Yo e M

o S

oo i SIS
500N i T g A i e iy

b e e s

— e

3
bk
pol)

i, T T e B T F e 8

From The Editor’s of COMPUTE! Magazine and
Optimized Systems Soflware, Inc.

INSIDE
ATARI DOS

Compiled by Bill Wilkinson,
Optimized Systems Software, Inc.

Published by COMPUTE! Books, A
A Division of Small System Services, Inc., e yerem
Greensboro, North Carolina Publication

ATJARI s a registered trodemark of Atari, Inc,

Preface

This book contains the only complete and official listings for the disk
File Manager System (FMS) commonly known as “Atari DOS 2.0S.”
You will note that we have clearly stated that the purchase of this
book does not entitle you to make, sell, give, or otherwise distribute
cories of either the original Atari DOS 2.0S or any modified version
you. may produce as a result of using this book.

By way of information, should you desire to produce anddistribute
a modified version of this product (e.g., to support a new disk drive),
you. must sign a contract and licensing agreement with the party who
owns the rights to grant such licenses for non-exclusive uses. Currently,
Optimized Systems Software is the only entity able to grant such
licenses.

Some of you may find it strange that the publishers of COMPUTE!
magazine are publishing this book. You might wonder why Atari,
Inc., hasn’t released this information before. Why can you only obtain
distribution rights from Optimized Systems Software? For the answers
to these and other questions we present the following Introduction,
an historical perspective on the development of the systems software
for the Atari Home Computers.

All reasonable care has been taken in the writing, testing, and correcting of the text and of the
software within this book. There is, however, no expressed or implied warranty of any kind from
the zuthors or publishers with respect to the text or software herein contained. In the event of
any damages resulting from the use of the text or the software in this book, the authors ot
publ:shers shall be in no senseliable. Please review the important cautions noted in Appendix A
regarding the use of this book.

Copvright © 1982 text, Small System Services, Inc.

Copyright © 1978, 1979, 1980, 1982 program listings, Optimized Systems Software, Inc.

All rights reserved. Reproduction or translation of any part of this work beyond that permitted
by sections 107 and 108 of the United States Copyright Act without the permission of the
copyright owner is unlawful.

Printed in the United States of America
ISBM 0-942386.02-7
10 98 7 6 5 4 3 2

Table of Contents

Preface Page ii
Introduction: Being a History of Two Births: “Coleen” and “Candy” Page iv
Chapter One: Atari DOS Overview Page 1
Chapter Two: Disk Organization Page 10
Chapter Three: FMS File Control Blocks (FCBY Page 15
Chapter Four: FMS Initialization Page 17
Chapter Five: FMSEntry Page 22
Chapter Six: FMSExit Page 23
Chapter Seven: Device Dependent Commands Page 25
Chapter Eight: FMS Open Routines Page 31
Chapter Nine: FMS Close Routines Page 34
Chapter Ten: The GET BYTE Routine Page 36
Chapter Eleven: The PUT BYTE Routine Page 37
ChapterTwelve: Burst /O Page 38
Chapter Thiteen: Reading the Directoryasa File Page 40
Chapter Fourteen: Sector /O Routines Page 42
Chapter Fifteen: File Name Decode Routine Page 46
Chapter Sixteen: Directory Searching Page 48
Chapter Seventeen: Write Next Sector Page 50
Chapter Eighteen: Read Next Sector Page 51
Chapter Nineteen: Get and Free Sector Routines Page 53
Chapter Twenty: The Boot Process Page 55
Chapter Twenty-One: Maintaining the Boot Record Page 57
AtariDOS 2.0S Page 59
Appendix A: An Intermediate User’s Guide To This Book Page 102

COMPUTE! Books is a division of Small System Services, Inc.,
Publishers of COMPUTE! Maga:zine

Editorial Offices are located at:

625 Fulton Street, Greensboro, NC 27403 USA. (919)275-9809

Optimized Systems Software, Inc., is located at:
10379 Lansdale Avenue, Cupertino, CA 95014 USA. (408)446-3099.

iii

Introduction

BEING A
HISTORY OF
TWO BIRTHS

“COLEEN”
AND
“CANDY”

[don’t know exactly when the concept of the Atari Computer was
developed within the corporate mind of Atari, Inc., nor do I know all
of the people responsible for nursing that concept intoreality. The
following history covers the relationship with Atari, Inc., during the
evolution of the system software.

Sometime in early 1978, when the Atari 800 and 400 were still
called “Coleen” and “Candy” and were still in the breadboard stages,
Atari bought a copy of the source for Microsoft 8K BASIC. This
version of BASIC was fundamentally the same product that was
implemented by Commodore in the early PETs, was used by OSI, and
was a close ancestor of Applesoft. Six months and many, many Atari
man-hours later, that 8K BASIC was almost functioning properly on
the Atari prototypes. But buying source for a program buys you just
that: source. Generally, you also receive little documentation,
sometimes obscure code, no guide to modification, and no real support.
What to do? The products were due to be shown in early January,
1979, at the Consumer Electronics Show (CES) in Las Vegas,
Nevada.

