 36 6 56 V 76 v
17 W 37 7 57 W 77 w
ie X 38 8 28 X 78 «x
19 Y 392 9 99 Y 79 y
1A Z 3A 5A Z 74 2
iB <esc 3B 5B L[7B ;
16 Cupx 3C 2C A\ 7C]
1D “down>3D = 5D 1 7D <cleari:
1E <left3E S5 -~ 7E +<back:
1F <right>3F 7 SF _ 7F <tab>
wclear .= s or
<return: ;= <return> or sireturn: or “returni
“escr .= “escr OT siLescr OT escor
<spacelX .= <spacel orT sispacel OT spacel
Where: s as a prefix indicates EHIFT.

“ as a prefix
/1\ as a prefix

indicates CTRL.
indicates ATARI key

invert active.

1569

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C014555

Appendix G —— Printer codes (ATASCII)

Character set for "normal" mode printing:

20 <space>x 40 @ 60 ¢
21 ! 41 A 61 a
22 " 42 B 62 b
23 & 43 C 63 ¢
24 % 44 D 64 d
25 % 45 E 65 e
26 % 44 F b6 f
27 47 G 67 g
28 (48 H 68 h
29) 49 I 69 i
2A 46 J A
2B + 4B K 6B k
2C 4C L 6C 1
2D - 4D M 6D m
2E . 4E N 6E n
2F 7/ 4F O 6F o
20 O 50 P 70 p
31 1 51 Q@ 71 q
32 2 52 R 72 r
33 3 53 S 73 s
34 4 54 T 74 ¢
35 9 55 U 75 v
36 &4 26 V 76 v
37 7 57 W 77 w
28 B8 58 X 78 x
32 9 592 Y 79 y
3A 54 Z 76 2
3B 5B [7B {
3C < 5C N\ 7C |
2D = 5D 1 7D ¥
3E > S5E ™ 7E 0~
3F 7 oF _ 7F <spacel

Note: the following codes print differently than defined by
the ATASCII definition.

00 through 1F print blank.

&0 prints ' instead of "diamond".
7B prints { instead of "spade"

7D prints } instead of "clear".

7E prints ™~ instead of "backspace"
7F prints blank instead of “tab®

Character set for "sideways" mode printing:

406 e 60 @
41 A 61 A
2 B 62 B

170

REPRODUCTION PROHIBITED WITHDUT PUBLICATIONS DEPT. AFPPROVAL
OPERATING SYSTEM, C014555

43 C 52 C
44 D &4 D
45 E & E
46 F &6 F
47 G 47 G
42 H &2 H
49 I &9 1
a4n J L6 J
4B K & K
4C L &C L
4D &0 M
4E N &E N
4F 0 & O
30 O 50 P 7C P
31 1 51 @ 71 Q@
32 2 52 R 72 R
33 3 23 S 73 S
24 4 54 T 74 T
35 5 55 U 75 U
36 6 56V VE-DY
37 7 27 W 77 W
28 B8 58 X 78 X
29 9 59 ¥ 77 Y
34 54 I 74 I
353 5B ¢ 7ZB L
3¢ « °2C 7C A
20 = oD 1 70 1
3 = SE <lupl TE up:
3F 2 SF <leftl» 7F <leftl:

Note: the following codes print differently than defined by
the ATASCII definition

02 through Z2F print blani.

SE prints "up arrow" instead of

5F prints "left arrow" instead of _

&0 through 7F repeats 40 throush 5F i1nstead of proper set.

171

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
DPERATING SYSTEM, CO01&555

Appendix H —— Screen mode characteristics
Mode Horiz. Vert. Vert. Colors Data Color MemorTy
posit. w/ec sp w sp value Teg. Treqd.
0 40 24 - o backgd. BAK 993 ColBl&
00-FF PF 2 Co\l PF
" PF 1% Co\lL Pt |
eTC
1 20 24 20 2 backgd. BAK 213
00--3F PF O
40-7F PF 1
20-BF PF 2
CC-FF PF 3
2 20 12 i0 5 backgd. BaAK 261
00-2F PF O
4G-7F PF 1
80—-BF PF 2
CO—-FF PF 3
3 40 24 20 4 0 BaK 273
1 PF O
2 PF 1
3 PF 2
4 20 43 40 2 0 BAK 937
1 PF O
S 80 48 40 4 (0] BAK 1017
1 PF O
2 PF 1
3 PF 2
& 160 Q& 80 2 0 BAak 2025
i FF O
7 140 g4 80 4 0 BAK 3945
1 PF O
2 FF 1
3 PF 2
8 220 192 16GC 2 0 PF 2 7200
1 PF 1%
9 20 192 = 1 Note 2 7200
10 20 192 —— Q 0 PM O 7900
i PM 1
2 PrH 2
2 PM 3
4 PF O
5 PF 1

172

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT.

OPERATING SYSTEM. C01655%

) PF 2
7 PF 3
8 BAK
Q DAK
A BAK
B BAK
€ PF O
D PF 1
E PF 2
F PF 3

i1 80 192 —— 16 Note 3 7900

Notes:

* Uses color of PF 2, lum of PF 1.

P Uses color of BAX, lum of data value (%0-F)

3 Uses color of data value (%0-F), lum of BAK.

PF x = Playfield color register x.

PM x = Player/Missile color register x.

BAK ::= Background color register (also knocwn as PF 4).

The default values for the color registers are shown below:

BAK = %00
PFO = $28
PF1 = $CA
PF2 = %94
PF3 = $44

The form of a color register byte is shown below:

74649543210

B el ahak: SR e e

-

Where: color (hex values) lum

minimum luminance

(increasing

luminance)

gray

light orange
orange

red orange
pink

purple
purple-blue
blue

blue

light blue
turquoise
green—blue
green

LU R L S I L 1

N hrWN=C

maximum luminance

o n ey

OW>PLONDT>OPRQN—-O

APPROVAL

173

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DERT. APPROVAL
OPERATING SYSTEM. CO145585

yellow—-green
cTange—grasen
light orange

([N R

D
E
F

174

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT.

Appendix I

Serial bus device I.D. s

Floppy disks Di-D4

Printer P1

RE-232-C Pz
R1-R4

Serial bus control codes

ACK - %41 (‘A7)
MAK ~ $4E ('N’)
COMPLETE = $43 (‘C")
ERR - %45 ('E")

Serial bus command codes

READ ~ %52
WRITE - $57
STATUS - 53
PUT(no check) - $50
FORMAT - %21
DOWNLOAD - $20
READADDR - %54
READ SPIN - ¥51
MOTOR ON - 955

VERIFY SECTOR - %54

Appendix J —-- ROM vectors

The fixed address 0% ROM JUMP vectoys

is a JMP instruction tc the
Name Addr

DISKIV E450 *
DSKINY E453 . 4.2
cIov E45& 5 &
SI10V E45%9 %.3
SETVBY E45C &. 7.2
SYSVBY E45F 6.3
XITVBY E462 &, 3
SIOINY E465 #
SENDEV E448 %
INTINY E44B #
CIOINV E46E #*
BLKBDV E471 3 e, 4
WARMSV E474 s
CoLDSYV E477 e

e e T e T T S
- o

DPERATING SYSTEM, C01455S

and command summary
$21-34
40
$4F
$50-53
‘R7) Dick
W) Printer/Disk
8 Printer/Disk
‘P Disk
R Digk
foy

)

7 Disk
Vo) Disk
Vo Disk

are shown below, at each

Serial Bus I.D.

i

W
c

ndicated routine,

Reference Function

Disk handler initializatiaon
Disk handler entry.

CID vtility entry.

SI0 wtility entry.

Set syz=tem timers Toubine
Stage 1 VBLANK entry.

Exit VBLANK entry

SI0 vtility 1nitialization.
Send enable routine
Interrupt handler

CIO utility initialization.

Blackboard mode entry.
armstart ([E/REEETI) antiy
oldetart {(power wup) entry.

initialization.

APPROVAL

address

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM., C0145355

RBLOKY E47A # Caszette read block entry.
CsSopP1IV E47D #* Cassette OPEN input entry

These vectors are for 05 internal use only.
The fixed address Floating Point Package ROM routine entry point

addresses are shown below; complete descriptions of the corresponding
routines are provided in section 8.

AFP DROC ASCII to FP convert.

FAEC DSE& FP to ASCII convert

IFP D2AA Integer to FP convert.
FPI nenz FP to integer convert
FADD DAabsb FP add.

FSUB DASC FP subtract.

FHUL DADB FP multiply

FDIV Dh28 FP divide.

LOG DECD FP base e logarithm.
LOG1GC DED1 FP base 10 logarithm.

EXP DGCO FP bas=2 e exponentiation.
EXP10O DDCC FP base 10 exponentiation.
PLYEVL DD40 FP polynomial evaluation.
ZFRO DA44 Clear FRO.

ZF 1 DA44 Clear FP number.

FLEOR DDEe Load FP number.

FLDOP DDED Load FP number.

FLD1R DhoB Load FP number.

FLD1P pDeC Load FP number.

FSTOR DDA7 Store FP number.

FSTOP DDAB Store FP number.

FMOVE DDB6 Move FP number.

The base addresses of the handler vectors for the resident handlers
are shown below:

Screen Editor (E} E400
Display handler (&) E410
Keyboard handler (K} E420
Printer handler (P} E430
Cassette handler (C? E440

See section 5 for the format of the entry for each handler.

176

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM. C016555

The 4502 Computer interrupt vector values are shown below:

Function Address Value
NMI FFFA E7E4
RESET FFaC E477
IRG FFFE E&4FE

APPENDIX K —-- DS DATABASE VARIABLE FUNCTIONAL DESCRIPTIONS

This section contains descriptions of many of the data base variables;
descriptions are included for all of the user accessible variables and
for some of the "internal" variables as well. Those variables which
are not considered to be normally of interest to any user are flagged
with an asterisk (’#’) after their names; the other variables may be
of interest to one or more of the following classes of users:

End user.

Game developer.

Application programmer.
System utility writer.
Language processor developer.
Device handler writer.

0000 O0O

Each variable is specified by its system equate file name followed by
its address (in hex) and the number of bytes reserved in the data base
(in decimal), in the following form:

<name> [{addressX, <sizelX]
For example:

MEMLO C[O2E7,21]

Note that most word (2 byte) variables are ordered with the least
significant byte at the lower address

A. MEMORY CONFIGURATION

See section 4 for a general discussion of memory dynamics and section
7 for details of system initialization.

Al MEMLO [O2E7,2]1 —— User free memory low address
MEMLO contains the address of the first location in the fres memory
region. The value is established by the 0S during power up and [RESET]

initialization and is never altered by the DS thereafter.

A2 MEMTOP [0Q02ES, 21 —— User free memory high address

177

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO016555

MEMTOP contains the address of the first non-useable memory location
above the free memory rTegion. The value is established by the 08
during power up and [RESET] initializationi; and then is re-establicshed
whenever the display is OPENed.

A3 APPMHI [OOOE, 2] -—- User free memory screen lower limit

APPMHI is a user controlled variable which contains the address within
the free memory region below which the Display handler may not go in
setting up a display screen. This variable is initialized to zero by
the 0OS at power up.

A4 RAMTOP# [00&4A, 11 -- Display handler top of RAM address (msb)

RAMTOP permanently retains the RAM top address that was contained 1in
TRAMSZ (as described in N1) for the Display handler ‘s use. The value
is setup as part of handler initialization; it is not clear why this
variable is required, since the same value is in RAMSIZ.

AS RAMSIZ [02E4,11 —— Top of RAM address (msb only}

RAMSIZ permanently retains the RAM top address that was contained 1in
TRAMSZ (as described in Ni1)

B. TEXT/GRAPHICS SCREEN

See section S5 for a discussion of the text and graphics screens and
their handlers.

Cursor control

For the text screen and split screen text window there is a visible
cursor on the screen which shows the position of the next input or
output operation. The cursor is represented by inverting the video of
the character upon which it residesi but the cursor may be made

invisible, at the user’s option. The graphics screen always has an
invisible cursor.

The cursor position is sensed by examining data base variables and may
be moved by altering those same variables; in addition, when wusing the
Screen Editor, there are cursor movement control codes which may be
sent as data (as explained in section $5).

Bl CRSINH [O02FQ, 11 —— Cursor display inhibit flag

When CRSINH is zero, all outputs to the text screen will be followed
by a visible cursor (inverted character); and when CRSINH is non—zero.
no visible cursor will be generated

CRSINH is set to zero by power up, [RESETI], L[BREAK] or an OPEN command
to the Display handler or Screen Editor.

178

REPRDDUCTIDON PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO146555

Note that altering CRSINH does not cause the visible cursor to change
states until the next ocutput to the screen; if an immediate change to
the cursor state is desired, without altering the screen data, follow
the CRSINH change with the output of CURSOR UP, CURSOR DOWN or some
other innocuous sequence.

B2 ROWCRS [0054,1]1 % COLCRS [0OC55,2] —— Current cursor position

ROWCRE and COLCRE define the cursor lecation (row and column.
respectively) for the next data element to be read from or written to
the main screen segment. When in split screen mode, the variables
TXTROW and TXTCOL define the cursor for the text window at the bottom
of the screen as explained in B4 below.

The Tow and column numbering start with the value zero, and increase
monotonically to the number of Tows or columns minus one; with the
upper left corner of the screen being the origin (0, 0).

ROWCRSE is a single byte variable with a maximum allowable value of 191
(screen modes B-11); COLCRS is a two byte variable with a maximum
allowable value of 319 (screen mode 8).

B2 OLDROW [0O035A, 11 % DLDCOL [COOSRB, 2] —— Prior cursor poasition

OLDROW and OLDCOL are updated from ROWCRS and COLCRS before every
operation. The variables are used only for the DRAW and FILL
operations.

B4 TXTROW L[0290,11 % TXTCOL [02%1,21 -— Split screen text cursor
position

TXTROW and TXTCOL define the curcsor location (row and column,
respectively) for the next data element to be read from or written to
the split screen text window.

The tow and column numbering start with the value zero, and increase
monotonically to 3 and 39, respectively; with the upper left corner of

the split screen text window being the origin (0, 0).
P! -

\) (—

creen margins

o

The text screen and split screen text window have user alterable left
and tight margins which define the normal domain of the text cursor.

B5 LMARGN [0052,1] —— Text column left margin

LMARGM contains the column number (0-3%) of the text screen left
margin: the text cursor will remain on or to the tight of the left
margin as a result of all operations, unless the cursor column
variable is directly updated by the user (see B2 and B4 above). The
default value for LMARGN is 2 and is established upon power up or
[RESETI].

179

REPRODUCTIDCN PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO146555

B& RMARGN [GO052,11 —— Text column rtight margin

RMARGN contains the column number (0-3%9: of the text screen rvight
margin; the text cursor will remain on or to the left of the right
margin as a result of all operations, unless the cursor column
variable is directly updated by the user (see B2 and B4 above). The
default valuse for RMARGN is 29 and is established upon power up or
[REEETI.

Color contronl

As part of the stage 2 VBLANK process (see section &), the values of
nine data base variables are stored in corresponding hardware color
control registerz. The color registers are divided into two groups:
the player/missile coiors and the playfield colors. The playfield
color registers are utilized by the different screen modes as shown in
Appendix Hi th2 playser/missile color registers have no use within the
standard Q.

E7 PCOLRO - PCOLR2 L[C2CC, 4] —-- Player/missile colors

Each color variable is stored in the corresponding hardware register
as shown below:

PCOLRO [o2CC1 COLPMO [DO121
PCOLR1 L02C11 COLPM1 [DO131
PCOLR2 [02C21] COLPM2 C[DO141
PCOLR2 C[GC2C313 COLPM3 LCDO151

Each color variable has the format shown below:

7 & 5 43210
s Sl SIS S S S S S
i color { lum x|

+opm b — b — et — b —

+ [N

e2 Appendix H for information regarding the color and luminance
ield values.

B8 COLORC - COLOR4 L[O02CS,5] —-- Playfield colors
Each color variable is stored in the corresponding hardware register
az shown below:

COLORG [C2C4) COLPFO [DO1&1]

COLOR1 {C2C5] COLPF1 CDO171

COLORZ LCR2CE&] COLPF2 L[DO0O181]

COL.ORZE £02C712 COLPF2 LC[DO191

COLOR4 [o2CRe] COLBK [DO1A1

Each color variable has the format shown below:

180

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM. CO14555

7 6 5 43210
N T L s S A S
i color | lum ix:
b b= —

See Appendix H for information regarding the color and luminance field
values.

Text scrolling

The text screen or split screen text window "scrolls" vpward whenever
one of the two conditions shown below occurs:

A text line at the bottom row of the screen extends past the right
margin.

A text line at the bottom row of the screen is terminated by an
EfL..

Scrolling has the effect of removing the entire logical line that
starts at the top of the screen and then moving all subsequent lines
upward to fill in the void. The cursor will also move uvpward if the
logical line deleted exceeds one physical line

B? GSCRFLG# [02BB, 11 -- Scroll flag

SCRFLG is a working variable that counts the number of physical lines
minus one that were deleted from the top of the screen; since a
logical line ranges in size from 1 to 3, SCRFLG ranges from O to 2.

Attract mode

Attract mode is a mechanism which protects the TV screen from hav-—
ing patterns "burned into" the phospheors due to a fixed display
being left on the screen for extended periods of time. when the
computer is left unattended for more than ? minutes, the color
intensities are limited to 50% of maximum and the hues are contin-
vally varied every 83 seconds. Pressing any keyboard data key

will be sufficient to remove the attract mode for 2 more minutes

As part of the stage 2 VBLAMNK process, the color registers frem the
data base are sent to the corresponding hardware color registers;
before they are sent, they undergo the following transformation:

hardware register = database variable XOR COLRSH AND DRKMSK

Normally COLREH = %00 and DRKMSK = $FE, thus making the abova
calculation a null operationi however, once attract mode becomes
active, COLRSH = the content of RTCLOK+1 and DRKMSK = $F&. which has
the effect of modifying all of the colors and keeping their luminance
always below the 50 percent level.

181

REPRDDUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO016555

Since RTCLOK+1 is incremented every 254/60ths of a second and since
the least significant bit of COLRSEH is of no consequence, a color/lum
change will be effected every B3 seconds (512/60}.

B10 ATRACT [004D, 11 -- Attract mode timer and flag

ATRACT is the timer (and flag) which controls the initiation and
termination of attract mcde. Whenever a keyboard key is pressed. the
keyboard IRG service routine sets ATRACT to zero, thus terminating
attract mode; the [BREAK] key logic behaves accordingly. As part of
the stage 1 VBLANK process, ATRACT is incremented every 4 seconds; 1f
the value exceeds 127 (after 92 minutes without keybecard activity), the
value of ATRACT will then be set to $FE and will retain that value
until attract mode is terminated.

Since the attract mode is prevented and terminated by the 0S5 based
only vpon keyboard activity, some users may want to reset ATRACT based
upon ATARI controller event detection. user controlled Serial I/0 bus
activity or any other signs of life

Bil COLRSH#* [O04F, 11 —— Color shift mask

COLRSH has the value $00 when attract mode is inactive, thus effecting
no change to the screen colors; when attract mode is active, COLRSH

contains the current value of the timer variable middle digit
(RTCLOK+1).

Bi12 DRKMSK# [O0O4E, i] -—- Dark (luminance) mask
DRKMSK has the value %$FE when attract mode is inactive which does not
alter the luminance; and has the value %$F4 when attract mode is active

which forces the most significant bit of the luminance field to zero,
thus guaranteeing that the luminance will never exceed 50 percent.

Tabbing

See section 5 for a discussion of the use of tabs in conjunction with
the Screen Editor.

B13 TABMAP [02A3,15] —— Tab stop setting map
The tab settings are retained in a fifteen byte (120 bit) map, where a

bit value of one indicates a tab setting; the diagram below shows the
mapping of the individual bits to tab positions.

182

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

7 & 5 4 2 2 1 0

e s S e e S
POt 1223418405 0 46010 7 1 TABMAP+O
Bt T e B e et T S

B e 1 100 11t 127 131 147 1351 +1
s T e AT S S

s e S T S s St SR
1112111311147 115111611171112111914 +14
B e S T e &

Whenever the Display handler or Screen Editor is opened, this map is
initialized to contain the value of #01 1in every byte. thus providing
the default tab stops at 7, 15, 23, etc.

Logical text lines

=

The text screen is invisibly divided into logical lines of =x b,
each comprising from one to three physical lines of text. The
screen is initialized to 24 logical linss of one physical line
each: but data entry and/or data insertion may increase the =zize
of a logical line toc two or three physical limes.

Bi14 LOGMAP3# L[C2B2:.4]1 —— logical iine starting rvow map

ch logical line on the
} map. wheve a bit

ical line; the diagram
its to physical lins

The beginning physical line number for e
scrTeen 1is Tetained in a four byte (32 bi
value of one indicates fthe start of a lo
below shows the mapping of the individua
(row) numbers.

L= B ol]

7 & 5 4 2 2 1 0

e R e S

: I = g R S LOGHMAP+0D

s S T S

: P 2110111 1121121141151 +1

o o o o e e e e e e —

116117112119120121 1221231 o

B e s sty

: { : i i H ' ; : -+

T e T e B
The map bits are all sef to one whenever the tert screen iz
OPENed or cleared. From that point, the map is updated as
logical lines are entered, edited and delsted from the scyesn.

B15 LOGCOL%* [O0L3: 11 —— Cursor/logical line column number

LOGCOL contains the iogical line column number for the current
cursor positicn; note that a logical line may comprise up to

183

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEFT. APPROVAL
CPERATING SYSTEM, CO1&553

three physical lines. This wvariable is for the internal use of
the Display handler.

Split screen

The Display handler and Screen Editor together support the

cperation of & split screen mode (see section B) in which the main
portion of the screen is in one of the graphics modes and is
controlled by the Display handler, and there is a four physical line
ftext window at the bottom of the screen which is controlled by the
Screen Editor.

Bié BOTSCR%* [O2BF, 11 —— Text screen lines count

BOTSCR contains the number of lines of text for the current screen: Z4
for mode O or 4 for a split screen mode. The handler also uses this
variable as an indication of the split screen status; tests are made
for the specific values 4 and 24,

BRAW/FILIL. function

The DRAW function linz drawing algorithm is shown below translated to
the Pascal language from assembly language.

NEWROW = ROWCRS;, NEWCOL := COLCRS;
DELTAR := ARS (NEWROW-OLDROW?);
ROWINC := SIGN (NEWRDW-GLDROW): € +1 or -1 >
DELTAC = ARS (NEWCOL-OLDCOL);
COLINC := SIGN (NEWCOL-OLDCOL); € +1 or -1 2
ROWAC := O; COLAC = Oi
ROWCRS : = OLDROW: COLCRS := OLDCOL;
COUNTR := MAX (DELTAC, DELTAR);
ENDPT = COUNTR:
IF COUNTR = DELTAC

THEN ROWAC := ENDPT DIV 2

ELSE COLAC := ENDFT DIV 2Z2;
WHILE COUNTR -+ O DO

BEGIN

ROWAC = ROWAC + DRELTAR;
IF ROWAC »= ENDPT
THEN
BEGIN
ROWAC = ROWAC — ENDPT;
ROWCRE = ROWCRS + ROWINC
END;

184

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

COLAC := COLAC + DELTAC;
IF COLAC = ENDPT
THEN
BEGIN
COLAC := COLAC - ENDPT:
COLCRS := COLCRS + COLINC
END;

PLOT_POINT: { point defined by ROWCRS % COLCRS ¥
IF FILFLG <X O THEN FILL L INE:
COUNTR := COUNTR - 1

END;

The FILL function algorithm (FILL_LINE above) is described briefly in
section 5.

Bi7 FILDAT [O02FD, 11 -- Fill data

FILL contains the fill region data value as part of the calling
sequence for a FILL command as described in section 5.

B18 FILFLG* [02B7,11 —— Fill flag

FILFLG indicates to shared code within the Display handler whether the
current operation is FILL (FILFLG < 0) or DRAW (FILFILLG = 0).

B1? NEWRDOW# [0060,11 % NEWCOL#¥* [0061,2]1 ~-- Destination point

NEWROW and MNEWCOL are initialized to the wvalues in ROWCRS and COLCRS,
which represent the destination endpoint of the DRAW/FILL command.
This is done so that ROWCRS and COLCRS may be altered during the
performance of the command.

B20 HOLD4#* [02BC, 11 ——- Temporary storage

HOLD4 is used to save and rtestore the value in ATACHR during the
FILL process;i ATACHR is temporarily set to the value in FILDAT
to accomplish the filling portion of the command

B21 ROWINC# [0079,1]1 % COLINCH LO07A, 11 —-— Row/column
increment/decrement

ROWINC and COLINC are the tow and column increment values; they are
each set to +1 or -1 to control the basic direction of line drawing.
ROWINC and COLINC represent the signs of NEWROW —~ ROWCRS and NEWCOL -~
COLCRS, rtespectively.

B22 DELTAR#* [0076,1]1 % DELTAC%® [0077,2]1 ——- Delta rtow and delta
column

185

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO014555

DELTAR and DELTAC contain the absolute values of NEWROW - ROWCRS and
NEWCOL — COLCRS, respectively; together with ROWINC and COLINC, they
define the slope of the line to be drawn.

E23 COUNTR% [OC7E., 21 —— Draw iteration count

COUNTR initially contains the larger of DELTAR and DELTAC, which is
the number of iterations rtequired to generate the desired line. COUNTR

is then decremented after every point on the line is plotted, until it
reaches a value of zero.

B24 ROWAC# L[0O070,2]1 & COLAC# [0072,2] —— Accumulators

ROWAC and COLAC are working accumulators which control the row and
column point plotting and increment (or decrement) function.

B25 ENDPT»* [0074,2]1 —— Line length

ENDPT contains the larger of DELTAR and DELTAC, and is used in

conjunction with ROWAC/COLAC and DELTAR/DELTAC to control the plotting
of line points.

Displaying control characters

Often it is useful to have ATASCII control codes (such as CLEAR,
CUREOR UP, e2tc.) displayed in their graphic forms instead of having
them perform their control function. This display capability is
provided in two forms when outputting to the Screen Editor: 1) a data
content form in which a special character (ESC) preceeds each control
character to be displayed and 2) a mode control form.

Escape (display following control character)

Whenever an ESC character is detected by the Screen Editor, the
next character following this code is displayed as data:

even 1if it would normally be treated as a control code; the EOL
code is the sole exception, it is always treated as a control

code. The sequence ESC ESC will ~ause the second ESC character
to be displayed.

E26 ESCFLG®* [02A2:11 —— Escape flag
ESCFLG is wusad by the Screen Editor to control the escape
sequence function;, the flag is set (to $80) by the detection of

an ESC character ($1B) in the data stream and is reset (to 0O)
following the output of the next character.

Display control characters mode

When it is desired to display ATASCII control codes other than EOL in
their graphics form, but not have an ESC character associated with

186

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO1655%5

each control code, a display mode may be established by setting a flag
in the data base. This capability is used by language processors when
displaying high level language statements, which may contain control
codes as data elements.

B27 DSPFLG [02FE, 1] —- Display control characters flag

When DSPFLG is non—zero, ATASCII control codes other than EOL are
treated as data and displayed on the screen when output to the Screen
Editor. When DSPFLG is zero, ATASCII control codes are processed
normally.

DSPFLG is set to zero by power up and [RESETI.

Bit mapped graphics

A number of temporary variables are used by the Display handler when
handling data elements (pixels) going to or from the screen; of
interest here are those variables which are used to control the
packing and unpacking of graphics data, where a memory byte typically
contains more than one data element (for example, screen mode 8
contains 8 pixels per memory byte).

B28 DMASK®* [02A0, 1] —— Pixel location mask

DMASK is a mask which contains zeroes for all bits which do not
correspond to the specific pixel to be operated upon, and which
contains ones for all bits which do correspond. DMASK may contain the
values shown below in binary notation:

11111111 -- screen modes 1 % 2; one pixel per byte.

11110000 ——- screen modes 9-11; two pixels per byte
00001111

11000000 —- screen modes 3, 5 % 7; four pixels per byte
00110000
00001100
00000011

10000000 -- screen modes 4, & % 8i eight pixels per byte
01000000

00000010
000G0001

B29 SHFAMT# L[O0&F., 11 —— Pixel justification
SHFAMT indicates the amount to shift the right justified pixel data on
output, or the amount to shift the input data to right justify it on

input. The value is always the same as for DMASK prior to the
Justification process.

187

REPRDDUCTIDN PROHIBITED WITHDOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM. CO14555

Internal working variables

B30 HOLD1%* [0O051,1]1 —-— Temporary storage
B231 HOLD2#* [02%9F, 11 -— Temporary storage
BE32 HOLD2% [029D, 11 —-— Temporary storage
E33 THMPCHR# [0050.1]1 —— Temporary storage
B34 DETAT# L[0Q04C, 1] —- Display status

E35 DINDEX# [0057.13 —— Display mode

DINDEX contains the current screen mode obtained from the low order
four bits of the most recent OPEN AUX1 byte.

B3& SAVMEC [0058,2]1 —-- Screen Memory Address ’
SAYMSC contains the lowest address of the screen data region; the

data atthat address is displayed at the upper left corner of the
screen.

B37 OLDCHR=* [0QO0S5D, 11 —— Cursor character save/restore

OLDCHR retains the value of the character under the visible text
cursor; this variable is used to Testore the original character value
when the cursor is moved

BE38 OLDADR#* [OOSE, 21 —-- Cursor memory address

DLDADR retains the memory address of the current visible text cursor

location: this variable is wused in conjunction with OLDCHR (B37) to
restore the original character value when the cursor is moved

E39 ADRESZS#® [00&4,21 —— Temporary storage

B40 MLTTHMP/OPNTMP/TOADR% [004&, 21 —— Temporary storage

B41 SAVADR/FRMADR#* [00&48,2] —~-- Temporary storage

E42 BUFCNT% [OC6B, 1] —— Screen Editor current logical line size
43 PRBUFSTR# [00&C, 21 —— Temporary storage

E44 SWPFLG® [OC7B, 171 —- Split screen cuTsor control

In split screen mode. the graphics cursor data and the text window
cursor data are frequently swapped as shown below in order to get the
variables associated with the vegion being accessed into the
ROWCRS—-0ILDATR variables

ROWCRE
COL.CRE

——em— TXTROW B4
———————— TXTCOL B4

I
r2 nl

188

REPRODUCTION PROHIBITED WITHOUT PURLICATIONS DEPT. APPROVAL
DPERATING SYSTEM. CO16355

DINDEX B35 —--——-— TINDEX B4%
SAVMSC B3&6 —————- TXTMEC BS52
OLDROW B3 ———--—- TXTOLD B33
oL.DCOL B3 ——————— B "
OLDCHR B37 ——-———— - "
OLDADR B38 —-————— B Y

SWPFLG is used to keep track of which data set is currently in the
ROWCRS-OLDADR region; SWPFLG is equal to $FF when split screen text
window cursor data is in the main region, otherwise SWPFLG is equal to
0.

B45 INSDAT#* [0Q07D.11 —-— Temporary storage
B446 TMPROW# [O0O2B8, 11 & TMPCOL%* [02B9,2]1 —— Temporary storage
B47 TMPLBT# [02A1,11 —-— Temporary storage
B48 SUBTMP# [029E.11 ——- Temporary storage
B49 TINDEX#%* [0293.11 —— Split screen text window screen mode

TINDEX is the split screen text window equivalent of DINDEX and is
always equal to zero when SWPFLG is equal to zero (see B44).

BSO BITMSK# [00&E, 11 ——- Temporary storage
BS1 LINBUF# [0247,40] —- Physical line buffer

LINBUF is used to temporarily buffer one physical line of text when
the Screen Editor is moving screen data.

B52 TXTMSC [0294.,2]1 —— Splitscreen memory address

TXTMSC is the split screen text window version of SAVMEC (36).
See B44 for more information.

B53 TXTOLD#* [029&6,6]1 —-— Split screen curcsor data

See B44 for more information.

Internal character code conversion

Two variables are used to rtetain the current character heing processed
(for both rTeading and writing)i ATACHR contains the value paszsed to or
from CIO, and CHAR contains the internal code corresponding to the
value in ATACHR. Because the hardware does not interpret ATASCII
characters directly. the transformationsz shown below are applied to
all text data read and written:

ATASCII INTERNAL
CODE COCE

189

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555

00-1F 40-5F
20-3F Q00—-1F
40-5F 20-3F
&0-7F 60-7F
BO-9F CO-DF
AO-BF BO-9F
CO-DF AO-BF
EO-FF EO-FF

See P2& for more information.
B54 ATACHR [O2FB, 1] -- Last ATASCII character or plot point

ATACHR contains the ATASCII value for the most recent character read
or written. or the value of the graphics point. This variable may also
be considered to be a parameter of the FILL/DRAW commands, as the

value in ATACHR will determine the line color when a DRAW or FILL is
performed.

BE52 CHAR#* [02FA, 1] —— Internal character coade

CHAR contains the internal code value for the most recent charcter
read or written.

C. DISK HANDLER
Eee section 5 for a discussion of the resident Disk handler.
C1 BUFADR* [0015,21 —-— Data buffer pointer

BUFADR acts as temporary page zero pointer to the current disk
buffer.

C2 DSKTIM* [0246,11 -— Disk format operation timeout time

DSKTIM contains the timeout value for SI0 calling sequence variable
DTIMLO (see section ?@); DSKTIM is set to 160 (which represents a 171
second timeout) at initialization time, and is updated after each disk
status Tequest operation contain the value returned in the 3rd byte of
the status frame (see section 5). Note that all disk operations other
than format have a fixed (7) second timeout, established by the Disk
handler.

L. CASESETTE

See section S for a general description of the Cassette handler. The
cassette uses the Serial I/0 bus hardware, but does not conform with
the Serial I/0 bus protocol as defined in section 9. Hence: the Serial
I/0 vutility (SID) has cassette specific code within it. Some variables
in this sub—section are utilized by SI0O and some by the Cassette
handler.

190

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO1&5595

Cassette mode
D8 CASFLG# [O30F, 11 —-- Cassette I1/0 flag

CASFLG is used internally by EI0 to control the program Fflow through
shared code. A value of zero indicates that the current ocperaticn is a
standard Serial 170 bus operation, and & non—zero value indicates a
cassette operation

Cassette buffer
D9 CASBUF#* [O3FD, 1213 —-—- Cassette rtecord buffer

CASBUF is the buffer used by the Cassette handizr for the packing anig
unpacking of cassette vTecord data. and by the initialization cassette
boot logic. The format for the standard cassette record in the buffer
is shown below:

76543210

e T S e s

i01 01 01 0C 11 CASBUF+0O

B S

0101 01 0 1 +1
d—t— e — b — b — o — =

| control byte : -

B e S e

' 128 ' +3

= data =

| bytes H +130
i e S e s St &

See section 5 for an explanation of the standard cassetie record
format.

D10 BLIM* [02BA,1]1 —-— Cassette record data size

BLIM contains the count of the number of data ovytes in the current
cassette tecord being vead. BLIM will have a value ranging #rom 1 to

ES

128, depending upon the rvecerd control byte a5 =xplained in section 5
Di1 BPTR# [003D, 1] —— Cassette vecord data index

BPTR contains an index into the data portion of the cassette vecord
being read or written. The value will range from O to the then current
value of BLIM. When BPTR equals BiLIM then the buffer (CASRBUF) is full
if writing or empty if veading

Internal working varibles

12 FEOF# [CO3F, 11 —— Cassette end of file flag

FEOF is used by the cassette handler to flag tha detection of an end

191

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C0146555 - Rev. 0.2

Appendix K —— Device Characteristics

This Appendix describes the physical characteristics of the devices
that interface to the ATARI 400 and ATARI 800 Fersonal Computer
Systems. Where applicsble, data capacity, data transfer rate, storage
format, SIO interface and cabling will be detailed

Keyboard

The keyboard input rate is limited by the 0S keyboard reading
procedure to be &0 characters per second. The code for each key is
shown in Table S5-4. A picture of the ATARI 400 Personal

Computer System keyboard is shown on the following page. The keyboard
hardware has no buffering and is rate limited by the debounce
algorithm used.

Display

The television screen display generator has many capabilities that are
not used by the Display handler (as described in Chapter 5 and shouwn
in Appendix H); there are additional display modes, object generators,
hardware display scrolling and many other features which are described
in the ATARI Personal Computer System HARDWARE MANUAL.

Since all display data is stored in RAM, the display data update rate .
is limited primarily by the software routines that generate and format

the data and access the RAM. The generation of the display from fthe

RAM is accomplished by the ANTIC and CTIA chips using Direct Memory

Access (DMA) to access the RAM data.

The internal storage formats for display data for the various modes
are detailed in the ATARI Persconal Computer System HARDWARE MANUAL.
ATARI 410 Program Recorder
The ATARI 410 Program Recorder has the following characteristics:
DATA CAPACITY:

xx characters per C-60 tape (unformatted).

xx characters per C-60 tape (formatted, continuous)

xx characters per C-60 tape (formatted, stop/start).
DATA TRANSFER RATES:

xx characters per second (unformatted).

xx characters per second, average (formatted, stop/start).

Operating System CO1&555 —— Appendix K

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM:, CO016555 - Rev. 0.2

STORAGE FORMAT:

Tapes are rtecorded in 1/4 track stereo format at 1 7/8 inches per
second. The tape can be recorded in both directions: where tracks 1
and 2 are side A left and right; and fracks 3 and 4 are side B right
and left (industry standard). On each side, the left channel (i or 4)
is used for audio and the righ% channel (2 and 3) is used for digital
information.