Enter Shepardson Microsystems, Inc. (SMI), my employer at
that time. Though little known by the microcomputer public, SMI
had already produced some very successful, private labeled
microcomputer software. Among our better-known efforts were the

original Apple DOS, Cromemco 16K Extended BASIC, and

iv

Cromemco 32K Structured BASIC (just being completed at that
time). Also, we had done some work for Atari on a custom game
processor. (Which used a 12-bit ROM and 5-bit RAM configuration
and was well received at Atari, but never produced.)

Coincidentally, about that same time SMI had also purchased
source for Microsoft 6502 BASIC. After producing Apple’s DOS, we
had the bright idea of mating the Apple Il peripheral bus with the
KIM/SYM/AIM system bus (and it still seems like a good idea to us,
but ...). The idea was to provide a disk system (Apple's) to the Single
Board Computer market. Needing a BASIC to sell with the system,
we plunked down a few grand and purchased Microsoft’s. Though it
looked to us like it would be difficult to modify, we were intending to
resell it with a minimum of changes, so it seemed appropriate.

A New BASIC?

Re-enter Atari, some time in the late summer of 1978, asking if SMI
could help them. With Microsoft BASIC? Well ... we really didn't
want to, but ... Could we propose a new BASIC? We talked. And
had meetings, and a study contract, and more meetings, and finally
we wrote a specification for a 10K, ROM-based BASIC. (I still have a
copy of that spec, and it's amazing how little the final version deviated
from that original.)

Of course, in the middle of all these discussions, Atari naturally
divulged how their (truly superb) ROM-based Operating System
would interface both with BASIC and with various devices.
Somewhere in here, my memory of the sequence of events and
discussions becomes a little unclear, but suffice it to say that we found
ourselves making a bid on producing not only a BASIC for Atari, but
also the File Manager (disk device driver) which would change Atari
OS to Atari DOS.

Sometime in late September, 1978, the final proposal was made
to Atari, and it was accepted by them shortly thereafter. In mid-
October, 1978, we received the go-ahead. The project leader was Paul
Laughton, author of Apple DOS. The bulk of the work ended up
being done by Paul and Kathleen O'Brien. Though I was still involved
in the finishing touches on Cromemco BASIC, | takecredit for
designing the floating point scheme used in Atari BASIC. Paul Krasno
implemented the math library routines following guidelines supplied
to us by Fred Ruckdeschel (author of the acclaimed text, BASIC
Scientific Subroutines). And, of course, much credit must go to Mike
Peters, our combination keypuncher/computer operator/junior
programmer/troubleshooter.

Since we obviously couldn’t have the Atari machines to work on
(they hadn’t been built yet), the first step was to bring up an emulator
for Atari’s ClO (“Central Input-Output,” the true heart of Atari’s
OS) on our Apple Il systems. With Paul Laughton leading the way
(and doing a lion’s share of the work), the pieces fell together quickly.
“Little” things had to be overcome: the cross-assembler was modified
to handle the syntax table pseudo-ops, the 256-byte Apple disk sectors
had to be made to look like 128-byte Atari sectors, the BASIC
interpreter seemed to function, but was waiting for the floating point
routines. And there are funny things to tell of, also. Like our cross-
assembler, running on an IMP-16P (a 1973 vintage, 16-bit, bit-sliced
PMOS microprocessor) that used keypunched cards for input, a floppy
disk (with no DOS) as temporary storage, and a paper tape punch as
ourput.

Somehow, Kathleen and Paul guided the two programs unerringly
toward completion. On December 28, 1978, Atari's purchasing
department at last delivered a signed copy of the final purchase order.
It called for delivery of both products by April 6, 1979. There was a
clause which provided for a $1,000 per week incentive (if we finished
early) and penalty (if we finished late). What is especially humorous
about that December 28th date is that the first working versions of
both BASIC and FMS had already been delivered to Atari over a week
before! That is fast work.

Fortunately, then, Atari took their new Atari BASIC to CES.
Unfortunately, there was a limit on the amount of incentive money

collectible. Oh, well.

In the months that followed, SM1 fixed bugs, proofread manuals,
and worked on other projects (including the Atari Assembler/Editor,
which was mostly Kathleen's effort). The nastiest bugs in BASIC were
fixed by December, 1979, but it was too late: Atari had already
ordered tens of thousands of BASIC ROMs. The FMS bugs were
easier to get fixed, since DOS is distributed on disk.

In mid-1980, Paul Laughton once again tore into FMS. This
time, he modified it to handle the ill-fated 815 double-density disk
drive and added “burst I/O” (and there will be much more about both
these subjects in the technical discussion that follows).

In late 1980, and early 1981, Bob Shepardson, owner of
Shepardson Microsystems, Inc., decided that the pain and trouble of
having employees wasn't justified by the amount of extra income (if
any) that he derived. Though we still occasionally function in a loose,
cocperative arrangement, the halcyon days of SMI seem to be over.

vi

A New Beginning

I negotiated with Bob Shepardson for his rights to the Atari products
(FMS, BASIC, and the Assembler/Editor) and their Apple 11
counterparts. Thankfully, Atari had purchased from SMI only a non-
ex:lusive right to distribute these products. SMI had retained the
rights to license other users on a similar non-exclusive basis (and,
indeed, SMI sold a version for the Apple 1l during most of 1980).