The audin channel is recorded the normal way. The digital channel is
recorded using the POKEY two—tone mode producing FSK data at up to &00
baud. The MARK frequency is 5327 Hz and the SPACE frequency is 3995
Hz. The transmission of data is asynchronous byte serial as seen fram
the computer; POKEY reads or writes a bit serial FSK sequence for each
byte, in the following order:

1 start bit (SPACE)
data bit-0 -+
data bit-1 H
+— 0 = SPACE, 1 = MARK.
data bit-6 |
data bit-7 -+
1 stop bit (MARK)

The only control the computer has over tape motion is motor
start/stopi and this only if the PLAY button is pressed by the user.
In order for recording to take place, the user must press both the REC
and PLAY buttons on the cassette. The computer has no way to sense the
position of these buttons, nor even if a 410 is cabled to the
computer, so the user must be careful when using this device.

SI0O INTERFACE

The cassette device utilizes portions of the serial bus
hardware:; but does not follow any of the protocol as defined in
Chapter 9.

ATARI 820 Printer

The ATARI 820 printer has the following characteristics:

DATA CAPACITY:

40 characters per line (normal printing)
29 characters per line (sideways printing)

DATA TRANSFER RATES:
Bus rate: xx characters per second.
Print time (burst): xx characters per second.
Print time (average): xx characters per second.
STORAGE FORMAT:

Operating System CO146555 —— Appendix K
193

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO014555 — Rev. 0.2

3 7/8 inch wide paper.
5X7 dot matrix, impact printing.

Normal format ——
40 characters per line.
4 lines per inch (vertical).

2 characters per inch (horizontal).

Sideways format ——
29 characters per line.
& lines per inch (vertical).
? characters per inch (horizontal).

SI0 INTERFACE

The controller serial bus I.D. is %$40.

The controller supports the following SIO commands (see Chapter S5 for
more information regarding the handler and Chapter 2 for a general
discussion of bus commands):

GET STATUS

The computer sends a command frame of the format shown below:

Device I.D. = %$40.

Command byte = $53.
Auxilliary 1 = doesn’t matter.
Auxilliary 2 = doesn’t matter.

Checksum checksum of bytes above.

The printer controller responds with a data frame of the format shown
in earlier in this Appendix as part of the GET STATUS discussion.

PRINT LINE

The computer sends a command frame of the format shown below:

Device I.D. = $40.

Command byte $57.

Auxilliary 1 doesn‘t matter.

Auxilliary 2 $4E for normal print or %53 for sideways.
Checksum checksum of bytes above.

The computer sends a data frame of the format shown below:
Leftmost character of line (column 1).

Next character of line (column 2).

Rightmost character of line (column 40 or 29).
Checksum byte.

Operating System CO14555 -— Appendix K
194

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO14555 — Rev. 0.2

Note that the data frame size is variable, either 41 or 30 bytes in
length: depending upon the print mode specified in the command frame.

ATARI 810 Disk Drive

The ATARI B810 disk has the following characteristics:

DATA CAPACITY:

720 sectors of 128 bytes each (Disk handler format).
709 sectors of 125 data bytes each (Disk File Manager format).

DATA TRANSFER RATES:

Bus rate: xx characters per second.
Seek time: xx msec. per track + xx msec.
Rotational latency: xx msec maximum (xx Tpm).

STORAGE FORMAT:

S 1/4 inch diskette, soft sectored by the controller.

40 tracks per diskette.

18 sectors per track.

128 bytes per sector.

Controlled by National INS1771-1 formatter/controller chip.
Sector interlace factor = xx.

SI0 INTERFACE

The controller serial bus I.D.s range from %31 (fer ‘D1’) to %34
(for ‘D4’).

The controller supports the following SIO commands (see earlier in
this Appendix for information about the disk handler and Chapter 9 for
a general discussion of bus commands):

GET STATUS

The computer sends a command frame of the format shown below:

Device I.D. = $31-34.

Command byte $53.

Auxilliary 1 doesn’t matter.
Auxilliary 2 doesn’t matter.

Checksum checksum of bytes above.

The disk controller responds with a data frame of the format shown
earlier in this Appendix as part of the STATUS REQUEST discussion.

PUT SECTOR (WITH VERIFY)

Operating System C0O16555 —— Appendix K
195

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C014555 - Rev. 0.2

The computer sends a command frame of %the format shown below:

Device I.D. = $31-34

Command byte $57.

Auxilliary 1 low byte of sector number.
Auxilliary 2 high byte of sector number (1-720).
Checksum checksum of bytes above.

The computer sends a data frame of the format shown below:

128 data bytes.
Checksum byte.

The disk controller writes the frame data to the specified sector,
then reads the sector and compares the content with the frame data.
The COMPLETE byte value indicates the status of the operation.

PUT SECTOR (NO VERIFY)
The computer sends a command frame of the format shown below:

Device I.D. = $31-34

Command byte = $50.

Auxilliary 1 low byte of sector number.
Auxilliary 2 high byte of sector number (1-720).
Checksum checksum of bytes above.

The computer sends a data frame of the format shown below:

128 data bytes.
Checksum byte.

The disk controller writes the frame data to the specified sector,
then sends a COMPLETE byte value which indicates the status of the
aoperation.

GET SECTOR
The computer sends a command frame of the format shown below:

Device I.D. = $31-34

Command byte $£352.

Auxilliary 1 low byte of sector number.
Auxilliary 2 high byte of sector number (1-720).
Checksum checksum of bytes above.

The disk controller sends a data frame of the format shown below:

128 data bytes.
Checksum byte.

FORMAT DISK
The computer sends a command frame of the format shown below:

Operating System CO146555 —— Appendix K
196

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM: C016355 - Rev. 0.2

Device I.D. = $31-34

Command byte $21.

Auxilliary 1 doesn’t matter.
Auxilliary 2 doesn’t matter.

Checksum checksum of bytes above.

The disk controlier completely formats the disk (genmerates 40 tracks
of 18 soft sectors per track with the data portion of each sector
equal to all zeroes) and then rveads each sector to verify its
integrity. A data frame of 128 bytes plus checksum is returned in
which the sector numbers of all bad sectors (up to a maximum of &3
sectors) are contained, followed by two consecutive bytes of $FF. If
there are no bad sectors on the disk the first two bytes of the data

Operating System CO014555 —— Appendix K

.\’

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C01&555 - Rev. 0.2

Appendix L -- 0S DATABASE VARIABLE FUNCTIONAL DESCRIPTIONS

Central data base description

Central data base Chapter introduction

This Appendix provides detailed information for those variables in
the 0S Data Base which can be altered by the user. Remaining
Variables are provided narrative descriptions. Information on

the variables is presented in a multiple access scheme: Lookup
tables are referenced to a common set of narratives, which

is itself ordered by function.

Variable descriptions are referenced by a label called a variable
identifier (V.I.D.) number. The label comprises a single letter
followed by a number. A different letter is assigned for each
major functional area being described, and the numbers are
assigned sequentially within each functional area. Those
Variables which are not considered to be of interest to any user
are flagged with an asterisk (‘#‘) after their names.

The database lookup tables provided are:

1. Functional grouping —— index to the function narrative and
descriptions of variables, giving VID and variable name.

2. Alphabetic list of names -— giving VID of description.
3. Address ordered list -— giving VID of description.

Item 1, the functional grouping index, starts on the next page; the
other two lookup tables are at the end of Appendix L.

FUNCTIONAL INDEX TO DATABASE VARIABLE DESCRIPTIONS

Operating System CD1&6555 —- Appendix K
198

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL

Memory configuration
Al MEMLO

A2 MEMTOP

A3 APPMHI

A4 RAMTOP#

AS RAMSIZ

Text/graphics screen

Cursor control
Bi CRSINH
B2 ROWCRS, COLCRS
B3 OLDROW, OLDCOL
B4 TXTROW, TXTCOL

Screen margins
BS LMARGN
B4 RMARGN

Color contreol
B7 PCOLRO - PCOLR3
B8 COLORO - COLOR4

Text scrolling
B? SCRFLG*

Attract mode
B10 ATRACT
Bl11l COLRSH3*
B12 DRKMSK*

Tabbing
B13 TABMAP

Logical text lines
Bi4 LOGMAP:
BiS LOGCOL=*

Split screen
Bi& BOTSCR#*

FILL/DRAW function
B17 FILDAT
Bi8 FILFLGH*

B1? NEW SROWs, NEWCOL #

B2C HOLD43*

B21 ROWINC:#, COLINC:#
B22 DELTAR:*, DELTACH*

B23 COUNTR=
B24 ROWAC:, COLACH
B25 ENDPTH

Operating System CO16555 —— Appendix L

OPERATING SYSTEM, CO016555 - Rev.

0.2

199

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT.

OPERATING SYSTEM, C0O1&555 - Rev. 0.2

Displaying control characters

Escape (display following control char)
B26 ESCFLG#*

Display control characters mode
B27 DEPFLG

Bit mapped graphics

B28
B29

DMASK
SHFAMT*

Internal working variables

B30
B31
B32
B33
B34
B35
B3&
B37
B38
B39
B40O
B41
B42
B43
B44
B45
B46
B47
B48
B4<9
BSO
BS1
BS2
BS3

HOLD1#

HOLD2%*

HOLD3%*

TMPCHR#

DSTAT*

DINDEX3#

SAVMSC

OLDCHR=#*
OLDADR*
ADRESS#

MLTTMP /OPNTMP / TOADR #
SAVADR/FRMADR*
BUFCNT#
BUFSTR*
SWPFLG*
INSDAT*
TMPROW*, TMPCOL *
TMPLBT*
SUBTMP*
TINDEX*
BITMSK#
LINBUF*

TXTMSC

TXTOLD#*

APPROVAL

Operating System CO146555 —-- Appendix L

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO016555 - Rev. 0 2

Internal character code conversian
B54 ATACHR
BSS CHAR#*

C. Disk handler
Cl1 BUFADR#*
C2 DSKTIM*

D. Cassette (part in SI0O part in handler)}

Baud rate determination

D1 CBAUDL3, CBAUDH*

D2 TIMFLG*

D3 TIMER1%*, TIMER2%*

D4 ADDCOR=#*

DS TEMP1#

D& TEMP3#

D7 SAVIO#*

Cassette mode
D8 CASFLG#

Cassette buffer
D? CASBUF*
D10 BLIM#

D11 BPTR#*

Internal working variables
D12 FEOF#*
D13 FTYPE#
D14 WMODE#*
D15 FREQG#

E. Keyboard

Key reading and debouncing
El1 CHI1=*
E2 KEYDEL#*
E3 CH

Operating System CO16555 —-— Appendix L

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO014555% - Rev. 0.2

Special functions

Start/stop
E4 SSFLAG

[BREAK]
ES EBRKKEY

SHIFT/CONTROL lock
Eé6 SHFLOK
E7 HOLDCH#*

Auto-repeat
EB SRTIMR*

Inverse video
E? INVFLG

Console switches (SELECT, START % OPTION)

F. Printer
Printer buffer
F1 PRNBUF*

F2 PBUFSZ#*
F3 PBPNT»

Internal working variables
F4 PTEMP3*
FS PTIMOT*

G. Central I/0 raoutine (CID)
User call parameters

G1 IOCE
G2 ICHID
G3 ICDNO
G4 ICCOM
65 ICSTA
G4 ICBAL, ICBAH
67 ICPTL, ICPTH
68 ICBLL, ICBLH
G? ICAX1, ICAXZ
G10 ICSPR

Device status
G11 DVSTAT

Device Table
Gl12 HATABS

Operating System CO16555 —— Appendix L

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL

CIO/handler interface parameters

12 ZIOCB (IOCBAS:

G14 ICHIDZ

G15 ICDNOZ

Gi6 ICCOMZ

17 ICSTAZ

G18 ICBALZ. ICBALH

G619 ICPTLZ. ICPTHZ

620 ICBLLZ, ICBLHZ

G21 ICAX1Z, ICAX2Z

G22 ICSPRZ (ICIDNO, CIOCHR)

Internal working variables
G232 ICCOMT#
G24 ICIDNO*
G25 CIOCHR=#*

Serial I/0 routine (SIOD}
User call parameters

H1 DCB confrol block

H2 DDEVIC

H3 DUNIT

H4 DCOMND

HS DSTATS

Hé& DBUFLO, DBUFHI
H7 DTIMLO

H8 DBYTLO, DBYTHI
H? DAUX1, DAUX2

Bus sound control
H10 SOUNDR

Serial bus control

Retry logic
H11 CRETRY#*
H12 DRETRY3*

Checksum
H13 CHKSUM3*
Hi4 CHKSNT#*
H1S NOCKSM#*

Operating System CD14555 —— Appendix L

OPERATING SYSTEM. CO016555 — Rev.

0.2

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C0146555 - Rev. 0.2

Data buffering

General buffer control

Hié BUFRLO3, BUFRHI*
H17 BFENLO*, BFENHI*

Command frame output buffer
Hi8 CDEVIC=*
H19? CCOMND=
H20 CAUX1#, CAUXZ2#

Receive/transmit data buffering
H21 BUFRFL3#
H22 RECVDNs3
H23 TEMP#
H24 XMTDON=#*

SI0 timeout
H25 TIMFLG#
H2&6 CDTMV1
H27 CDTMALl=*

Internal working variables
H28 STACKP#*
H29 TSTAT#*
H30 ERRFLG#*
H31 STATUS*
H32 SSKCTL#*

J. ATARI controllers

Joysticks
J1 STICKO
J2 STRIGO

STICKS3
STRIG3

Paddles
J3 PADDLO
J4 PTRIGO

PADDL7
PTRIG7

Light pen
JS LPENH
Jé6 LPENV
J7 STICKO

Driving contrallers
J8 STICKO — STICK2
J? STRIGO - STRIG3

Operating System CO16555 —— Appendix L

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL

OPERATING SYSTEM, CO016355 - Rev.

Disk file manager

K1 FMSZIPG*
K2 ZBUFP#*
KZ ZDRYax
K4 ZSBAa#*
KS ERRNO#

Disk utilities (DOS)

L1 DSKUTL#*

Floating point package

M1 FRO

M2 FRE#*

M3 FR1

M4 FR2%

M3 FRX#

Mé EEXP#

M7 NSIGN#*
M8 ESIGN#*
M? FCHRFLG3*
M10O DIGRT#*
M1l CIX

M12 INBUFF
M13 ZTEMPL1*
Mi4 ZTEMP4#*
M1S ZTEMP3%*
Mi& FLPTR
M17 FPTR2#
Mi8 LBPR1x
Mi? LBPR2%
M20 LBUFF
M21 PLYARG

M22 FPSCR/FSCR#
M23 FPSCR1/FSCR1*
M24 DEGFLG/RADFLGH#

Power up &% [S RESET]

RAM sizing

M1 RAMLOs3, TRAMSZ*

N2 TSTDAT#*

Operating System CO16555 —-- Appendix L

0.2

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C0O14555 - Rev. 0.2

Disk/cassette boot

N3 DOSINI

N4 CKEY=*

NS CASSEBT*

Né6 CASINI

N7 BOOT?#

N8 DFLAGS#*

N? DBSECT#

N10 BOOTAD*

Environmental control
N11 COLDST*
Ni2 DOSVEC

[S RESET]1
N13 WARMST

P. Interrupts
P1 CRITIC
P2 POKMSK

System timers

Real-time clock
P3 RTCLOK

System timer 1
P4 CDTMV1
PS5 CDTMA1L

System timer 2
P& CDTMV2
P7 CDTMA2

System timers 3-5
P8 CDTMV3, CDTMV4, CDTMVS
P? CDTMF3, CDTMF4, CDTMFS

RAM interrupt vectors
NMI interrupt vectors
P10 VDSLST

P11 VVBLKI
P12 VVBLKD

Operating System C0O16555 —— Appendix L

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL

OPERATING SYSTEM, C01465535 - Rev.

IRG interrupt vectors
P12 VIMIRQ
P14 VPRCED
P15 VINTER
P1& VEREAK
P17 VKEYED
P18 VESERIN
P19 VSEROR
P20 VYSEROC
P21 VTIMR1, VTIMRZ2, VTIMR4

Hardware register updates
P22 SDMCTL=*
P23 SDLSTL+#*, SDLSTH#*
P24 GPRIOR=*
P25 CHACT#*
P26 CHBAS
P27 PCOLRx, COLOR<x

Internal working variable
P28 INTEMP#*

R. User areas
R1 (unlabeled)
R2 USAREA

S. Unused (spare) bytes

S1 HOLDS

52 CSTAT

S2 DUNUSE

S4 TEMPZ2

SS TMPX1

S& DSKFMS

S§7-515 (unlabeled)

This Appendix contains descriptions of many of the data base
variables:; descriptions are included for all of the user
accessible variables and for some of the "internal" wvariables
as well. Those variables which are not considered to be
normally of interest to any user are flagged with an asterisk
(’%’) after their names; the other variables may be of
interest to one or more of the following classes of users:

o End user.
0 Game developer.

Operating System CO16555 —— Appendix L

0.2

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO014555 - Rev. 0.2

Application programmer.
System vutility writer.
Language processor develaoper.
Device handler writer.

0000

gach variable is specified by its system equate file name followed by
1?5 address (in hex) asnd the number of bytes reserved in the data base
(in decimal), in the following form:

“name> [<address> <sizeX]
For example:

MEMLO CO2E7, 21

Note that most word (2 byte) variabies are ordered with the least
significant byte at the lower address

A. MEMORY CONFIGURATION

See Chapter 4 for a general discussion of memory dynamics and Chapter
7 for details of system initialization.

Al MEMLO [O2E7,2] —-- User free memory low address

MEMLO contains the address of the first locatioan in the free memory
region. The wvalue is established by the 0OS during power up and [RESETI]
initialization and is never altered by the OS thereafter.

A2 MEMTOP C[O2ES, 21 —-- User free memory high address

MEMTOP contains the address of the first non—useable memory location
above the free memory rvegion. The value is established by the 0OS
during power up and [RESET] initialization; and then is re—-established
whenever the display is OPENed, based upon the requirements of the
selected graphics mode.

A3 APPMHI [OOQE., 21 -- User free memory screen lower limit

APPMHI is a user controlled variable which contains the address within
the free memory region below which the Display handler may not go in
setting up a display screen. This variable is initialized to zero by
the 0S at power up.

A4 RAMTOP* [Q06A, 1] —— Display handler top of RAM address (msb)
RAMTOP permanently retains the RAM top address that was contained in
TRAMSZ (as described in N1) for the Display handler’s use. The value

Operating System CO16555 —— Appendix L

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO016555 - Rev. 0.2

is setup as part of handler initializationi it is not clear why this
variable is required, since the same value is in RAMSIZ

AS RAMEIZ [O2E4,11 —— Top of RAM address (msb only)

RAMSIZ permanently retains the RAM top address that was contained in
TRAMSZ (as described in N1).

B. TEXT/GRAPHICS SCREEN

See Chapter 5 for a discussion of the text and graphics screens and
their handlers.

Cursor control

For the text screen and split screen text window there is a visible
cursaor on the screen which shows the position of the next input or
output operation. The cursor is represented by inverting the video of
the character upon which it residesi but the cursor may be made
invisible: at the user’s option. The graphics screen always has an
invisible cursor.

The cursor position is sensed by examining data base variables and may
be moved by altering those same variablesi in addition, when using the
Screen Editor, there are cursor movement control codes which may be
sent as data (as explained in Chapter 5).

Bl CRSINH [Q02F0, 1] —— Cursor display inhibit flag

When CRSINH is zero, all ocgutputs to the text screen will be followed
by a visible cursor (inverted character); and when CRSINH is non-zero,
no visible cursor will be generated.

CRSINH is set to zero by power up, C[RESETI1, [BREAK] or an OPEN command
to the Display handler or Screen Editor.

Note that altering CRSINH does not cause the visible cursor to change
states until the next output to the screeni if an immediate change to
the cursor state is desired, without altering the screen data. follow
the CRSINH change with the output of CURSOR UP, CURSOR DOWN or some
other innocuous sequence.

B2 ROWCRS [00S54,1] 2% COLCRS [0055,2] —-— Current cursor position

ROWCRS and COLCRS define the cursor location (row and column,
respectively) for the next data element to be read from or written to
the main screen segment. When in split screen mode, the variables
TXTROW and TXTCOL define the cursor for the text window at the bottom
of the screen as explained in B4 below.

Operating System C016555 —— Appendix L

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO146555 - Rev. 0.2

The row and column numbering start with the value zero, and increase
monotonically to the number of rows or columns minus one; with the
upper left corner of the screen being the origin (0, 0).

ROWCRS is a single byte variable with a maximum allowable value of 121
(screen modes B8-11); COLCRS is a two byte variable with a maximum
allowable value of 319 (screen mode B).

B3 OLDROW CGOSA, 11 2 OLDCOL [QOSB,2] —-- Prior cursar position

OLDROW and OLDCOL are updated from ROWCRS and COLCRS befaore every

cperation. The variables are used only for the DRAW and FILL
aperations.

B4 TXTROW [0290,11 % TXTCOL [0291,2] —— Split screen text cursor
position

TXTROW and TXTCOL define the cursor location (row and column,

respectively) for the next data element to be read from or written to
the split screen text window.

The row and column numbering start with the value zero, and inmcrease
monotonically to 3 and 39, respectively; with the upper left corner of
the split screen text window being the origin (0, 0).

Screen margins

The text screen and split screen text window have user alterable left
and right margins which define the normal domain of the text cursor.

BS LMARGN [(0052,1]1 —— Text column left margin

LMARGN contains the column number (0-39) of the text screen left
margin: the text cursor will remain on or to the right of the left
margin as a result of all operations, unless the cursor column
variable is directly updated by the user (see B2 and B4 above). The
default value for LMARGN is 2 and is established upon power up or
CRESETI.

B& RMARGN [0053,1]1 —- Text column right margin

RMARGN contains the column number (0-39) of the text screen right
margin; the text cursor will remain on or to the left of the right
margin as a result of all operations, unless the cursor column
variable is directly updated by the user (see B2 and B4 above). The

default value for RMARGN is 39 and is established upon power up or
[RESET].

Color control

As part of the stage 2 VBLANK process (see Chapter &), the values of
nine data base variables are stored in corresponding hardware color

Operating System C016555 —— Appendix L
210

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555 — Rev. 0.2

control registers. The color registers are divided into two groups:
the player/missile colors and the playfield colors. The playfield
color registers are utilized by the different screen modes as shown in
Appendix Hi the plauyer/missile color registers have no use within the
standard 0OS.

B7 FPCOLRC - PCOLR3 C[0Q2C0, 41 —— Player/missile colors

Each color variable is stored in the corresponding hardware register
as shown below:

PCOLRO [02CO1] COLPMO [DO123
PCOLR1 CO2C1:Z COLPM1 [DO131
PCOLR2 L[02C21 cOLPM2 [DO1413
PCOLR3 L[02C31] COLPM3 [DO151]

Each color variable has the format shown below:

See Appendix H for information regarding the color and luminance
field wvalvues.

BB COLORO - COLOR4 [02C5, 5] —— Playfield colors

Each color variable is stored in the corresponding hardware register
as shown below:

COLORO LO2C41 COLPFO [DO161
COLOR1 C[O2CS1 COLPF1 [DO171
COLOR2 [02C4A1] COLPF2 [D0O181]
COLOR3 [02C71 COLPF3 L[DO191]
COLOR4 [O2C81 COLBK [DO1Al

Each cnolor variable has the format shown below:

768543210

See Appendix H for information regarding the color and luminance field
values.

Text scrolling

The text screen or split screen text window "scrolls" upward whenever
one of the two conditions shown below occurs:

Cperating System CO146555 —— Appendix L

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C014&555 - Rev. 0.2

A text line at the bottom tow of the screen extends past the right
margin.

A text line at the bottom row of the screen is terminated by an
EOL.

Scrolling has the effect of removing the entire lagical line that
starts at the top of the screen and then moving all subsequent lines
vpward to fill in the void. The cursor will also move upward if the
logical line deleted exceeds one physical line.

B? SCRFLEG* [O2BB, 11 -- Scroll flag

ECRFLG is a working variable that counts the number of physical lines
minus one that were deleted from the top of the screen; since a
logical line ranges in size from 1 to 3, SCRFLG ranges from O to 2.

Attract mode

Attract mode is a mechanism which protects the TV screen from having
patterns "burned into" the phosphors due to a fixed display being lef%t
on the screen for extended periods of time. When the computer is left
unattended for more than ? minutes, the color intensities are limited
to 50% of maximum and the hues are continually varied every 8.3
seconds. Pressing any keyboard data key will be sufficient to remove
the attract mode for ? more minutes.

As part of the stage 2 VBLANK process, the color registers from the
data base are sent to the corresponding hardware color registers;
before they are sent: they undergo the following transformation:

hardware register = database variable XOR COLRSH AND DRKMSK

Noermally COLRSH = $00 and DRKMSK = $FE, thus making the above
calculation a null operation; however, once attract mode becomes
active, COLRSH = the content of RTCLOK+1 and DRKMSK = $F&, which has
the effect of modifying all of the colors and keeping their luminance
always below the 30 percent level.

Since RTCLOK+1 is incremented every 25&/60ths of a second and since
the least significant bit of COLRSH is of no consequence, a color/lum
change will be effected every 8.3 seconds (512/60}).

B10 ATRACT [004D, 1] —-- Attract mode timer and flag

ATRACT is the timer (and flag) which controls the initiation and
termination of attract mode. Whenever a keyboard key is pressed, the
keyboard IRG service rtoutine sets ATRACT to zero, thus terminating
attract made: the [BREAK] key logic behaves accordingly. As part of
the stage 1 VBLANK process, ATRACT is incremented every 4 seconds; if
the value exceeds 127 (after 9 minutes without keyboard activity), the
value of ATRACT will then be set to %$FE and will retain that value
until attract mode is terminated.

Operating System CO146555 -— Appendix L

n
—
n

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C0O16555 - Rev. 0.2

Since the attract mode is prevented and terminated by the 0OS based
only upon keyboard activity, some users may want to reset ATRACT based
upon ATARI controller event detection, user controlled Serial 1I/0 bus
activity or any other signs of life.

Bil COLRSH# [0C4F, 13 —-—= Color shift mask

COLRSH has the value $00 when attract mode is inactive, thus effecting
no change to the screen colors; when attract mode is active, COLRSH
contains the current value of the timer variable middle digit
(RTCLOK+1).

Bi12 DRKMSK# [O0Q4E, 1] -- Dark (luminance} mask
DRKMSK has the value $FE when attract mode is inactive which does not
alter the luminance; and has the value $F& when attract mode is active

which forces the most significant bit of the luminance field to zero,
thus guaranteeing that the luminance will never exceed 50 percent.

Tabbing

See Chapter 5 for a discussion of the use of tabs in conjunction with
the Screen Ediftor.

B13 TABMAP [02A3,15]1 —-— Tab stop setting map
The tab settings are retained in a fifteen byte (120 bit) map, where a
bit value of one indicates a tab setting; the diagram below shows the

mapping of the individual bits to tab positions.

7 &) 4 3 2 1 0

Fm——p——— e ——t + + + + +

t ot 11213141 51 617t TABMAP+O
B e e e e S

t8 ¢t 2 1 100 111 12! 131 14! 15! +1
B e e e S——

]]

s + + + + +
{1121113111411151116111711181119! +14

+ + + + + + Fm——p———
Whenever the Display handler or Screen Editor is opened, this map is
initialized to contain the value of %01 in every byte, thus providing
the default tab stops at 7, 15, 23, etc.

Logical text lines
The text screen is invisibly divided into logical lines of text,
each comprising from one to three physical lines of text. The

screen is initialized to 24 logical lines of one physical line

Cperating System CO16555 —— Appendix L

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C014555 - Rev. 0.2

eachi but data entry and/or data insertion may increase the size
of a logical line to two or three phuysical lines.

B14 LOGMAP# [02B2,4]1 —— Logical line starting row map

The beginning physical line number for each leogical line on the
screen is rte2tained in a four byte (32 bit) map, where a bik
value of one indicates the start of & logical line; the diagram

below shows the mapping of the individual bits to physical line
(row) numbers.

7 4 5 4 3 2 1 0

e e R S e N S
i 0 1t 2t 3t 4t 5! ! b LOGMAP+O
e A aats St E T SR BT
i B @110111{12113114115! +1
e e e
116117118112(201211221231 +2
e S S s s TS
i H H H H i i H i +3

e e s s St TN U

The map bits are all set to one whenever the text screen is
OPENed or cleared. From that point, the map is updated as
logical lines are entered, edited and deleted from the screen.

B15 LOGCOL* [O00&3,1]1 —— Cursor/logical line column number

LOGCOL contains the logical line column number for the current
cursor position; note that a logical line may comprise up to
three physical lines. This variable is for the internal use of
the Display handler.

Split screen

The Display handler and Screen Editor together support the

operation of a split screen mode (see Chapter 5) in which the main
portion of the screen is in one of the graphics modes and is
controlled by the Display handler, and there is a four physical line
text window at the bottom of the screen which is controlled by the
Screen Editor.

Bl14é BOTSCR%# [02BF, 1] —— Text screen lines count
BOTSCR contains the number of lines of text for the current screen: 24
for mode O or 4 for a split screen mode. The handler also uses this

variable as an indication of the split screen status; tests are made
for the specific values 4 and 24.

DRAW/FILL function

The DRAW function line drawing algorithm is shown below translated to
the Pascal language from assembly language

Operating System CO14555 —-—- Appendix L
214

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL

NEWROW

DELTAR
ROWINC

DELTAC
COLINC

ROWAC : =
ROWCRS :

COUNTR
ENDPT : =

OPERATING SYSTEM,
ROWCRS; NEWCOL := COLCRS;

ABS (NEWROW-OLDROW);
SIGN (NEWROW-OLDROW); { +1 or -1 %}

ABS (NEWCOL-0OLDCOL);
SIGN (NEWCOL-OLDCOL); € +1 or -1 2>

0; COLAC := 0Oi

OLDROW; COLCRS := OLDCOL;

MAX (DELTAC, DELTAR);

COUNTR;

IF COUNTR = DELTAC

THEN ROWAC
ELSE COLAC

ENDPT DIV 2
ENDPT DIV 2;

WHILE COUNTR > O DO

BEGIN

ROWAC := ROWAC + DELTAR;
IF ROWAC >= ENDPT

THEN

BEGIN
ROWAC : = ROWAC — ENDPT;
ROWCRS := ROWCRS + ROWINC
END;

COLAC := COLAC + DELTAC:
IF COLAC >= ENDPT

PLOT_POINT;

THEN

BEGIN
COLAC := COLAC - ENDPT:
COLCRS := COLCRS + COLINC
END;

IF FILFLG <> O THEN FILL_LINE;

COUNTR := COUNTR - 1

END;

The FILL function algorithm (FILL_LINE above)

Chapter S.

B17 FILDAT [O2FD, 1] —- Fill data

CO016555 - Rev.

{ point defined by ROWCRS % COLCRS »

FILL contains the fill region data value as part of the calling
sequence for a FILL command as described in Chapter S.

B18 FILFLG* [02B7,11 -- Fill flag

Operating System CO16555 —-— Appendix L

0.2

is described briefly in

r
e
wn

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C0146555 - Rev. 0.2

FILFLG indicates to shared code within the Display handler whether the
current operation is FILL (FILFLG <3 0) or DRAW (FILFLG = 0).

B19 NEWROW* [00&0, 11 % NEWCOL%* [Q0&1,2]1 —-- Destination point

NEWROW and NEWCOL are initialized to the values in ROWCRS and COLCRS,
which represent the destination endpoint of the DRAW/FILL command.
This is done so that ROWCRS and COLCRS may be altered during the
performance of the command.

B20 HOLD4# [O2BC, 11 ——- Temporary storage

HOLD4 is used to save and restore the value in ATACHR during the
FILL process; ATACHR is temporarily set to the value in FILDAT
to accomplish the filling portion of the command.

B21 ROWINC* [007%9,1]1 &% COLINC#* [007A,1]1 -- Row/column
increment/decrement

ROWINC and COLINC are the row and column increment values: they are
each set to +1 or -1 to control the basic direction of line drawing.

ROWINC and COLINC represent the signs of NEWROW - ROWCRS and NEWCOL -
COLCRS, respectively.

B22 DELTAR%* [0076,11 % DELTAC#* [0077,2]1 —— Delta row and delta
column

DELTAR and DELTAC contain the absolute values of NEWROW - ROWCRS and
NEWCOL - COLCRS: respectively; together with ROWINC and COLINC. they
define the slope of the line to be drawn.

B23 COUNTR# [OO7E, 2] —— Draw iteration count

COUNTR initially contains the larger of DELTAR and DELTAC, which is
the number of iterations required to generate the desired line. COUNTR
is then decremented after every point on the line is plotted, wuntil it
reaches a value of zero.

B24 ROWAC# [0070.,21 % COLAC* [0072,2]1 —— Accumulators

ROWAC and COLAC are working accumulators which control the row and
column point plotting and increment (or decrement) function.

B25 ENDPT# [0074,21]1 -- Line length

ENDPT contains the larger of DELTAR and DELTAC, and is used in
conjunction with ROWAC/COLAC and DELTAR/DELTAC to control the plotting
of line points.

Displaying control characters

Often it is useful to have ATASCII control codes (such as CLEAR,
CURSOR UP, etc.) displayed in their graphic forms instead of having

Operating System CO1&555 —— Appendix L
216

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO1&555 - Rev. 0.2

them perform their control function. This display capability is
provided in two forms when outputting to the Screen Editor: 1) a data
content form in which a special character (ESC) preceeds each control
character to be displayed and 2} a mode control form.

Escape (displsy following contrcl character:

Whenever an ESC character is detected by the Screen Editor., the
next character following this code is displayed as data,

even if it would normally be treated as a control code; the EOL
code is the sole exception, it is always treated as a control
code. The sequence ESC ESC will cause the second ESC character
to be displayed.

B2&6 ESCFLG#* [02A2,1]1 —— Escape flag

ESCFLG is used by the Screen Editor to control the escape
sequence functioni the flag is set (to $80) by the detection of
an ESC character ($1B) in the data stream and is reset (to 0O)
following the output of the next character.

Display control characters mode

When it is desired to display ATASCII control codes other than EOL in
their graphics form, but not have an ESC character associated with
each control code: a display mode may be established by setting a flag
in the data base. This capability is used by language processors when
displaying high level language statements:, which may contain control
codes as data elements.

B27 DSPFLG [O2FE, 1] -- Display control characters flag

When DSPFLG is non—zero, ATASCII control codes other than EOL are
treated as data and displayed on the screen when output to the Screen
Editor. When DSPFLG is zera, ATASCII control codes are processed
normally.

DSPFLG is set to zero by power up and [RESET].

Bit mapped graphics

A number of temporary variables are used by the Display handler when
handling data elements (pixels) going to or from the screen; of
interest here are those variables which are used to control the
packing and unpacking of graphics data, where a memory byte typically
contains more than one data element (for example, screen mode B
contains B pixels per memory byte).

B28 DMASK# [02A0:,11 -- Pixel location mask

Operating System CO146555 —— Appendix L

r
-
i

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO014555 - Rev. 0.2

DMASK is a mask which contains zeroes for all bits which do not
correspond to the specific pixel to be operated uvpon, and which
contains ones for all bits which do correspond. DMASK may contain the
values shown below in binary notation:

11111111 == s

M

re2en modes 1 % 2; one pixel per byte.

11110000 -- screen modes 9-11; two pixels per byte.
00001111

11000000 -- screen modes 3, 5 % 7; four pixels per byte
001100C0
00001100
00000011

10000000 —-- screen modes 4, & & 8; eight pixels per byte.
0100Q000

00000010
00000001

B29 SHFAMT# [006F, 1] —— Pixel justification

SHFAMT indicates the amount to shift the right Jjustified pixel data on
output, or the amount to shift the input data to right justify it on
input. The value is always the same as for DMASK prior to the
Justification process.

Internal working variables

B30 HOLDi* [00S51,1]1 —— Temporary storage

B31 HOLD2# [029F, 1] —— Temporary storage
B32 HOLD3%* [029D, 1] -— Temporary storage
B33 TMPCHR# [0QS50, 11 —— Temporary storage
B34 DSTAT#* [004C, 1] -— Display status

B35 DINDEX* [00S7,1]1 —— Display mode

DINDEX contains the current screen mode obtained from the low order
four bits of the most recent OPEN AUX1 byte.

B3& SAVMSC [0058,2]1 -- Screen Memory Address

SAVMSC contains the lowest address of the screen data region; the

data atthat address is displayed at the upper left corner of the
screen.

B37 OLDCHR#%* [O0SD, 1] —— Cursor character save/restore

Operating System CO016555 —— Appendix L

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO16555 - Rev. (.2

OLDCHR retains the value of the character under the visible text
cursor: this variable is used to restore the original character value
when the cursor is moved.

B38 OLDADR# [QQOSE: 2] —-- Cursor memory address

OLDADR tetains the memory address of the current visible text cursor
locationi this variable is used in congjyunction with OLDCHR (B37) to
restore the original character value when the cursor is moved.