So now it was frantic time again: this was February 25, 1981, and
the West Coast Computer Faire was April 3rd. But our brand new
company, Optimized Systems Software, arrived on time, bringing
with it BASIC A+, OS/A+ and EASMD. All three were enhanced,
disk-based versions of the original Atari programs (and, in fact, derived
some of their enhancements from the previous OSS Apple Il
products).

The products have been well received by the Atari user
community, in part due to the fact that they are truly compatible, yet
enhanced, versions of standard Atari software.

Why This Book?

The decision to publish these listings was not an easy one to make;
and it is, in its own way, an historic occasion. After all, have you ever
secn anyone offering source or listings of CP/M, the most popular of
all computer operating systems? Since Atari, to their credit, has
honored the original agreement with SMI and not released either
soarce or listings without permission, the responsibility for doing so
seemed to rest with OSS.

But Atari has set a powerful precedent by publishing the listings
of DUP (their portion of DOS 2.0S) and the OS ROMs. The clamor
from Atari users for the source for FMS finally even reached us, so we
hzve bowed to the inevitable, and honored the same commitment
that Atari has made: to release as much information and aid as possible
to the user community.

We hope that the users will appreciate these efforts and, in turn,
respect our rights and Copyrights. As long as there is a mutual respect
ard benefit, you, the user, can expect continued support.

About This Book

With the release of this book, the dedicated Atari enthusiast can
examine all the inner workings of Atari DOS and modify his (or her)
system to his heart’s delight. Rather than simply publish listings, we
have chosen also to provide a complete guide to the workings of FMS.
Although the listing itself is relatively clear and commented, all

vii

but the most expert would have trouble plowing through some of the
tortuous logic necessary in such a program. The guide included here
describes all aspects of the FMS, including the external view, the
charts and tables, the various interfaces, and (in copious detail) the
functions of the individual subroutines (including complete entry and
exit parameters).

There is much of value here even for the person who never
intends to modify Atari DOS. We feel that FMS is a fairly well-
structured, relatively sophisticated, system level assembly language
program. We hope that most users will gain by the insights presented
here.

We would welcome any notes you would care to send pointing
out errors either in the DOS or in this book.

Bill Wilkinson
Optimized Systems Software
Cupertino, California

February, 1982

viii

Chapter One

ATARI
DOS
OVERVIEW

The standard Atari Disk Operating System, DOS 2.0S, consists of
four separate elements, ranked as follows in order of their “visibility"”
to the average DOS user.

1. DUP — Disk Utility Package

2. CIO - Central Input/Output

3. FMS — File Management System
4. SIO - Serial Input/Output

It is helpful to understand the entire Input/Output (1/O) process.
While this book is intended to give detailed information on the
workings of FMS, this overview will attempt to at least show how the
four elements of DOS are connected. To this end, we would first call
your attention to Figure 1. This figure is, itself, an overview of the
entire Atari I/O system, including indications as to how and where
data and control flows between the various elements thereof. Figures
1-1 through 1-4 show “close-ups” of portions of this diagram as they
re.ate to the four elements of DOS.

In these figures, the rectangular boxes represent system elements,
and are appropriately labeled. The wide, lettered arrows represent the
flow of data (via buffers, control blocks, or even registers) between
the various elements. The narrow, numbered arrows show how and
where control, and control information, is transferred.

1-41.Disk Utility Package
DIUP (which shows as “DUP.SYS” in a disk directory listing) is the

most obvious and visible element of Atari DOS. DUP’s function is to
provide the user with keyboard access to the various file management
functions in FMS. It does so via the menu which is displayed when,
for example, the user keys “DOS” from BASIC. Actually, the menu
of‘ers several options which are not directly a part of the FMS (e.g.,
copy and duplicate files). Refer to the Atari Disk Operating System 11

CHAPTER ONE

Reference Manual (part number C016347) for more information.

DUP is not an integral part of FMS. DUP may be relatively easily
replaced with a program of the user’s choice. In fact, our own OS/A +
does exactly that: instead of a menu, the user is given a command-
driven keyboard interface to the other elements of DOS.

DUP is not even a privileged portion of DOS (excepting, perhaps,
for reeding to know a little of the internals of FMS when it performs a
Duplicate Disk function). Any user application program (and that
includes Atari BASIC, BASIC A +, EASMD, and many, many
more) interacts the same way DUP does. Figure 1-1 shows the “proper”
flow of control in DOS. Note that DUP transfers control only to
CIQO, which, in turn, transfers control to FMS and thence to SIO. An
application program which maintains this protocol should be able to
perform correctly in any Atari system, regardless of the revision of the
OS ROMs and/or FMS.

Of course, control is not the only thing which DUP must transfer.
[t must also tell CIO where its data is and what to do with it. Refer to
Figure 1-2 for a diagram of the complete application/CIO interface
(again, it is labeled in this way because DUP is just another application
program as far as the rest of DOS is concerned). CIO always expects
an Input/Output Control Block (IOCB) and usually (i.e., for all but
the simplest operations) needs a buffer into or out of which it may
perform its operations.

1-2. Central Input/Output

CIO is actually the heart of the entire Atari Computer. It is less than
800 bytes long and yet serves to handle virtually all the input and
output which takes place in the computer. CIO is a part of the Atari
“OS ROMs," the 10K byte package which also houses the floating
point routines, the default character set, the interrupt handlers, and
several device drivers. '

The entire set of operations summarized in Figure 1-2 is covered
in detail in the Atari OS Manual (C01655) and will be covered only
briefly here. Readers of COMPUTE! will also find some helpful material
on this subject in issues # 18 through #21 (November, 1981, through
February, 1982) in the “INSIGHT: ATARI" columns.

In order to allow easy control and data flow, CIO is written to
expect and provide for eight Input/Output Control Blocks (10CBs)
which are used to pass the information needed to process the various
kinds of I/O requests. An application places the necessary command
and control information in an IOCB which it selects (data path A). If
a buffer is required, the application must provide one (data path C)

2

CHAPTER ONE

and place its address into the [OCB. When ready to execute the I/O
command, the application places the [OCB number (times 16) in the
6502's X-register (data path C) and executes a JSR call to CIO (control
path 1). Note that a few command variations may pass data via the
6502's A-register, but we may consider that simply a special case
location of the user’s buffer.

When CIO receives control, it examines the information in the
ICCB (and, for some operations, in the user buffer) to determine
what actions it is to perform. Generally, this action requires the
execution of a device handler routine.

A device handler (interchangeably known as a device driver) is a
system routine that performs 1/O operations for a specific device (or
class of devices). Examples of device handlers include the “P:"” driver
(the printer) and the “E:” driver (the screen/keyboard editor). Figure
1-3 illustrates the interface between CIO and the various device
handlers. Note that FMS is simply another device handler as far as
ClO is concerned, having been given the name “D:".

All device drivers are required to contain a table ofaddress pointers
(known as the Device Vector Table) to various specific routines
within themselves, including a device OPEN routine, GET
CHARACTER routine, etc. The name of a device and the address of
this table is placed in CIO’s Device Handler Table. When an
application program makes an 1/O request to CIO for a specific device,
ClO searches the Device Handler Table for the given name and
corresponding Device Vector Table address. With the thus-located
vector table, CIO can then call the appropriate device handler routine
(via a JSR, along control path two of Figure 1-3).

41-3. File Management System

As stated above, FMS is actually simply another device driver as far as
CIO is concermned. The control and data flows shown in Figure 1-3 are
equally valid for all device drivers in the Atari system. Note that
many of the drivers in the default (“as-shipped”) system reside entirely
within the so-called OS ROMs. Although it resides in RAM, what is
somewhat unique about FMS is that the Atari system initialization
code contains a segment of “boot” code which loads FMS into memory
upon power-on.

FMS is the system device handler for all I/O operations that
specify the device name “D” (including “D1:”, “D2:”, etc.). In order
to perform its functions, FMS examines the data in the specified
ICCB (data path F). It may also examine, read, or write data to or
from the user-supplied buffer (data path I). Data path H is used to pass

3

CHAPTER ONE

the IIDCB-designator (again, via the X-register) and single-byte transfer
data (via the A-register).

FMS is called upon to perform a variety of tasks, including all
disk [/O, file renaming, protecting, deleting, etc. Since the rest of
this book consists of a listing of FMS along with detailed explanations
of all sections thereof, we will not now dwell on the inner workings of
FMS.

However, we do need to note that, in order to perform its work,
FMS must transfer data to and from the disk. FMS accesses the disk
drive via SIO, the fourth element of DOS.

1-4. Serial Input/Oufput

SIO is the name given to the component of DOS which drives and
controls the Atari serial /O bus and the various peripherals (disk,
printer, modem, etc.) which are placed on that bus. Figure 1-4
illustrates the interface between FMS and SIO, but it could just as
well serve to show (for example) how the printer driver talks to the
various Atari printers.

The SIO is primarily driven by a request placed in SIO’s Device
Control Block (DCB) by the device handler (data path K} followed
by a transfer of control (control path three) via a JSR. SIO uses the
information in the DCB (data path M) to determine what it needs to
do. If the DCB specifies a serial bus data transfer (as opposed to, for
example, a status request), then the address of the data buffer must
also be passed (via a field in the DCB). For example, the FMS buffer
shown is accessed via data paths] (from FMS) and L (from SIO).

Although SIO only understands the single system DCB, the
buffer specified may be located anywhere in memory. FMS takes
advantage of this to implement “burst I/O” (discussed in section 12),
which has SIO transferring data directly to or from the user’s buffer
(data path E).

Since the actual disk data transfer occurs in fact within the 810
disk drive and, since SIO communicates to the drive via data path N,
one might reasonably argue that the disk drive constitutes a fifth
component of DOS. However, because the disk drive functions are
preprogrammed in ROM, and because S1O implements the only
method of accessing the disk (as well as most other peripherals), then,
for all practical purposes, even machine language software may treat
SIO as the last link in the [/O chain on the Atari Computers.