B39 ADRESS# [004&4,2]1 —— Temporary storage

B40 MLTTMP/OPNTMP/TOADR# [00&66:2]1 —— Temporary storage

B41 SAVADR/FRMADR# [0068,2]1 —— Temporary storage

B42 BUFCNT# [Q0&B:,1] —-- Screen Editor current logical line size
B43 BUFSTR# [00&4C:,2] —— Temporary storage

B44 SWPFLG* L[O07B, 11 —— Split screen cursor control

In split screen mode, the graphics cursor data and the text window
cursor data are frequently swapped as shown below in order to get the
variables associated with the region being accessed into the
ROWCRS—-0OLDADR variables.

ROWCRS B2 ——==———— TXTROW B4
COLCRS B2 —=—————— TXTCOL B4
DINDEX B35 —-=———- TINDEX B4%9
sSavYMsSC B36 —————- TXTMSC BS2
OLDROW B3 ——————- TXTOLD BS3
oLDCoL B3 ——————- " "
OLDCHR B37 —=————- " "
OLDADR B38 =—-=———-— " "

SWPFLG is used to keep track of which data set is currently in the
ROWCRS—OLDADR region; SWPFLG is equal to $FF when split screen text
gindow cursor data is in the main region:, otherwise SWPFLG is equal to
B45 INSDAT# [007D, 1] -- Temporary storage

B46 TMPROW* [02B8.11 % TMPCOL* [02B9, 21 —— Temporary storage

B47 TMPLBT# [02A1,1] -- Temporary storage

B48 SUBTMP#* [0Q029E,1] -- Temporary storage

B49 TINDEX#* [0293,1]1 —— Split screen text window screen mode

TINDEX is the split screen text window equivalent of DINDEX and is

always equal to zero when SWPFLG is equal to zero (see B44).

Operating System C0O16555 —— Appendix L

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C014555 - Rev 0.2

B50 BITMSK#* [OGC4E, 1] —— Temporary storage
BS51 LINBUF#* [0247,40] -- Physical line buffer

LINBUF is used to temporarily buffer one physical line of text when
the Screen Editor is moving screen data.

B52 TXTMSC [0294,2]1 -- Split screen memory address

TXTMSC is the split screen text window version of SAVMSC (B36).
See B44 for more informatiaon.

BS3 TXTOLD#* [0296,&]1 —- Split screen cursor data

See B44 for more information.

Internal character code conversion

Two variables are used to retain the current character being processed
(for both reading and writing); ATACHR contains the value passed to or
from CIO, and CHAR contains the internal code corresponding to the
value in ATACHR. Because the hardware does not interpret ATASCII
characters directly, the transformations shown below are applied to
all text data read and written:

ATASCII INTERNAL
CODE CODE
00-1F 40-5F
20-3F 00-1F
40-5F 20-3F
60-7F 60-7F
80-9F CO-DF
AO-BF BO-9F
CO-DF AO-BF
EO-FF EO-FF

See P26 for more information.
BS54 ATACHR [O2FB, 1] -- Last ATASCII character or plot point

ATACHR contains the ATASCII value for the most recent character read
or written, or the value of the graphics point. This variable may also
be considered to be a parameter of the FILL/DRAW commands, as the
value in ATACHR will determine the line color when a DRAW or FILL is
performed.

BSS CHAR# [02FA, 1] —— Internal character code

CHAR contains the internal code value for the most recent charcter
read or writtan.

Operating System CD14555 —-— Appendix L

P
n
Q

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C014555 - Rev. 0.2

C. DISK HANDLER
See Chapter S for a discussion of the resident Disk handler.
C1 BUFADR* [0C1S5,2] -- Data buffer pointer

BUFADR acts a3s temporary page zero pointer to the current disk
buffer.

C2 DSKTIM* [0246,1]1 —— Disk format operation timeout time

DSKTIM contains the timeout value for SIO calling sequence variable
DTIMLO (see Chapter 9); DSKTIM is set to 160 (which represents a 171
second timeout) at initialization time: and is updated after each disk
status request operation contain the value returned in the 3rd byte of
the status frame (see Chapter 5). Note that all disk operations other
than format have a fixed (7) second timeocut, established by the Disk
handler.

D. CASEETTE

See Chapter 5 for a general description of the Cassette handler. The
cassette uses the Serial I/0 bus hardware, but does not conform with
the Serial I/0 bus protocol as defined in Chapter 9. Hence, the Serial
1/0 utility (SI0) has cassette specific code within it. Some variables
in this sub—Chapter are utilized by SIO and some by the Cassette
handler.

Baud rate determination

The input baud rate is assumed to be a nominal 400 baud, but will be
ad justed, if necessary, by the SI0 routine to account for drive motor
variations, stretched tape: etc. The beginning of every cassette
record contains a pattern of alternating ones and zeroes which is used
solely for speed correction; by measuring the time to read a fixed
number of bits, the true receive baud rate is determined and the
hardware adjusted accordingly. Input baud rates ranging from 318 to
1407 baud can theoretically be handled using this technique.

The input baud rate is adjusted by setting the POKEY counter which
controls the bit sampling period.

D1 CBAUDL* [O2EE, 1] & CBAUDH* [02EF., 1] —-—- Cassette baud rate
Initialized to 0OSCC hex, which rTepresents a nominal &00 baud.
After baud rate calculation, these variables will contain POKEY
counter values for the corrected baud rate.

D2 TIMFLG* [0317,11 —— Baud rate determination time out flag

Operating System CO14555 —- Appendix L

n
nJ
=

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555 - Rev. 0.2

TIMFLG is used by SID to timeout an unsuccessful baud rate
determination. The flag is initially set to one, and if it attains a
value of zero (after 2 seconds) before the first byte of the cassette
record has been read, the operation will be aborted. See also H24.

D3 TIMER1#* [O30C,21 % TIMER2# [0310,21 —-- Baud rate timers

These timers contain reference times for the beginning and end of the
fixed bit pattern receive period. The first byte of each timer
contains the then current vertical line counter value read from ANTIC,
and the second byte of each timer contains the then current value of
the least significant byte of the 0S5 real time clock (RTCLOK+2).

The difference between the timers is converted to raster pair counts
and is then used to perform a table lookup with interpolation to
determine the new values for CBAUDL and CBAUDH.

D4 ADDCOR* [QO30E, 1] -— Interpolation adjustment variable

ADDCOR is a temporary variable used for the interpolation calculation
of the above camputation.

DS TEMP1* [0312,2]1 —-- Temporary storage
Dé& TEMP3# [0315,1]1 -- Temporary storage
D7 SAVIO* [0314,1]1 -- Serial in data detect

SAVIO is used to retain the state of SKSTAT [D20F] bit—-4 (serial data
in); it is used to detect (and is updated after) every bit arrival.

Cassette mode
DB CASFLG* [030F, 11 -- Cassette I/0 flag

CASFLG is used intermally by SIO to control the program flow through
shared code. A value of zero indicates that the current operation is a
standard Serial I/0 bus operation, and a non—-zero value indicates a
cassette operation.

Cassette buffer
D? CASBUF* [O3FD, 1311 —— Cassette record buffer
CABBUF is the buffer used by the Cassette handler for the packing and

unpacking of cassette record data, and by the initialization cassette

boot logic. The format for the standard cassette record in the buffer
is shown below:

Operating System CO16555 —— Appendix L

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555 - Rev. 0.2

76543210
B et St S e

i1 01010 1! CASBUF+0
s S e

i¢c1 010101 +1
=t —Fmt—mf—t—t—t—+

{ control byte ! +2
R e e e e a2

H 128 i +3

= data =

: bytes i +130
B e e e e e

See Chapter S for an explanation of the standard cassette record
format.

D10 BLIM* [028A.,1] ——- Cassette record data size

BLIM contains the count of the number of data bytes in the current
ctassette record being read. BLIM will have a wvalue ranging from 1 to
128, depending upon the record control byte as explained in Chapter 5.

D11 BPTR# [QOO02D, 1] —— Cassette record data index

BPTR contains an index into the data portion of the cassette record
being read or written. The value will range from O to the then current
value of BLIM. When BPTR equals BLIM then the buffer (CASBUF) is full
if writing or empty if reading.

Internal working varibles

D12 FEOF# [OQ3F, 1] —-- Cassette end of file flag

FEOF is used by the cassette handler to flag the detection of an end
of file condition (control byte = $FE). FEOF equal to zero indicates
that an EOF has not yet been detected, and a non—-zero value indicates
that an EOF has been detected. The flag is reset at every OPEN.

D13 FTYPE* [Q03E, 1] —— Inter—-record gap type

FTYPE is a copy of ICAX2Z from the OPEN command and indicates the type
of inter—record gap selectedi a positive value indicates normal record
gaps, and a negative value indicates continuous mode gaps.

D14 WMODE* [028%9,1] —-- Cassette read/write mode flag

WMODE is used by the cassette handler to indicate whether the current
operation is a read or write operationi a value of zero indicates

read, and a value of $80 indicates write

D15 FREQ* [0040,1] -- Beep count

Operating System CO146555 —— Appendix L

nJ
N
L

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C0O146555 - Rev. 0.2

FREQ is used to retain and count the number of beeps requested of the
‘BEEP’ rtoutine by the Cassette handler during the OPEN command
procass.

E. KEYBODARD

See Chapter S5 for a general description of the Keyboard handler.

Key teading and debouncing

The console key code rTegister is read in response to an IRQ interrupt
which is generated whenever a key stroke is detected by the hardware.
The key code is compared with the prior key code accepted (CH1); if
the codes are not identical, then the new code is accepted and stored
in the key code FIFO (CH) and in the prior key code variable (CH1). If
the codes are identical, then the new code is accepted only if a

suitable key debounce delay has transpired since the prior value was
accepted.

If the key code read and accepted is the code for CTRL-1, then the
display start/stop flag (SSFLAG) is complemented and the value is not
stored in the key code FIFO (CH).

In addition to the reading of the key data, SRTIMR is set to %30 for
all interrupts received (see EB), and ATRACT is set to O whenever a
new code is accepted (see B10).

The Keyboard handler obtains all key data from CH; whenever a code is
extracted from that one-byte FIFO, the handler stores a value of %FF
to the FIFDO to indicate that the code has been read. See Chapter 5 for
further discussion of the Keyboard handler’s processing of the key
codes.

El1 CH1% [02F2,1] -- Prior keyboard character code.

CH1 contains the key code value of the key most recently read and
accepted.

E2 KEYDEL# [O2F1,1] -— Debounce delay timer.

KEYDEL is set to a value of 3 whenever a key code is accepted: and is
decremented every 460th of a second by the stage 2 VBLANK process
(until it reaches zero).

E3 CH [02FC, 1] —— Keyboard character code FIFO.

CH is a one—-byte FIFO which contains either the value of the most

recently read and accepted key code or the value $FF (which indicates

Dperating System C016555 —— Appendix L

n
n
B

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555 - Rev. 0.2

that the FIFO is empty). The FIFO is normally read by the keyboard
handler, but may be read by a user program.

Key data may also be stored inte CH by the auto-repeat logic as
explained in the discussion relating to EB.

Special functions

Start/stop

Display handler and Screen Edifor output to the text or graphics mode
scTreen may be stopped and started (without losing any of the output
data) through the use of the CTRL-1 key combination. Each key
depression toggles a flag which is monitored by the above mentioned
handlers. When the flag is non—zero:; the handlers wait for it to go to
zero before continuing any output.

E4 SSFLAG [02FF, 11 —— Start/stop flag

The flag is normally zero, indicating that screen output is not to be
stopped. The flag is complemented by every occurrence of the CTRL-1
key combination by the keyboard IRQ serwvice routine.

The flag is set to zero upon power up, [RESET] or [BREAK] key
prucessing.

[BREAK] key
ES BRKKEY [0011,1] —— [BREAK] key flag

BRKKEY is used to indicate that the [BREAK] key has been pressed. The
value is normally non-zero and is set to zero whenever the [BREAKI] key
is pressed. The code that detects and processes the [BREAKJ] condition
(flag = 0) should set the flag non-zero again.

BRKKEY is monitored by the following 0S5 routines: Keyboard handler,
Display handler, Screen Editor, Cassette handler, xx? The detection of
a [BREAK] condition during an I/0 operation, will cause the operation
to be aborted and a status of $80 to be returned to the user.

The flag is set non—zero upon power up, [RESET] or upon aborting a
pending I/0 operation.

SHIFT/CONTROL lock

The keyboard control has three different modes for code generation

which apply to the alphabetic keys ‘A’ through “Z‘: 1) normal, 2) caps
lock and 3) control lock.

Operating System CO0146555 —— Appendix L

(]
n
q

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C014555 - Rev. 0.2

In normal mode, all unmodified alphabetic character keys generate the
lower case letter ATASCII code ($61-7A).

In caps lock mode, all unmodified alphabetic character keys generate
the upper case letter ATASCII code ($41-5A).

In caoantrol lock mode, all unmodified alphabetic character keys
generate the control letter ATASCII code (%$01-1A).

In all three modes, any alphabetic character key which is modified (by
being pressed in conjunction with the SHIFT or CONTROL key) will
generate the desired modified code

E6 SHFLOK CO2BE, 1] —-— Shift/control lock control flag
SHFLOK normally has one of three values:

$00 = normal mode (no locks in effect).
$40 = caps lock.
%80 = control lock.

SHFLOK is set to $40 upon power up and [RESET] and is modified
thereafter by the 0S only when the CAPS key is pressed (either by
itself or in conjunction with the SHIFT or CTRL key).

E7 HOLDCH#* [007C,1]1 -- Character holding variable

HOLDCH is used to retain the current character value prior to
the SHIFT/CONTROL logic process.

Auto-repeat

The auto-repeat feature Tesponds to the continuous depression of a
keyboard key by replicating the key code 10 times per second, after an
initial 1/2 second delay. The timer variable SRTIMR is used to control
both the initial delay and the repeat rate.

Whenever SRTIMR is equal to zero and a key is being held down: the
value of the key code is stored in the key code FIFO (CH). This logic
is part of the stage 2 VBLANK process.

E8 SRTIMR%* [022B,1] -— auto-repeat timer

SRTIMR is controlled by two independent processes: 1) the
keyboard IRG service routine, which establishes the initial
delay value and 2) the stage 2 VBLANK routine which establishes

the repeat rate, decrements the timer and implements the auto—
repeat logic.

Operating System CO16555 —— Appendix L

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016585 - Rev. 0.2

Inverse video control

The Keyboard handler allows the direct generation of a more than half
of the 256 ATASCII codesi but codes $80-%9A and codes $A0— FC can be
generated only with the "inverse video mode" active. The ATARI key
acts as an on/off toggle for this mode. and all characters (except for
screen editing control characters) will be subject to inversion when
the mode is active

E? INVFLG [02B6,11 —-- inverse video flag

INVFLG is normally zero, indicating that normal video ATASCII
codes (bit—-7 = 0) are to be generated from keystrokes; however,
whenever INVFLG is non-zero, inverse video ATASCII codes (bit-7
= 1) will be generated. The special caontrol codes are exempt
from this bit manipulation.

INVFLG is set to zero by power up and [RESETI].

The Keyboard handler inverts bit-7 of INVFLG whenever the ATARI key is
pressed; the lower order bits are not altered and are assumed to be
zero.

The Keyboard handler “"exculsive or"s the ATASCII key data with the

value in INVFLG at all times; the normal values of $00 and $80 thus
lead to control of the inverse video bit (bi¢t-=7)}.

Consale switches (SELECT. START % OPTION)

The console switches are sensed directly from the hardware
register CONSOL [DO1F1; see the Colleen hardware manual for
details.

F. PRINTER

See Chapter 5 for a general description of the Printer handler.

Printer buffer

F1 PRNBUF%* [03C0,40] —— Printer record buffer

PRNBUF is the buffer used by the Printer handler for packing printer
data to be sent to the device controller. The buffer is 40 bytes long
and contains nothing but printer data.

F2 PBUFSZ# [0Q01E, 11 —— Printer record size

PBUFSZ contains the size of the printer record for the current mode

selected; the modes and respective sizes (in decimal bytes) are shown
below:

Operating System C016555 —- Appendix L

n
nJ
|

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CC14555 - Rev. 0.2

Normal 40
Double width 20 (not currently supported by the device)
Sideways 29

Status request 4
F3 PBPNT# [QC1D, 11 —— Printer buffer index
PBPNT contains the current index to the printer buffer. PBPNT ranges
in value from zero to the value of PBUFSZ.
Internal working variables
F4 PTEMP* [OO1F,1]1 ——- Printer handler temporary data save

PTEMP is used by the Printer handler to temporarily save the value of
a character to be output to the printer.

FS PTIMOT# L[001C, 1] == Printer timeout value

PTIMOT contains the timeout value for SIO calling sequence variable
DTIMLO (see Chapter 9); PTIMOT is set to 30 (which represents a 32
second timeout) at intialization time, and is updated after each
printer status request operation to contain the value returned in the
3rd byte of the status frame (see Chapter 5).

G. CENTRAL I/0 ROUTINE (CIO)

See Chapter S for a description of the Central I/0 Utility.

User call parameters

CIO call paramters are passed primarily through an I/0 Control
Block (IOCB); although additional device status information may
be returned in DVSTAT, and handler information is obtained from
the Device Table (HATABS).

I/0 Control Block

IOCB is the name applied collectively to the 16 bytes associated with
each of the 8 provided control structures: see Chapter 5.

G1 IACB CO340,16] —— I/0 Control Block

The label IOCB is the location of the first byte of the first IOCB in
the data base. For VIDs G2 through G10, the addresses given are for
IOCB #0 only, the addresses for all of the IOCBs are shown below:

Operating System CO16555 ——- Appendix L

228

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555 - Rev. 0.2

0340-034F IOCB #O
0350-025F I0OCBE #1
03460—-036&F IOCB #2
0370-0G37F IOCE #2
0280-03EF I0CB #4
0390-039F IOCBE #5
G34A0-03AF INCB #6
03E0-03EF I0CE #7
G2 ICHID [0340,11 —— Handler I.D.

See Chapter 5. Initiszlized to %#FF at power up and [RESETI.
63 ICDNO [0341,11 —— Device number

See Chapter 5.

G4 ICCOM [0342,1]1 -— Command byte

See Chapter S.

65 ICSTA [0343,11 -- Status

See Chapter 5.

G6 ICBAL, ICBAH [G344,21 —— Buffer address

See Chapter S.

G7 ICPTL.,ICPTH [0344,21 —— PUT BYTE vector

See Chapter 5. Initialized to point to CIO’s "IOCB not OPEN" routine
at power up and [RESETI].

G8 ICBLL,ICBLH [0348,2]1 -- Buffer length / byte count

See Chapter S.

69 ICAX1l,ICAX2 [034A,2]1 —-- Auxilliary information

See Chapter 5.

G10 ICSPR [034C,4]1 —— Spare bytes for handler use

There is no fixed assignment of these four bytes; the handler
associated with an IOCB may or may not use these bytes.
Device status

G11 DVESTAT [02EA, 4] —- Device status

See Chapter 5 for a discussion of the GET STATUS command.