Once again, we remind you to study Figure 1. In the following
dissertation and dissection of FMS, we shall refer to this chart often.

4

anIg
e
08

MO 104UOD puUy BivJ SOJ

OQm»

[<o B RN VIR UV} a4
w>w

(5AS'S0Q) A

SWA

OIS

ndino/nduy [ples

DWW

Uy

<>

pRpNiTRad

(214ua) | a1nbi4

Ol1o
INdinOndu) |pyusd

SASdNA
10—
wosboud
uoyo)ddy

—00x>

aAuqQ
18l
0/8

QOQa

A D et v A

w>om

{sassoq)
SNJ

<

QIS

indino/Anduy jpues

[un NEEI FERTE a4

Uy

e

DLW

MO4 Io4uU0D SOQ

L-L @inbl4

olle)
IndinozNduy jpyue)d

[

SASdNd

— 0~

woiboid
uoyooyddy

—00m

[aX@):.]

<>

BAlIQ
2510
o8

Ol§

Amv indinoAndul [ones

20D}IBjU| OD/uUCHDYddyY

Z-L 8B4

~
N

2

s

W

n 3 (SAS'SOQ)

9 SW4

R

O DWWy

Uy

<>

Dwuwix

ole]
INAinO/NAU oyue)

K>

SASdNA
woiBold
uoyooddy

—00m>

QOQa

[s pEn R FERTEN VN a4 A

w>Sw

(5A$50Q) A
JOIPUCH 821A8Q 181

09

=Y Vg| OIS
1S Amv ndinoyndu s
8

[se B RUEN SIS VTN a4

OID
Indino/ndu; jpyus)

R RVER a4

20D8U| JIS|IPUDH 821Nned-O1D
€-1 enby

SAS'dNa

—00m

o -
wioniB0oid
uoyoIddy

anuqg
Asig
o8

Q0>

ODuwuw wev
w>wn

OIS

NANOANAY [oLi8s

92043l OIS-SN4

-1 @Inby

(SAS'SOQ)
S

<Z

a7

Uy

DWW
Dwwe

Amv indino/induy [oyueD

Q1D

¢4 J

B>

{

SASdNd
=0 -
wniboid
uoyoO || ddy

J

Chapter Two

DISK
ORGANIZATION

The purpose of FMS is to organize the 720 data sectors available on an
810 diskette into a system of named data files. FMS has three primary
data structures that it uses to organize the disk: the Volume Table of
Contents, the Directory, and Data Sectors. The Volume Table of
Conrents is a single disk sector which keeps track of which disk sectors
are available for use in data files. The Directory consists of directory
sectors. It is used to associate file names with the location of the files’
sectors on the disk. Each Directory entry contains a file name, a
pointer to the first data sector in the file, and some miscellaneous
information. The Data sectors contain the actual data and some
control information that link one data sector to the next data sector
in the file. Figure 2-1 illustrates the relation between the Directory

and rhe Data files.

Disk Directory
The Directory starts at disk sector $169 and continues for eight
contiguous sectors, ending with sector $170. These sectors were
chosen for the directory because they are in the center of the disk and
therefore have the minimum average seek time from any place else on
the disk. Each directory sector has space for eight file entries. Thus, it
is possible to have up to 64 files on one disk.

A Directory entry is 16 bytes in size, as illustrated by Figure 2-2.
The directory entry flag field gives specific status information about
the current entry. The directory count field is used to store the number
of sectors currently used by the file. The last eleven bytes of the entry
are the actual file name. The primary name is left justified in the
primary name field. The name extension is left justified in the extension
field. Unused filename characters are blanks ($20). The Start Sector
Number field points to the first sector of the data file.

Data Sectors

A Dazta Sector is used to contain the file's data bytes. Each 128 byte
data sector is organized to hold 125 bytes of data and three bytes of

10

CHAPTER TWO

control information as shown in Figure 2-3. The data bytes start with
the first byte (byte 0) in the sector and run contiguously up to, and
including, byte 124. The control information starts at byte 125.

The sector byte count is contained in byte 125. This value is the
actual number of data bytes in this particular sector. The value may
range from zero (no data) to 125 (a full sector). Any data sectorina
file may be a short sector (contain less than 125 data bytes).

The left six bits of byte 126 contain the file number of the file.
This number corresponds to the location of the file’s entry in the
Dirzctory. Directory entry zero in Directory sector $169 has the file
nuraber of zero. Entry one in Directory sector $169 has the file number
one — and so forth. The file number value may range from zero to 63
($3F). The file number is used to insure that the sectors of one file do
not get mixed up with the sectors of another file.

The right two bits of byte 126 (and all eight bits of byte 127) are
used to point to the next data sector in the file. The ten bit number
contains the actual disk sector number of the next sector. Its value
ranges from zero to 719 ($2CF). If the value is zero, then there are no
more sectors in the file sector chain. The last sector in the file sector
chain is the End-Of-File sector. The End-Of-File sector may or may
not contain data, depending upon the value of the sector byte count

field.

Volume Table Of Contents (VTOC)

The VTOC sector is used to keep track of which disk sectors are
available for data file usage. The VTOC sector is located at sector
$1€8. Figure 2-4 illustrates the organization of the VTOC sector. The
most important part of the VTOC is the sector bit map.

The sector bit map is a contiguous string of 90 bytes, each of
which contains eight bits. There are a total of 720 (90 x 8) bits in the
bit map — one for each possible sector on an 810 diskette. The 90
bytes of bit map start at VTOC byte ten ($0A). The leftmost bit ($80
bit) of byte $OA represents sector zero. The bit just to the right of the
leftmost bit ($40 bit) represents sector one. The rightmost bit (bit
$01) of byte $63 represents sector 719.

The fact that FMS interprets the bit map as representing sectors
zero through 719 is a bug. The Atari 810 disk drive will not accept
commands for sector zero. It will accept commands for sector 720. In
other words, the bit map is skewed by one. The problem cannot be
fixed now because there are already tens of thousands of diskettes
whose bit maps are to be interpreted as representing sectors zero through
719, and because some savvy applications writers have taken advantage

11

CHAPTER TWO

of this feature. (A bug which generates useful side effects is known in
the programming profession as a feature.) Sector 720 can never be
used by FMS and is therefore available for miscellaneous purposes.

Directory Sectors

Sector $169 —s| File A o
] File B o Sectors File A
File C

Secror S17OJ File D

et

[o]
|

[¢ Sectors File B

!

!

Figure 21

12

CHAPTER TWO

Typical Directory Sector

Entry O

Entry 1

Entry 2

Entry 3

Entry 4

Entry 5

Entry 6

Entry 7

l Typical Directory Entry

0 1 & 5 13
[F |Couml SSN l Primary Name Extension |

Start Sector Number (Low, High)
The Sector Number of the First
Sector in the File Sector Chain

Count (Low, High)

The Number of Sectors in the File
® Fiag

$00 — Entry Has NeverBeen Used

$80 — Entry Has Been Deleted

$40 - Entry In Use

$20 — Entry Locked

$02 — File Created By DOS 2

$01 - File Opened For Output

Figure 2-2

13

CHAPTER TWO

Typical Data Sector

Data
125 Bytes
I Control ‘
l
Byte: 125 [—————» Number Bytes Used In Sector (0-125)
Byte: 126 { 1 | —34—= Next Sector Number (High Two Bits)
File Number (0-63)
Byte: 127 [—————]—»= Next Sector Number (Low Eight Bits)
Figure 2-3
VTOC Sector ($168)
0-9
Misc. Info.
S0A-$563
Sector Usage
BitMap
S64-S7F
Unused
[i
0] Type Code (= 0in DOS 20)
1 Number Sectors Total (52C3)
&} Number Unused Sectors
5} Reserved
6 | | | Unused

— Each bit represents a specific sector

— The left most bit (580) of byte S$DA is sector number 0 {does not exist)
— The next bit ($40) of byte SOA is sector number 1.

—The right most bit (501) of byte 563 is sector number $719.

— If the bit is one, the sector is unused and available

— If the bit is off (zero), the sector is used

Figure 2-4

Chapter Three

FMS
FILE CONTROL
BLOCKS
(FCB)

The FMS File Control Blocks are used to store information about files
that are currently being processed. Each file that is being processed
concurrently by FMS requires one FCB. Since the Atari system has
eight IOCB’s, FMS must be prepared to handle up to eight files
concurrently, thus there are eight FCBs. The FCBs were designed to
have a one-to-one correspondence with the IOCBs. When a file is to
be processed with IOCB number three, FMS will use FCB number
three for that file. When a file is to be processed with IOCB number
five, FMS will use FCB number five for that file. Each FCB is the
same size as an IOCB (16 bytes). The FCBsare located in a contiguous
RAM area just like the IOCBs. When CIO calls FMS, the X register
contains the displacement (IOCB number times 16) to the IOCB
making the request. The FMS uses this displacement value to access
both the IOCB information and the FCB information. Please refer to

the listing at location $1381 for the following discussion about the
FCB:s.

FCBFNO

The file number of the file currently being processed. The value (zero
to 63) is shifted left two bits. When a file has been opened for reading,
this value will be used to check for a file number mismatch in the data
sectors. When a file is opened for write, this value will be placed in

the file number field of the data sectors.

FCBOTC

Open Type Code. This value is used as a flag to indicate which mode
the file has been opened for:

Input is $04.

15

CHAPTER THREE

Output is $08.
Update is $0C.
Append is $01.
Directory read is $02.

FCBSLT

This is a tlag used to indicate that the file being processed was created
by DXOS 1 rather than DOS 2. The Data Sector length byte has a
different interpretation under DOS 1.

FCBFLG
This field is a working flag. If the value is $80, then the file is eligible

toacquire new data sectors. Files that are opened for Output or Append
are eligible to acquire new data sectors. If the value is $40, then the
sector currently is in a memory buffer, has been modified, and needs
to be written back to the disk.