Cperating System CO14555 —- Appendix L

0

="
[-5

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO14555 — Rev. 0.2

Device Table
Gl2 HATABS L[031A, 381 ——- Device Table

See Chapter ? for a description of the Device Table.

CI0O/handler interface parameters

Communication between CIO and a handler is accomplished using the &502
machine registers, and a data structure called the zero page IOCB
(ZIOCB). The ZIOCB is essentially a copy of the particular IOCB being
used for the current operation.

Zero page IOCB

G13 ZIOCB (IOCBAS) [0Q20,161 -- Zero page IOCB

The zero page IOCB is an exact copy (except as noted in the
discussions that follow) of the IOCB specified by the 6502 X register
upan entry to CIO; CIO copies the outer level IOCB to- the. zero page

IOCB, performs the indicated function, moves the (possibly altered)

zero page IOCB back to the outer level IOCB: and then returns to the
caller.

Although both the outer level IOCB and the zero page IOCB are defined
to be 16 bytes in size: only the first 12 bytes are moved by CIO.

¢14 ICHIDZ [0020,1]1 -- Handler index number

See Chapter S5. Set to $FF on CLOSE.

G15 ICDNOZ [0021,1] —- Device drive number

See Chapter 5.

Gl6 ICCOMZ [0022,1]1 -- Command byte

See Chapter 5.

G17 ICSTAZ [0023,11 —— Status byte

See Chapter 5.

G18 ICBALZ, ICBALH C0024,2] -- Buffer address

See Chapter S. This pointer variable is modified by CIO in the course
of processing some commands; however, the original value is restored
before returning to the caller.

G129 ICPTLZ, ICPTHZ

See Chapter 5. Set to point to CIO’s “IOCB not OPEN" routine on CLOSE.

Operating System CO16555 —- Appendix L
230

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYETEM, CO16555 — Rev. 0.2

G20 ICBLLZ, ICBLHZ [0028,21 —-— Buffer length / byte count

See Chapter 5. This double byte variable, which starts out
representing the buffer length, is modified by CIO in the course of
nrocessing some commands; then. before returning to the caller, the
transaction byte count is stored therein.

G21 ICAX1Z,ICAX2Z [002A,2]1 —-— Auxilliary information

See Chapter 5.

G622 ICSPRZ (ICIDNDO,CIOCHR) [002C:, 4] -— CIO working variables

ICSPRZ and ICSPRZ+1 are used by CIO in obtaining the appropriate
handler entry point from the handler’s vector table (see Chapter 9).

ICSPRZ+2 is also labeled ICIDNO and retains the value of the 46502 X
register from CIO entry. The X register is loaded from ICIDNO as CIO
returns to the caller.

ICSPRZ+2 is also labeled CIOCHR and retains the value of the &502 A
register from CID entry, except for data reading type commands:s in
which case the most recent data byte read is stored in CIOCHR. The
L4502 A rtegister is loaded from CIOCHR as CIO returns to the caller
Internal working variables

G623 ICCOMT* [0017,1] —— Command table index

ICCOMT is used as an index to CIO’s internal command table, which maps
command byte values to handler entry offsets (see Chapter 92 for more
information). ICCOMT contains the value from ICCOMZ except when ICCOMZ
is greater than $0E, in which case ICCOMT ics set to $OE.

G24 ICIDNO# [OQOO2E, 1] —— CIO call X register save/restore

See G22.

G25 CIOCHR#* [O02F, 1] -— CIO call A register save/restore

See G22.

H. SERIAL I/0 ROUTINE (SIO)

See Chapter 9 for discussions relating to EI0.

User call parameters

SI0 call parameters are passed primarily through a Device Cantrol
Blocki; although an additional "noisy bus" option exists which is
selectable through a separate variable.

Operating System CO16555 —— Appendix L

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO01&£555 - Rev. 0.2

Device Control Black

H1 DCB [0200, 121 —-- Device Control Block

DCEB is the name applied collectively to the 12 bytes at locations
0300-030B. These bytes provide the parameter passing mechanism for SIO
and are described individually below.

H2 DDEVIC [0300,11 -- Device bus I.D.

See Chapter <.

H3 DUNIT C0301,1]1 -- Device unit number

See Chapter <.

H4 DCOMND [0302,1]1 —— Device command

See Chapter 9.

HS DSTATS [0303,1]1 —-- Device status

See Chapter 9.

Hé DBUFLO, DBUFHI [0304,2]1 -- Handler buffer address

See Chapter 9.

H7 DTIMLO C£0306,11 —— Device timeout

See Chapter 9.

H8 DBYTLO,DBYTHI [0308,2] -- Buffer length / byte count

See Chapter 9.

H? DAUX1, DAUX2 [030A, 2] —-- Auxilliary information

See Chapter <.

Bus sound control
H10 SOUNDR [0041,1] —-— Quiet/noisy I/0 flag

SOUNDR is a flag used to indicate to SIO whether noise is to be
generated on the TV audio circuit when Serial I/0 bus activity is in
progress. SOUNDR equal to zero indicates that sound is to be
inhibited, and non—-zero indicates that sound is to be enabled. SIO
sets SOUNDR to 3 at power up and [RESETI.

Operating System CO16555 —- Appendix L

n
W
n

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO146555 - Rev. 0.2

Serial bus control

Retry logic

SI0 wiil attempt one cocmplete command retry if the first attempt is
not error free, where a complets command try consists of up to 14
attempts to send (and acknowledge) a command frame., followed by a
single attempt to teceive COMPLETE and possibly a data frame.

H11 CRETRY# [0036,1]1 —-— Command frame retry counter

CRETRY controls the inner loop of the retry logic, that associated
with sending and receiving an acknowledgement of the command frame.
CRETRY is set to 13 by SID at the beginning of every command
initiation, thus allowing for an initial attempt and up to 13
additional retries..

Hi2 DRETRY®* [0037,1]1] -—— Device retry counter

DRETRY controls the outer loop of the retry logic, that associated
with initiating a command retry after a failure subsequent to the
command frame acknowledgement. DRETRY is set to 1 by SIO at entry,
thus allowing for an initial attempt and up to 1 additional retry.

Checksum

The Serial I/0 bus protocol specifies that all command and data frames
must contain a checksum validation byte; this byte is the arithmetic
sum (with end—around carty) of all of the other bytes in the frame.

H13 CHKSUM#* [0031,1] —- Checksum value

CHKSUM cantains the frame checksum as computed by SIO for all frame
transfers.

H14 CHKSNT# [003B: 11 —— Checksum sent flag

CHKSNT indicates to the serial bus transmit interrupt service routine
whether the frame checksum byte has been sent yet. CHKSNT equal to
zero indicates that the checksum byte has not yet been sent; after the
checksum is sent, CHKSNT is then set non—-zero.

H15 NOCKSM* [003C:,1]1 -— No checksum follows data flag

NOCKSM is a flag used to communicate between the SIOD top level

code and the Serial bus rTeceive interrupt service routine that

the next input will not be followed by a checksum byte. A value

of zero specifies that a checksum byte will follow, naon-zero that a
checksum byte will not follow.

Operating System C016555 —- Appendix L

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C014555 - Rev. 0.2

Data buffering

General buffer control

H146 BUFRLO# [0032,1]1 % BUFRHI¥ [0033,1] —-— Next byte address

BUFRLO and BUFRHI comprise a pointer to the next buffer location to be
read from or written to. For a data frame transfer, the pointer is
initially set to the value contained in the SI0O call parmaters DBUFLO
and DBUFHI, and is then incremented by the interrupt service routines

as a part of normal bus data transfer. For a command frame transfer.

the pointer is set to point to the SIO maintained command frame output
buffer.

H17 DBFENLO#* [O034, 11 % BFENHI%* [0035,1] -- Buffer end address
BFENLO/BFENHI form a pointer to the the byte following the last frame

data byte (not including the checksum) to be sent or received.
BFENLO/BFENHI is the arithmetic sum of BUFRLO/BUFRHI plus the frame

size plus -1.

Command frame output buffer

See Chapter ? for the command frame format and description.
H18 CDEVIC# [023A, 1] —— Command frame device I.D.

CDEVIC is set to the value obtained by adding SIO call parameter
DDEVIC to DUNIT and subtracting one.

H19 CCOMND# [023B, 1] —- Command frame command.

CCOMND is set to the value obtained from SIO call parameter DCOMND.
H20 CAUX1®* [023C, 11 % CAUX2%# [023D,1]1 —-- Auxilliary info

CAUX1 and CAUX2 are set to the values obtained from SIO call
parameters DAUX1 and DAUX2, respectively.

Receive/transmit data buffering

H21 BUFRFL# [0038,1]1 -- Buffer full flag

BUFRFL is a flag used by the serial bus receive interrupt service
routine to indicate when the main portion of a bus frame has been
received —— all but the checksum byte. BUFRFL equal to zero indicates
that the main portion has not been completely received: a non—zero

value indicates that the main portion has been received.

H22 RECVDN#* [0039, 1] —-- Receive frame done flag

Dperating System CO146555 —-— Appendix L

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO016555 — Rev. 0.2

RECVDN is a flag used by SI0O to communicate between the Serial bus
receive interrupt service routine and the main SI0O code. The flag is
initially set to zero by SI0, and later set non—zero by the interrupt
service routine after the last byte of a bus frame has been received.

H23 TEMP%# [023E.1]1 —- SI0 one-bute I/0 data

TEMP is used to receive ane—-byte responses from serial bus
controllers, such as ACK, NaK, COMPLETE or ERROR.

H24 XMTDON# [003A: 1] —-— Transmit frame done flag

XMTDON is a flag used by SIO to communicate between the Serial bus
transmit interrupt service routine and the main SIO code. The flag is
initially set to zero by SI0O, and later set non—zero by the interrupt
service toutine after the last byte of a bus frame has been
transmitted.

SI0 timeout

SI0 uses system timer 1 to provide the timeout capability for various
operations initiated internally. See Chapter & for a discussion of the
capabilities of the system timers. TIMFLG is the flag used to
communicate between SIO and the timer initiated code pointed to by
CDTMAL.

H25 TIMFLG* [0317,1] —— SIO operation timeout flag

TIMFLG is used to indicate a timeout situation for a bus
operation . The flag is initially set to ane, and if it attains
a value of zero (after the timeout period} before the current

operation is complete, the operation will be aborted. See also
D2.

H2&6 CDTMV1* [0218,2]1 —— System timer 1 valvue

This two—-byte count takes on various values depending upan the
operation being timed. See also P4.

H27 CDTMAL#* [0226,2] -- System timer 1 address
This vector always points to the ‘JTIMER’ routine, whose only function
is to set TIMFLG to zero. This vector is initialized by SIO before

every use, so that system timer 1 may be used by any process that does
not use SI0O within a timing function. See also PS.

Internal working variables

H28 STACKP#* [0318,11]1 —— Stack pointer save/restore

STACKP contains the value of the 6502 SP register at entry to SIO;
this is retained to facilitate & direct error exit from an SIO

Operating System C0O16555 —-—- Appendix L

(LA

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO14555 - Rev. 0.2

subroutine.

H29 TSTAT# [0319,1] -— Tempoarary status

TSTAT is used to return the operation status from the ‘WAIT’ routine
and will cantain on=2 of the SI0 status byte values as shown in
Appendix B.

H30 ERRFLG# [Q023F, 11 —— I/0 error flag

ERRFLG is used for communication between the ‘WAIT’ routine and the
cuter level SIO code. ERRFLG is normally zero, but is set to $FF when
a device rtesponds with an invalid rtesponse byte.

H31 STATUS* [0030,11 —— SI0O operation status

STATUS is a zero page variable that is used within SIO to contain the
operation status that will be stored to the calling sequence parameter
variable DSTATS when SIO returns to the caller.

H32 SSKCTL# [0232,1]1 —— SKCTL copy

SSKCTL is wutilized by SIO to keep track of the content of the SKCTL
[D20F] register which is a write only register.

J. ATARI CONTROLLERS

Various of the ATARI controllers are read as part of the Stage 2
VBLANK process; the encoded data is partially decoded and processed as
shown in the sub—-sections that follow.

Joysticks

Up to 4 joystick controllers may be attached to the computer console,
each with a ? position Jjoystick plus a trigger button.

J1 STICKO - STICKZ [0278,4]1 —-- Joystick position sense

The four joystick position sense variables contain a bit encoded
paosition sense as shown below:

76 543210
B s
0 0 O OIRILIDIU!
s e st st TS SRS

= 0 indicates joystick RIGHT sensor true.
L = 0 indicates joystick LEFT sensor true.

Operating System CDO14&555 —— Appendix L

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM: C016555 - Rev. 0.2

D
u

O indicates Joystick DOWN sensor true.
0O indicates joystick UP sensor true.

Nine unique combinations are possible, indicating the possible
Joystick positions shown below:

CENTER SOF
UP $0E
UP/RIGHT 04
RIGHT 07
DOWN/RIGHT %05
DOWN $0D
DOWN/LEFT %09
LEFT $0B

UP/LEFT $04A
J2 STRIGO - STRIG3 (028B4,4]1 —— Joystick trigger sense

The four Jjoystick trigger sense variables each contain a single bit
indicating the position of the joystick trigger as shown below:

76543210
B s s oo T R
i 000CO0O0O0IT
B s ot st st

where: T = 0 indicates trigger pressed.

Paddles

Up to eight paddle controllers may be connected to the computer, each
with a potentiometer and a trigger sense.

J3 PADDLO - PADDL7 [0270,8] —— Paddle position sense
There is a single byte variable associated with each paddle position
sense; the values range from 228 for full counterclockwise rotation to
1 for full clockwise rotation.
The paddle values are often converted by the user, as shown below, to
give a result of O for full counterclockwise rotation and 227 for full
clockwise rotation:

VALUE := 228 - PADDLX;
J4 PTRIGO — PTRIG?7 [027C, 81 —— Paddle trigger sense

The eight paddle trigger sense variables each contain a single bit
indicating the position of the paddle trigger as shown below:

Operating System C016555 —— Appendix L

~rye
ez !

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C014555 - Rev. 0.2

75543210

+=—t—t—t—t—t—t—t—+
i00OCO0OO0O0O0IT!
e et

where: T = 0 indicates trigger pressed.

Light pen

The 0OS reads the position of a single light pen and stores the
horizontal and vertical position codes in two variables; these codes
are not the same as the actual screen coordinates. The pen position
codes for different portions of the screen are shown below:

Left edge —— 67.
Codes increase monotonically to a value of 227, then go to O and

continue to increase monotonically (one count per color clock).
Right edge -—— 7.

Upper edge —— 164.

Codes increase monotonically (one count per two raster lines).
Lower edge -- 111.

The light pen hardware will read and latch the pen paosition 60 times
per second, independent of the pen button position, which is
separately sensed.

In order for the light pen to operate it must be positioned over a
portion of the screen which has sufficient luminance to activate the
photosensor in the pen; a blank (dark) screen will generally not
provide enough luminance to utilize the light pen.

JS LPENH L[0234,1] -- Light pen horizontal position code
LPENH contains the horizontal position code for the light peni the

algorithm below (written in Pascal) shows the conversion from position
code to screen coordinate (screen mode 7):

IF LPENH < 33 { check for rtollover point X
THEN { adjust values to right of rollover J
XPOS := LPENH + 227
ELSE { no adjustment to left of rollover point

XPOS := LPENH;
XPOS := XPOS - 67; { adjust for left edge offset }
IF XPOS < O THEN XPOS := 0;
IF XPOS > 159 THEN XPOS := 159

J& LPENV [0235.1]1 —— Light pen vertical position code
LPENV contains the vertical position code for the light peni the

algorithm below (written in Pascal) shows the conversion from position
code to screen coordinate (screen mode 7):

Operating System CO1&555 —— Appendix L

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. AFPROVAL
OPERATING SYSTEM, CO16555 - Rev. 0.2

YPOE := LPENV - 1&; { adjust for upper edge offset }
IF YPOS < O THEN YPOS := O
IF YPOS > 25 THEN YPOS := 95i

J7 STICKO — STICK3 ([0278,41 —— Lightpen button sense

The lightpen button sense is encoded in one of STICKO - STICK3
(depending upon the actual cantroller port used) as shown
below:

7 o}
o et T S
{ 111010 T
B s o s s e T

where: T = 0 indicates the lightpen button is pressed.
The lightpen button sense is encoded in one of STRICKO — STRICK3
L0284, 4] as shown below:

7 0
e o
iI00O0O0O0O0O0OIT!H
O s o o R

Driving controllers

The driving controller has no position stops and thus allows unlimited
rotation in either direction; the output of the controller is a 2-bit
Gray code which can be used to determine the direction of rotation.
The controller is sensed using the same internal hardware as the
Joystick, thus the same data base variables are used for both.

J8 STICKO — STICK3 [0278.,4]1 —— Driving controller sense

The four driving controller sense variables contain an encoded
rotation (position) sense value, as shown below:

76543210
N e e
{00001 1livall
B D o SRS

where a clockwise rotation of the controller produces the following
continuous sequence of four values (shown in hexadecimal):

OF, 0D, 0C,0E,OF, 0D,

Dperating System C0O16555 —-— Appendix L

n
0]
a

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555 - Rev. 0.2

and a counterclockwise rtotation of the controller produces the
following continuous sequence of four values:

OF, OE, OC,OD,OF,0E,.......
J? STRIGO - STRIG2 [(284,4] —— Driving trigger sense

The four driving trigger sense variables each contain a single bit
indicating the paosition of the driving trigger as shown belouw:

7 & 5 43210
B e s o
i0 00000 OIT!
s s st T R

where: T = O indicates trigger pressed.

K. DISK FILE MANAGER R

See Chapter 5 for information relating to the Disk File Manager.

K1 FMSZPG#* [0043,7] —— FMS reserved space

FMSZPG is the reserved space in the database for the variables shouwn
belowi the names associated with K2 through K5 are not in the system
equate file. .

K2 ZBUFP# [0043,2]1 —— Buffer pointer
K3 ZDRVA# [0045,2]1 —-- Drive pointer
K4 ZSBA# [0047,2]1 —— Sector buffer pointer

KS ERRNO# [004%9,1]1 -— Error number

L1 DSKUTL* [Q01A,2]1 -- Page zero pointer variable

Operating System CO16555 —— Appendix L

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555 — Rev. 0.2

M. FLOATING POINT PACKAGE

See
M1
M2
M3
M4
MS
Mé&
M7
M8
Me
M10
Mi1
M12
M13
M14
M15
Mié
M17
Mi8
M19
M20
M21
M22
M23

M24

Chapter B for a description of the Floating Point Package.