FCBMNL

If the file 1s opened for Output or Append, this value will be either
125 or 253 depending upon the drive type. The 253 value is meant for
the Atari 815 dual density drive. If the file is opened for Read or
Update, then this value represents the number of data bytes that are
in the data sector currently in a buffer. This value is obtained from the
Data Sector data length field (byte 125 of the data sector.)

FCBDLN

This value points to the next data byte to be operated on in a data
sector. If the file is opened for Output or Append, this value points to
the next available (unused) data byte in the current data sector. If the
file is opened for Update, then this value points to the next data
sector byte to be either read or modified. If the file is opened for
Input, then this value points to the niext byte to be read.

FCBBUF

This value is an index into the sector buffer table. The sector buffer
table is a list of buffer addresses. When a file is being processed, a
sector buffer is required to hold data sectors. This field tells FMS
which FMS buffer has been allocated to the file.

FCBCSN

The sector number of the sector currently in the buffer is stored in this

field.

16

FCBLSN
The sector number of the next sector in the file chain is stored in this

field.

FCBSSN

If the file has been Opened for Append, then this field contains the
sector number of the start of the sectors to be appended to the file
when the append file is closed.

Chapter Four

FMS
INITIALIZATION

DUP gets control whenever the system is booted or the RESET key is
pressed. DUP will call the FMS initialization routine, DINIT at $7EO.

DINIT

Functions:
1) I(?etermine how many (and what type of) disk drives will be
used.
2) Set up a drive table and allocate a drive buffer for each drive.
3) Allocate sector buffers and build the sector buffer table.
4) Clear the FCB:s to zero.
5) Set MEMLO.
6) Enter the D: device into the Device Handler Table.
7) Exit to caller via RTS.

Drive Determination
The DRVBYT byte at $70A is used to tell FMS how many disk drives
will be used and what the drive number of the drives will be. The

17

CHAPTER FOUR

rightmost bit (bit $01) indicates drive 1. The next left bit ($02)
indicated drive 2 — and so forth. If the bit is one, then the drive is to
be used. If the drive is zero then the drive is not to be used. The code
will allocate up the eight drives, even though the 810 hardware only
has switches for drives 1,2,3 and 4.

If DRVBYT indicates that a drive is to be used, then.FMS issues

a status command to that drive to determine if it is active and what
type (810 or 815) of drive it is.

Drive Allocations

The drive determination process sets up two tables (Figure 4-1). The
first table is the DRVTBL. This table is indexed into by the drive
number (minus one). If the value in the table is zero then the drive is
nor to be used. If the value is one, then the drive is an active 810 and
requires one drive buffer. If the value is two, then the drive is an 815
and requires two 128 byte buffers.

The second table is the drive buffer table. The drive buffer table
contains the address of the drive buffer to be used for each drive. This
Drive Buffer will be used to hold the VTOC sector on the diskette in
the drive. The table is separated into two sections: DBUFAL contains
the least significant address byte and DBUFAH which contains the
most significant address byte. The drive buffer table is also accessed by
the drive number (minus one).

When a file is being processed, the Drive number is obtained
from the [OCB Device Number field, ICDNQO. The obtained value is
decremented by one and is thenused as an index into the Drive Tables.
The Drive Type is copied from the DRVTBL entry to DRVTYP
($12FE) for easy access by FMS. The Drive Buffer address is copied
from the DBUFAL and DBUFAH table entries to the zero page drive
buffer pointer, ZDRVA ($45).

Sector Buffer Allocations

The SABYTE at location $709 is used to inform FMS about the
number of 128 areas to be allocated as sector buffers. One 128 buffer is
required for each file which is to be processed concurrently on 810
drives. Two 128 byte buffers are required for each file which is to be
prccessed concurrently on 815 drives.

The Sector Buffer Allocation table, SECTBL at $1319, is used to
indicate if a buffer is available for allocation to a file (Figure 4-2). Ifa
buffer is available, the entry is set to zero. If the buffer is not available,
the entry is a minus value. The table is 16 bytes in size and therefore
can be used to allocate up to sixteen 128 byte buffers. During the

18

CHAPTER FOUR

inirialization process, entries which are to be unused are set to a minus
value.

The Sector Buffer Address Table is a table of addresses which
point to the individual sector buffers. The table is divided into two
parts: SABUFL contains the least significant address byte, SABUFH
contains the most significant address byte.

When afile is being processed, an available buffer number is
found in SECTBL by search for a zero valued entry. The located
buffer is allocated to the file by entering a minus value ($80) into the
table and placing the corresponding buffer number into the DCB
buffer number field, FCBBUF. When the file processing is done, the
buffer is deallocated by setting the SECTBL entry to zero.

Sefting MEMLO

The Atari MEMLO location ($2E7) is set after the FMS buffers have
been allocated. The address of the last sector buffer allocated is

incremented by 128. This value is then placed into MEMLO.

Dewvice Handler Table Entry

The Device Handler Table ($31A) is searched for a “D” entry or the
first (from the top) empty entry. When an appropriate entry is found,
FMS inserts (or reenters) “D” as a DEVICE NAME and sets the
DEVICE vector entry to point to the FMS Device Vector table at
DEFMSDH ($7CB).