FRC L[OOD4,46]1 —— F.FP. register O
FRE# [CODA: &3 —— F.P. register (internal)
FR1 COOEQ, &1 —— F.P. rTegister 1
FR2# [O0OE&, &1 —— F.P. register 2 (internal)}
FRX#* [OQOOEC, 1] —- Spare (unused)
EEXP# L[OQOED, 11 —— Exponent value (internal)
NSIGN* [OCEE: 11 —- Sign of mantissa (internal)
ESIGNs* [OQOEF, 1] —— Sign of exponent (internal)
FCHRFLG# [OOFO, 1] -- First character flag (internal)
DIGRT# [QOF1,1] —— Digits to right of decimal point
CIX [QOOF2,11 —— Character index
INBUFF L[OOF3,2] -- Input text buffer pointer
ZTEMP1* [OOFS5,2] —— Temporary storage
ZTEMP4* [OOF7.,2] —--— Temporary storage
ZTEMP3* [OOF9,2] -— Temporary storage
FLPTR L[OOFC,2] —— Pointer to F.P. number

FPTR2% L[OOFE,21 --

LBPR1# L[OS7E,11 -

LBUFF preamble

LBPR2%® [OS57F, 1]

LBUFF preamble
LBUFF L[0S80, 961 —— Text buffer

PLYARG* [OSEO.: 61 -— F.P. register (internal)

FPSCR/FSCR* [QOSE&, 6] —— F.P. register (internal)
FPECR1/SCR1* [OSEC, 61 -—- F.P. register (internal)
DEGFLG/RADFLG [OOFB, 1] —-— Degrees/radians flag

DEGFLG = O indicates radians, &6 indicates degrees.

Operating System C0146555 —- Appendix L

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONE DEPT. APPROVAL
OPERATING SYSTEM., CO016555 - Rev. 0.2

N. POWER UP % C[RESET]

See Chapter 7 for details of the power up and [RESET] operations.

RAM sizing

During power up and L[S RESET] the first non—-RAM address above 1000 hex
is located and its address retained using a non— destructive test. The
first byte of every 4K memory "block" is tested to see if it is
alterable; if so, the original value is restored and the next block is
tested, and if not, that address is considered to be the end of RAM.

N1 RAMLO#/TRAMSZ# [0004, 3] —— RAM data/test pointer (temporary)

RAMLO+1 contains the lsb of the address to be tested (always = 0) and
TRAMSZ (same as RAMLO+2) contains the msb of the address to be tested.
RAMLO+0 contains the complemented value of the data originally
contained in the memory location being tested.

Later in the initialization process these variables are used for
totally unrelated functions; but first the value in TRAMSZ is moved to
the variables RAMSIZ and MEMTOP+1.

N2 TSTDAT# [0007,1]1 -— Test data byte save

TSTDAT contains the original value of the memory location being
tested.

Disk/cassette boot

As a part of the power up sequence, software may be booted from an
attached disk drive or cassette player as explained in Chapter 10.

N3 DOSINI [0O00C,2] —— Disk boot initialization vector.

DOSINI contains the disk booted software initialization address from
the beginning of the boot file (See Chapter 10) whenever a disk boot
is successfully completed.

N4 CKEY# [0OC4A,1]1 —— Cassette boot request flag

CKEY is an internal flag used to indicate that the console START key
was pressed during power up, thus indicating that a cassette boot is
desired. CKEY equals zero when no cassette boot is requested, and is
non—zero whe2n a cassette boot is requested. The flag is cleared to
zero after a cassette boot.

NS CASSBT* [004B, 11 —— Cassette booting flag
CASSBET is used during the cassette boot process to indicate to shared
code that the cassette is being booted and not the disk. CASSBT eqgual

to zero indicates a disk boot, and non—-zero indicates a cassette boot

Operating System CO146555 —— Appendix L

n
poy
n

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO16555 — Rev. 0.2

N& CASINI [00C2,2] —=— Cassette boot initialization vector

CASINI contains the cassette booted software initialization address
from the beginning of the boaot file (See Chapter 10) whenever a
casseftte boot is successfully completed.

M7 BOOT?#* [0009:.1] —— Successful disk/cassette boot flag.

BOOT? indicates to the initialization processor which, if any, of the
boot operations went to successful completion. The flag values are set
by the 0S and the format for the variable is shown below:

765423210
B s s s S T

'] t [}
t L] t I

B L T e

1 indicates that the cassette boot went to completion.
1 indicates that the disk boot went to completion.

where: C
D

N8 DFLAGS# [0240,1]1 —-- Disk flags

DFLAGS contains the value of the first byte of the boot file, after a
disk boot. See Chapter 10.

N9 DBESECT# [{0241,1] —— Disk boot sector count

DBSECT is initially set to the value of the second byte of the boot
file, during a disk boot, and is then used fto control the number of
additional disk sectors read, if any.

N10 BOOTAD* [0242,2]1 —— Disk boot memory address

BOOTAD is initially set to the value of the 3rd and 4th bytes of the
boot file: during a disk boot: and is not modified thereafter.

Environment control

If, at the end of a power up or [RESETI, control is not given to one
of the cartridges (as explained in sectfions 7 and 10), then program
control passes to the address contained in the data base variable
DOSVEC.

Nil COLDST# [0244,1] —— Coldstart complete flag

COLDST is used by the initialization routine to detect the case of a
[RESET] occurring before the completion of the power up process
COLDST is set to $FF at the beginning of the power up sequence and is
set to O at the completion: if a [RESET] occurs while the value is
non—-zero, the power up sequence will be reinitiated (rather than
initiating a [RESET] sequence).

N12 DOSVEC [0Q00A,2]1 —-- Non—cartridge contrel vector

Operating System CO146555 —— Appendix L

=3

n

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSETEM, CO014555 - Rev. 0.2

At the beginning of power up the 0S sets DOSVEC to point to the

"blackboard" routine; DDSVEC may then be altered as a consequence of a .
disk boot or cassett=s boot (as explained in Chapter 10) to establish a

new control program. Control will be passed through DOSVEC on all

power up and [S RESET] conditions in which a cartridge does not take

control first.

[S RESET]
N13 WARMST [0008, 11 -- Warmstart flag

WARMST equals %$FF during a [RESET] (warmstart) initialization and
equals O during a power up initialization (coldstart).

P. INTERRUPTS
See Chapter & for a discussion of interrupt processing.
P1 CRITIC [0042,1] -— Critical code section flag

CRITIC is used to signal to the VBLANK interrupt processor that a
critical code section is executing without IRGQG interrupts being
inhibited; the VBLANK interrupt processor will stop interrupt
processing after stage 1 and before stage 2, Just as if the 6502
processor I bit were set, when CRITIC is set.

CRITIC equal to zero indicates that the currently executing code
section is non-critical, while any non-zero value indicates that the
currently executing code section is critical.

P2 POKMSK [C010,11 —- POKEY intertupt mask

POKMSK is a software maintained interrupt mask that is used in
conjunction with the enabling and disabling of the various POKEY
interrupts. This mask is required because the POKEY interrupt enable
register IRQEN [D20E] is a write only register, and at any point in
time the system may have several users independently enabling and
disabling POKEY interrupts. POKMSK is updated by the users to always
contain the current content of IRGEN.

System timers

The system timers are discussed in detail in Chapter &.

Operating System CO16555 —— Appendix L
244

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C0O16555 — Rev. 0.2

Real time clock

The teal time clock (or frame counter, as it is sometimes called) is
incremented as part of the stage 1 VBLAMNK process as explained in
Chapter 6.

P2 RTCLOK [0012,3] -— Real time frame counter

RTCLOK+0 is the most significant byte, RTCLOK+1 the next most
significant byte, and RTCLOK+2 the least significant byte. See

the discussions at D2 and preceding B10O for 0OS use of RTCLOK.

System timer 1

System timer 1 is maintained as part of the stage 1 VBLANK process,
and thus has the highest priority of any of the user timers.

P4 CDTMV1 [0218,2]1 —— System timer 1 value

CDTMV1 contains zero when the timer is inactive: otherwise it contains
the number of VBLANKs remaining until timeout. Also see H26

PS CDTMA1l [0224,21 —— System timer 1 jump address

CDTMA1 contains the address to which to JSR should the timer timeout.
See also H27 and Chapter 6.

System timer 2

System timer 2 is maintained as part of the stage 2 VBLANK process,
and has the second highest priority of the user timers. The 0OS does
not have any direct use for system timer 2.

P& CDTMV2 [021A,2]1 —— System timer 2 valvue

CDTMV2 contains zero when the timer is inactive, otherwise it contains
the number of VBELANKs remaining until timeout.

P7 CDTMA2 [0228,2]1 —— System timer 2 jump address

CDTMA2 contains the address to which to JSR should the timer

timeout. See Chapter 6.

System timers 3, 4 and S

System timers 3, 4 and 5 are maintained as part of the stage 2 VBLANK
process, and have the lowest priority of the user timers. The 0OS does

not have any direct use for these timers.

P8 CDTMVYZ2 [021C, 21, CDTMV4 [021E,2] % CDTMVS [0220,2]

Operating System CO014555 —— Appendix L

245

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C01655% - Rev. 0.2

These variables contain zero when the corresponding timers are
insctive, otherwise they contain the number of YELANKs remaining until
timeout.

P? CDTMF3 [022A,11, CDTMF4 [022C, 11 % CDTMFS [O22E, 2]

Each of these one-byte wvariables will be set to zero should its
correspaonding timer timeout. The 0S never modifies these bytes except
to set them to zero upon timeout (and initialization).

RAM interrupt vectors

There are RAM vectors for many of the interrupt conditions within the
system. See Chapter & for a discussion of the placing of values to
these vectors.

NMI interrupt vectors

P10 VDSLST [0200,21 -- Display list interrupt vector

This vector is not used by the 0S. See Chapters 6.

P11 VVBLKI [0222,2]1 —-- Immediate VBLANK vector

This vector is initialized to point to the 0OS stage 1 VBLANK

P12 VVBLKD [0224:2] —-- Deferted VBLANK vector

This vector is initialized to point to the 0S VBLANK exit routine. See
Chapter 6.

IRQ@ interrupt vectors
P13 VIMIRGQ [0214,2] —— General IRQ vector

This vector is initialized to point to the 0OS IRG interrupt
processor. See Chapter 6.

P14 VPRCED [0202,2]1 -- Serial I/0 bus proceed signal

The serial bus line that produces this interrupt is not used in
the current system. See Chapter 6.

P15 VINTER [0204,2]1 -- Serial I/0 bus interrupt signal

The serial bus line that produces this interrupt is not used in the
current system. See Chapter 4.

P16 VIBREAK] [0206,21 -- BRK instruction vector

Operating Suystem CO16555 —- Appendix L

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO146555 — Rev. 0.2

This vector is initialized to point to a PLA, RTI sequence as the 0S
proper does not utilize the BRK instruction. See Chapter 4.

P17 WVKEYBD [020CB, 2] -- Keyboard interrupt vector

This vector is initialized to point to the Keyboard handler’s
interrupt service routine. See Chapter é& and the discussion preceding
El.

P18 VSERIN [020A, 21 —-- Serial I/0 bus rteceive data ready

This vector is initialized to point to the SIO utility‘s interrupt
service routine. See Chapter 6.

P19 VSEROR [020C:21 -- Serial I/0 bus transmit ready

This vector is initialized to point to the SID utility’s interrupt
service routine. See Chapter 6.

P20 WVSEROC [020E, 21 -- Serial I/0 bus transmit complete

This vector is initialized to point to the SID vutility’s interrupt
service routine. See Chapters & and 6.

P21 VTIMR1 [0210,21, VTIMR2 [0212,2]1 % VTIMR4 [0214,2]1 —— POKEY timer
vectors

The POKEY timer interrupts are not used by the 0S See Chapter &.

Hardware register updates

As part of the stage 2 VBLANK process, certain hardware
registers are updated from 0OS database variables as explained
in Chapter é&.

P22 SDMCTL# [022F, 1] -— DMA control

SDMCTL is set to a value of %02 at the beginning of a Display handler
OPEN command, and then later set to a value of $22. The value of
SDMCTL is stored to DMACTL [D400] as part of the stage 2 VBLANK
process.

P23 SDLSTL#* [0230,1]1 & SDLSTH* [0231,1] —-- Display list address

The Display handler formats a new display list with every OPEN command
and puts the display list address in SDLSTL and SDLSTH. The value of
these bytes are stored to DLISTL [D4021 and DLISTH [D4031 as part of
the stage 2 VBLANK process.

0360-036F IOCB #2
0370-037F IOCB #3
0380-038F IOCB #4
0390-039F IOCB #S
Operating System CO016555 —— Appendix L

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C0146555 - Rev. 0.2

03A0-03AF I0OCB #6
03BC—03BF IOCB #7

NOTE: There is a potential timing problem associated with the updating
of the hardware rtegisters from the database variables. Since the
stage 2 VELANK process is performed with interrupts enabled, it
is possible for an IRG interrupt to occur before the updating of
DLISTH and DLISTL. If the processing of that interrupt (plus
cther nested interrupts) exceeds the vertical blank delay (1
msec.) then the display list pointer register will not have been
updated when display list processing commences fcr the new
frame, and a screen glitch will result.

P24 GPRIOR* [026F, 1] -- Priority control

The Display handler alters bits & and 7 of GPRIOR as part of
establishing the GTIA mode. The value of GPRIOR is stored to PRIOR
[DO1B] as part of the stage 2 VBLANK process.

P25 CHACT# [C2F23,11 —- Character control

The Display handler sets CHACT to $02 on every OPEN command. The value
of CHACT is stored to CHACTL [D401] as part of the stage 2 VBLANK
process.

P26 CHBAS [02F4,1] ——- Character address base

The Display handler sets CHBAS to $EO on very OPEN command. The value
of CHBAS is stored to CHBASE [D40%9] as part of the stage 2 VBLANK
process. This variable controls the character subset for screen modes
1 and 2; a value of %$EO provides the capital letters and number set
whereas a value of $E2 provides the lower case letters and special
graphics set. See BS5S5 for more information.

P27 PCOLRx [02C0,41 % COLORx [02C4,5] —- Color registers

See B7 and B8S.

Internal working wvariables
P28 INTEMP%* [022D, 1] —-- Temporary storage

INTEMP is used by the SETVBL (SETVBY) routine.

R. USER AREAS

The areas shown below are available to the user in a non-nested
environment; See Chapter 4 for further information.

Operating System C0O16555 ——- Appendix L
248

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555 - Rev. 0.2

R1 [00E0. 1281

R2 [0480, &401

S. UNUSED (SPARE) BYTES

Labeled bytes

The labeled bytes listed below are thought to: 1) have no function
within the 0S5 and 2) not be modified except at initialization time.

S1 HOLDS* C[O2BD, 11
S2 CSTAT+ [0288,11]
S3 DUNUSE* [0307,11]
S4 TEMP2% [0314,11

S5 TMPX1% [029C, 11

S6 DSKFMS* [0018, 2]

Unlabeled bytes

The unlabeled bytes and regions listed below are thought to: 1) have
no function within the 0S and 2) not be modified except at
initialization time.

§7 [000C0, 21 Reserved for LNBUG.

S8 [0236/41

S9 [0245,11

S10 ([028B, 51

S11 £02C9.271 Reserved for LNBUG

S12 [O02FS, 51

S13 ([O03J3ES8, 211

Si4 [0233,11 Reserved for LNBUG
S15 ([02E9.,11 Reserved for LNBUG
Operating System CDO146555 —— Appendix L

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C014555 - Rev. 0.2

ALPHABETICAL LIET OF DATABASE VARIABLES

NAME VID ADDRESS SIZE
ADDCOR D4 030E., 1
ADRESS B39 006&4, 2
APPMHI A3 000E., 2
ATACHR BS4 02FB. 1
ATRACT B10O 004D, 1
BFENHI H17 0035, 1
BFENLOD H17 0034, 1
BITMSK BSO O04E: 1
BLIM D10 0284A., 1
BOOT? N7 0009, 1
BOOTAD N10O 0242, 2
BOTSCR B1é 02BF. 1
BPTR D11 003D, 1
BRKKEY ES 0011, 1
BUFADR c1 0015, 2
BUFCNT B42 0068, 1
BUFRFL H21 0038, 1
BUFRHI H16 0033, 1
BUFRLO H1é 0032, 1
BUFSTR B43 006&C, 2
CASBUF D9 O3FD, 131
CASFLG D8 030F, 1
CASINI Né 0002, 2
CASSBT NS 004B, 1
CAUX1 H20 023C, 1
CAUX2 H20 023D, 1
CBAUDH D1 Q2EF, 1
CBAUDL D1 0O2EE., 1
CCOMND H19 023B: 1
CDEVIC H18 023A, 1
CDTMAI1 PS5, H27 0226, 2
CDTMAZ2 P7 0228, 2
CDTMF3 P 022A, 1
CDTMF4 P9 022C, 1
CDTMF5S Pe 022E, 1
CDTMV1 P4, H2& 0226, 2
CDTMV2 P& 021A, 2
CDTMV3 P8 021C, 2
CDTMV4 P8 0O21E, 2
Operating System CD146555 —— Appendix L

250

CDTMVS
CH
CHKSNT
CH1
CHACT
CHAR
CHBAS
CHKSNT
CHKSUM
CIOCHR
CIX
CKEY
coLacC
COLCRS
CoLDST
COLINC
COLORO
COLOR1
COLOR2
COLOR3
COLOR4
COLRSH
COUNTR
CRETRY
CRITIC
CRSINH
CSTAT

DAUX1
DaUX2
DBSECT
DBUFHI
DBUFLO
DBYTHI
DBYTLO
DCB
DCOMND
DDEVIC
DEGFLG
DELTAC
DELTAR
DFLAGS
DIGRT
DINDEX
DMASK
DOSINI
DASVEC
DRETRY
DRKMSK
DSKFMS
DEKTIM
DSKUTL
DSPFLG
DETAT

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL

P8

E3

Hi4

El

P25
ESS

24
H14
H13
G295
M1l

N4

B24

B2

N11
B21
B8, P27
B8, P27
B8: P27
B8, P27
B8, P27
Bl1l
B23
H1i1

P1

Bl

s2

H?
H?
N
Hé
Hé
HB
H8
H1
H4
H2
M24
B22
Ba22
N8
M10
B35
B28
N3
N12
Hiz2
Bi2
Sé
ca2
L1
B27
B34

OPERATING SYSTEM,

0220, 2
02FC. 1
003B! 1
o2Fa2, 1
02F3, 1
02FaA, 1
02F4, 1
003B. 1
0031, 1
002F, 1
ooF2. 1
004A, 1
0072, 2
0053, 2
0244,
007A,
02C4,
02CS,
02Cé,
02C7,
02C8,
004F,
Q07E,
003é,
0042,
02F0,
0288,

et e et) R e b e e e e e

0304A: 1
030B, 2
0241.1
0304, 1
0305,
0308,
0309,
0300,
0302,
0300,
OOFB. 1
0077, 2
0076, 1
0240, 1
OOF1.,1
0057, 1
0240, 1
000C., 2
000A: 2
0037. 1
004E., 1
0018, 2
0246, 1
001A, 2
02FE, 1
004cC, 1

2

P e

C016555 - Rev.

Operating System CO16555 —- Appendix L

0.2

n
871
—

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C0O146555 - Rev. 0.2

DSTATS HS 0303: 1
DTIMLOD H7 0306, 1
DUNIT H3 0301. 1
DUNUSE s3 0307, 1
DVSTAT G111 02EA, 4
EEXP Mé& OOED. 1
ENDPT B25 0074, 2
ERRFLG H30 023F, 1
(ERRNO KS) 0049, 1
ESCFLG B26 0242, 1
ESIGN M8 OOQEF. 1
FCHRFL M 00FO0., 1
FEOF D12 003F, 1
FILDAT B17 02FD. 1
FILFLG B18 02B7. 1
FLPTR M16 O0OFC. 2
FMSZPG K1 0043, 7
FPSCR ' M22 05Eé&.: &
FPSCR1 M23 0SEC, 6
FPTR2 M17 0OOFE, 2
FRO M1 00D4., &
FR1 M3 00EOQ: &
FR2 M4 0O0Eé&: &
FRE M2 00DA: &
FREQG D15 0040, 1
FRMADR B41 0068, 2
FRX MS 00EC. 1
FSCR M22 0SE6, &
FSCR1 M23 OSEC. 6
FTYPE D13 O03E. 1
GPRIOR P24 026F, 1
HATABS G112 031A, 38
HOLD1 B30 0051, 1
HOLD2 B31 029F., 1
HOLD3 B32 029D, 1
HOLD4 B20 02BC, 1
HOLDS S1 02BD, 1
HOLDCH E7 007C. 1
ICAX1 G? 0344A: 1
ICAX1Z c21 002A, 1
ICAX2 G? 034B. 1
ICAX2Z c21 0028, 1
ICBAH Gé 0345, 1
ICBAHZ G18 0025, 1
ICBAL Gé& 0344, 1
ICBALZ G18 0024, 1
ICBLH G8 0349, 1
ICBLHZ G20 0029, 1
ICBLL G8 0348, 1

Operating System CO016555 —-- Appendix L

n
o
n

ICBLLZ
ICCOM
IccomMT
ICCOMZ
ICDNO
ICDNBZ
ICHID
ICHIDZ
ICIDND
ICPTH
ICPTHZ
ICPTL
ICPTLZ
ICSPR
ICSPRZ
ICSTA
ICSTAZ
INBUFF
INSDAT
INTEMP
INVFLG
I0CB
IOCBAS

KEYDEL

LBFEND
LBPR1
LBPR2
LBUFF
LINBUF
LMARGN
LOGCOL
LOGMAP
LPENH
LPENV

MEMLO
MEMTOP
MLTTMP

NEWCOL
NEWROW
NOCKSM
NSIGN

OLDADR
OLDCHR
oLDpCcoL
OLDROW
OPNTMP

PADDLO
PADDL1

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL

G20
G4
G223
Glé
G3
G15
G’)
G114
G24, G2
G7
G119
G7
G19
G10
G22
GS
G17
Mi2
B45
P28
E?
Gl
G13

E2

M20
Mi8
M19
M20
B51
BS

B1S
B14
J5

Jé

Al
A2

B40

B19
B1?
H15
M7

B3B8
B37
B3
B3
B40

J3
J2

OPERATING SYSTEM,

coz2e., 1
0342, 1
0017, 1
Qo221
0341, 1
co21,1
0340, 1
002s, 1
2002E, 1
0347,
0027,
0344,
0026,
034cC,
oozac,
0343,
0023,
00F3,
007D,
622D,
02Bé&!
0340, 16
0020, 16

il 1S BN - e

02F1, 1

0580, 26
057E. 1
057F., 1
0580, 246
0247, 40
0052, 1
0063, 1
o232, 4
0234, 1
0235, 1

O2E7. 2
02ES, 2
0066, 2

00461, 2
0060, 1
003C: 1
OOEE., 1

Q0S5E., 2
005D, 1
005B: 2
005A, 1
0066, 2

0270, 1
0271, 1

C016555 — Rev.

Operating System CO16555 —-— Appendix L

0.2

[|8]
4]
L)

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYETEM, C01&4355 — Rev. 0.2

PADDL2 J3 0272, 1
PADDL3 J2 0273. 1
PADDL4 J3 0274, 1
PADDLS J2 0275, 1
PADDLA J3 0276, 1
PADDL7 J3 0277, 1
PBPNT F3 001D, 1
PBUFEZ F2 OC1E, 1
PCOLRO B7, P27 c2C0, 1
PCOLR1 B7, P27 02C1,1
PCOLRZ2 B7., P27 o=2C2:1
PCOLR3 B7., P27 02C3. 1
PLYARG M21 O5EQ: 6
POKMSK P2 0010, 1
PRNBUF Fi 03C0., 40
PTEMP F4 O01F. 1
PTIMOT FS 001C, 1
PTRIGO J4 027C. 1
PTRIG1 J4 027D, 1
PTRIG2 J4 027E., 1
PTRIG3 J4 027F., 1
PTRIG4 Ja 0280, 1
PTRIGS Ja 0281, 1
PTRIGA J4 0282, 1
PTRIG7 J4 0283, 1
RADFLG M24 OOFB: 1
RAMLO N1 0004, 3
RAMSIZ AS 02E4: 1
RAMTOP A4 006A: 1
RECVDN H22 0039, 1
RMARGN Bé& 0053: 1
ROWAC B24 0070, 2
ROWCRS B2 0054, 1
ROWINC B21 0079, 1
RTCLOK P3 0012, 3
SAVADR B41 0068, 2
SAVIO D7 0316461
SAVMSC B36 0058, 2
SCRFLG B9 02BB. 1
SDLSTH P23 0231, 1
SDLSTL P23 0230, 1
SDMCTL P22 022F. 1
SHFAMT B29 006&F. 1
SHFLOK Eé 02BE. 1
SOUNDR H10 0041, 1
SRTIMR EB 0228, 1
SSFLAG E4 02FF., 1
SSKCTL H32 0232: 1
STACKP H28 0318, 1
STATUS H31 0030, 1
STICKO Ji,J7,J8 0278, 1
STICK1 J1, J7, J8 0279, 1
Operating System CO14555 —— Appendix L

254

STICK2
STICKZ
STRIGO
STRIG1
STRIG2
STRIG2
SUBTMP
SWPFLG

TABMAP
TEMP
TEMP1
TEMPZ2
TEMP3
TIMER1
TIMERZ2
TIMFLG
TINDEX
TMPCHR
TMPCOL
TMPLBT
TMPROW
TMPX1
TOADR
TRAMSZ
TSTAT
TSTDAT
TXTCOL
TXTMSC
TXTOLD
TXTROW

USAREA

VBREAK
VDSLST
VIMIRG
VINTER
VKEYBD
VPRCED
VSERIN
VSEROC
VSEROR
VTIMR1
VTIMR2
VTIMR4
VVBLKD
VVBLKI

WARMST
WMODE

XMTDON

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL

OPERATING SYSTEM,

C016555 - Rev.

Ji,J7,J8 0274, 1
J1,J7,J8 027B. 1
b2, J7, J9 0284, 1
b2, J7, J9 0285, 1
2:J7,J°9 286, 1
J2, J7, J9 0284, 4
B48 C29E, 1
B44 0078, 1
B12 02A3, 15
H23 O023E., 1
DS 0312, 2
sS4 0214, 1
D& 0315, 1
D3 030C, 2
D3 0310, 2
D2, H2S5 0317, 1
B49 0293, 1
B33 0050, 1
B4s 0289, 2
B47 02a1,1
B46é 02B8, 1
SS 029C, 1
B40 0066, 2
N1 0004, 3
H29 0319, 1
N2 0007, 1
B4 0291.2
BS2 0294, 2
BS3 0296, &
B4 0290, 1
R1 0080, 128
P1é 0206, 2
P10 0200, 2
P13 0214, 2
P15 0204, 2
P17 0208, 2
P14 0202, 2
P18 0204A, 2
P20 020E, 2
P19 020C, 2
P21 0210, 2
P21 0212, 2
P21 0214, 2
P12 0224, 2
P11 0222, 2
N13 0008, 1
Di4 0289, 1
H24 003A: 1
Operating System C0146555 —— Appendix L

0. 2

n
9]
Ul

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C014555 - Rev.. 0.2

(ZBUFF K2) 0043, 2
(ZDRVA K3) 0045, 2
Z10CB G13 0C20, 16
(ZSBA K4) 0047. 2
ZTEMP1 M13 QOF35, 2
ZTEMP3 M15S O0OF9., =
ZTEMP4 M14 COF7.2
Operating System CO146555 —= Appendix L

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO016555 - Rev. 0.2

MEMORY ADDRESS ORDERED LIST OF DATABASE VARIABLES

ADDRESS VID NAME
0C00-0001 g7 LNZBS
0002-00GC3 No CASINI
0004-000& N1 RAMLO, TRAMSZ
0007 N2 TSTDAT

0008 N13 WARMET

0009 N7 BOOT?
000A-000B Ni2 DOSVEC
000C-000D N3 DOSINI
O00E-0QOCQF A3 APPMHI

0010 P2 POKMSK

0011 ES BRKKEY
0012-0014 P3 RTCLOK
0015-0016 C1 BUFADR

0017 G23 ICCOMT
0018-0019 Sé DSKFMS
001A-001B L1 DSKUTL

001C FS PTIMOT

001D F3 PBPNT

O01E Fa PBUFSZ

O01F Fa PTEMP

0020 G13,G14 ICHIDZ

0021 G15 ICDNOZ

0022 Glé ICcomz

0023 G17 ICOBAS
0024-0025 G118 ICBALZ, ICBAHZ
0026-0027 G19 ICPTLZ, ICPTHZ
0028-0029 G20 ICBLLZ, ICBLHZ
002A-002B G21 ICAX1Z, ICAX2Z
002C-002F G22, G24, 625 ICSPRZ

0030 H31 STATUS

0031 H13 CHKSUM
0032-0033 Hié BUFRLO. BUFFRHI
0034-0035 H17 BFENLO, BFENHI
0036 Hil CRETRY

0037 Hi2 DRETRY

0038 H21 BUFRFL

0039 H22 RECVDN

003A H24 XMTDON

003B H14 CHKSNT

003C H1S NOCKSM

003D D11 BPTR

003E D13 FTYPE

O03F D12 FEOF

0040 D15 FREQ

0041 H10 SOUNDR

0042 P1 CRITIC
0043-0049% K1, K2, K3, K4, K5 ZBUFF, ZBUFP, ZDRVA, ZSBA
0C4aA N4 CKEY

004B NS CASSBT

Operating System CO16555 ——- Appendix L

L8]
9]
~

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, CO14555 - Rev. 0.2

004C B34 DSTAT
004D B10O ATRACT
004E Bi12 DRKMSK
C04F Bi1l COLRSH
0050 B33 TMPCHR
0051 B3C HOLD1
00s2 BS LMARGN
00353 Bé RMARGN
0054-0056 B2 ROWCRS, COLCRS
0057 B35S DINDEX
0058-0059 B34 SAVMSC
005A-005C B3 OLDROW, OLDCOL
005D B37 OLDCHR
Q0SE-QOSF B38 OLDADR
0060-0062 B19 NEWROW., NEWCOL
0063 B1S LOGCOL
00&4-0065 B3% ADRESS
00&6-C0&7 B4C MLTTMP, OPNTMP, TOADR
0068-0069 B41 SAVADR/FRMADR
0046A A4 RAMTOP
006B B42 BUFCNT
006C-006D B43 BUFSTR
006&E BS0O BITMSK
C0&F B29 SHFAMT
0070-0073 B24 ROWAC, COLAC
0074-007%5 B2S ENDPT
0076-0078 B22 DELTAR. DELTAC
0079-007A B21 ROWINC, COLINC
0078 B44 SWPFLG
007C E7 HOLDCH
007D B4S INSDAT
O07E-QO7F B23 COUNTR
00B0-00FF SEE FLOATING POINT VARIABLE LIST AT END.
0100-01FF 6502 STACK
0200-0201 P10 VDSLST
0202-0203 P14 VPRCED
0204-0205 P15 VINTER
0206-0207 P1é& VBREAK
0208-0209 P17 VKEYBD
020A-020B P18 VSERIN
020C-020D P19 VSEROR
020E-020F P20 VSEROC
0210-0215 P21 VITMR1, VITMR2, VITMR4
0216-0217 P13 VIMIRQG
0218-0219 P4, H26 CDTMV1
021A-021B P& CDTMV2
021C-0221 P8 CDTMV3, CDTMV4, CDTMVS
0222-0223 P11 VVBLKI
0224-0225 P12 VVBLKD
0226—-0227 PS, H27 CDTMA1L
0228-0229 P7 CDTMA2
Operating System CO16555 -- Appendix L

258

0224
c22B
022C
022D
022E
022F
0230-02321
02232
0233
0234
0235
02346-023%
023A
023B
023C-023D
023E
023F
0240
0241
0242-0243
0244
0245
0246
0247-026E
026F
0270-0277
0278-027B
027C-0283
0284-0287
0288
0289
028A
028B-028F
0290-0292
0293
0294-02%5
0296—-029B
029C
029D
029E
029F
02A0
02a1
02a2
02A3-02B1
02B2-02B5
02Bé&
02B7
02B8-02BA
02BB
02BC
02BD
02BE
02BF

P9
EB
P9
P2g
P9

22
P23
H32
S14
JS
Jé
s8
H18
H19
H20
H23
H30
NE
N9
N10
N1l
s9
ga
BS1
P24
J3
J1, J7, JB
Ja
J2) J7, J9
s2
D14
D10
S10
B4
B49
BS2
B53
S5
B32
B48
B31
B28
B47
B26
B13
B14
=
B18
B4&
B9
B20
St
Eé
Bi6

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPRQVAL

OPERATING SYSTEM, C0O146555 - Rev. 0.2

CDTMF2
SRTIMR
CDTMF 4
INTEMP
CDTMFS
SDPMCTL
SDLSTL, SDLSTH
SSKCTL
unused
LPENH
LPENV
unused
CDEVIC
CCOMND
CAUX1, CAUXZ2
TEMP
ERRFLG
DFLAGS
DBSECT
BOOTAD
COLDST
unused
DSKTIM

LINBUF
GPRIOR
PADDLOC
STICKO
PTRIGO
STRIGO -
CSTAT
WMODE
BLIM
unused
TXTROW, TXTCOL
TINDEX
TXTMSC
TXTOLD
TMP X1
HOLD3
SUBTMP
HOLD2
DMASK
TMPLBT
ESCFLG
TABMAP
LOGMAP
INVFLG
FILFLG
TMPROW, TMPCOL
SCRFLG
HOLD4
HOLDS
SHFLOK
BOTSCR

PADDL7
STICK3
PTRIG7
STRIG3

Operating System CO146555 —- Appendix L

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555 - Rev. 0.2

02C0-02C3 B7. P27 PCOLRO —-- PCOLR3

02C4-02C8 B8, P27 PCOLRO -- PCOLR4

02C?-02E3 S11 unused

02E4 AS RAMSIZ

02E5-02E6 A2 MEMTCP

02E7-02E Al MEML.O

C2E? S15 unused

C2EA-OZED G11 DVETAT

O2EE-C2EF D1 CHBAUDL, CHBAUDH

02F0 B1 CRSINH

02F 1 E2 KEYDEL

02F2 El CH1

G2F3 P25 CHACT

02F4 P26 CHBAS

G2F5—-02F29 Ss12 unused

o2FA BSS CHAR

C2FB BS54 ATACHR

O02FC E3 CH

02FD B17 FILDAT

02FE B27 DSPFLG

02FF E4 SSFLAG

0300 H1, H2 DCB/DDEVIC

0301 H3 DUNIT

0302 H4 DCOMND

0303 HS DSTATS

0304-0305 Hé DBUFLO, DBUFHI

0306 H7 DTIMLO

0307 S3 DUNUSE

0308-0309 HB8 DBYTLO, DBYTHI

030A-030B H? DAUX1, DAUX2

030C-030D D3 TIMER1

OZ30E D4 ADDCOR

030F D8 CASFLG

0310-0311 D3 TIMER2

0312-0313 DS TEMP1

0314 sS4 TEMP2

0315 Dé6 TEMP3

0316 D7 SAVIO

0317 D2, H25 TIMFLG

0318 H28 STACKP

0319 H29 TSTAT

031A-033F G112 HATABS

0340 G1l, G2 IOCB, ICHID

0341 G3 ICDNO

0342 G4 ICCOM

0343 G5 ICSTA

0344-0345 (675} ICBAL, ICBAH

0346—-0347 G7 ICPTL, ICPTH

0348-0349 G8 ICBLL, ICBLH

034A-034B G? ICAX1, ICAX2

034C—-034F G10 ICSPR
Operating System CO146555 —— Appendix L

260

REPRODUCTION PROHIBITED WITHOUT PUBLICATIONS DEPT. APPROVAL
OPERATING SYSTEM, C016555 — Rev. 0.2

0350-025F G2-G10 (I0OCE #1)
0360-0C3&F G2-G10 (IOCB #2)
. 0370-027F G2-G10 (I0OCE #3)
0380-038F G2-G10C (I0OCB #4)
0290-029F G2-G10 (I0OCB #5)
OCSA0-03AF G2-G10C {I0C2 #&)
G3BO-02EF G2-G10C {IOCB #7)
O03C0-03E7 Fi PRNBUF
03EB-C3FC €13 unused
Q3FD-047F D9 CASBUF
0480—-04&FF R2 User Area

FLOATING POINT PACKAGE VARIABLES

00D4-00D%? M1 FRO
O0ODA—-CODF M2 FRE
OOEQ-0QO0ES M3 FR1
O0CE&L—-QOER M4 FR2
00EC MS FRX
O0ED Mé EEXP
O0EE M7 NSIGN
OOEF M8 ESIGN
OOFO M? FCHRFLG
00F1 M10 DIGRT
O0F2 M1l CIX
OOF3—-00F 4 M12 INBUFF
OOF5-00F &6 M13 ZTEMP1

. O0F7-COFB8 Mi4 ZTEMP4
OOF9-00FA M15 ZTEMP3
COFB M24 RADFLG/DEGFLG
OCFC—=0O0FD Mié FLPTR
O0OFE-COFF Mi7 FPTR2
OS7E Mig LBPR1
0S7F M19 LBPR2
0580-05FF M20 LBFEND, LBUFF
OSEO-0OSES M21 PLYARG
OSE6—-0O5SEB M22 FPSCR/FSCR
OSEC-05F1 M23 FPSCR1/SCR1

‘ Dperating System CD16555 —— Appendix L

	Atari PHC OS Jan 1982
	Atari PHC OS Jan 1982 cover
	test_0027