19

CHAPTER FOUR

| $70A DRVBVT BYIE SOF : Allocates Drive 1.2.34

|

N\
~
(h
<
Drive Bits 0000|1111
[s131 DRVIBL *= 49 . Drive Table |
Drive No. Index Drive Type From Status
1 0 0 1 810 Drive «#~———u——)
2 1 0 1 810 Drive = J
—ar3 2 0 2 815 Drive «a— ")
4 3 0 2 815 Drive -
5 4 0 0 No Drive
6 5 0 0 No Drive
7 6 0 0 No Drive
8 7 0 0 No Drive
I $1329 DBUFAL = ‘+8 ; Drive Buffer Address Table (Low) I
[$1331 DBUFAH "= *+8 :Drive Buffer Address Table (High) |
[s70c sasa WORD $1A7C ;Buffer Start Adcress |
Drive No. Index DBUFAH DBUFAL
1 0 | 1A | @—— | 7C | 128 Byte Buffer For Drive 1At 31A7C
2 1 (1A] FC
3 2 | 1B | 7C | 256 Byte Buffer For Drive 3 At $1B7C
4 3 [1C| 7C
5 4 00] 00
6 5 00] 00
7 6 (00| 00
8 7 [00] 00
Figure 41
Drive Tables

20

CHAPTER FOUR

[1319 secmaL

*

|
*

= +16 ; Sector Allocation Table

Buffer Number
0 E Bufferls Available
1 00|
2 00}
3 00}
— 4 1 00|
5 [00]
6 100 | Buffer is Available
7 | FF | Buffer NOT Available
8 | Fe |
4 D]
10 FC |
1" | FB |
12 | FA |
13 | FO |
" | F8]
15 | F7 |
16 LF6 | Buffer NOT Available
[S709 SABYTE BYTE 7 ; Number Of 128 Byte Sector Buffers J

[1339 sABURL -

= 416 ;Sector Buffer Address (Low) Table |

[51349 SABUFH °

= *+16 ;Sector Buffer Address (High) Table]

(Lost Drive Buffer Address + Drive Type (1 0r 2) * 128)
SABUFL SABUFH

Buffer Number
0 [1C] [C]
1 11D | | OC | (Previous Entry + 128)
2 0] [aC]
3 [7E [oc]
4 | 1€ | |8C | SectorBuffer 4 Address = $S1E8C
5 L1F | 0C
6 1 ES
7 [20] [oC]
8 [00] [00]
o [00] [o0]
10 [o0] 00
" [00] [00]
12 [00] 00|
13 [00] [o0]
14 [00] [00]
15 00 100 |
Figure 4-2

Sector Allocation Tables

21

Chapter Five

FMS
ENTRY

The Device Vector Table for FMS is located at DFMSDH ($7CB).
The address of this table is placed in the Device Handler Table by the
FMS Initialization routine. When ClO needs to call an FMS function
(Figure 1, control path 2), it will locate the address of the function via
the table at DFMSDH. This table is the standard Atari Device Handler
Vector Table. The six entries are for:

Open

Close

Get Byte

Put Byte

Status

Device Dependent (XIO) Commands

Each of the six FMS entry points starts with a subroutine call to
the FMS SETUP routine. SETUP ($1164) prepares FMS parameters
to deal with the particular task to be performed.

SETUP

Address — $1164
Entry Registers — A = Possible ‘Put Data’ data byte.

X = [OCB number times 16.
Y = Don’t Care.

Exit Registers— A = Unknown.
X = [IOCB number times 16.
Y = Sector Buffer Index.

Functions:

1) Initialize ERRNO to $9F. This value will be used in the FMS

exit routines to form a FMS error number in the event of error.

2) Save the X Register in CURFCB. This value will be used as

an index to the proper IOCB and the proper FCB for the current
operation.

3) Save the value of the stack register as it was upon entry to

22

FMS. This value will be used in the FMS exit routine.

4) Set up drive information values from the drive number

contained in the zero page IOCB field ICDNOZ.

5) Allocate a sector buffer to the FCB if one is not already
allocated.

Chapter Six

FMS
EXIT

There are two types of FMS exits: the normal exit and the error exits.

Both of these exit types end up calling the RETURN routine.

RETURN
Address — $12D3

Entry Registers — A = Return Code.
X = Don’t Care.
Y = Don't Care.

Exit Registers— A = Possible ‘Get Byte’ data byte.
X = IOCB number times 16.
Y = Returmn Code.

Functions:

1) The X register is loaded with the current IOCB number times

16 from CURFCB.
2} The return code is placed in the IOCB status field (ICSTA).

3) The stack register is restored to point to the stack displacement

at FMS entry from the value saved in ENTSTK.
4) The possible “Get Data” data byte is loaded into the A

register.
5) The Y register is loaded with the return code.

23

CHAPTER SIX

6) The caller (CIO) is returned to via the RTS instruction.

GREAT And FGREAT

GREAT and FGREAT are the exit points used by FMS when the
operation has terminated normally. FGREAT is located at $12EA and
is used to free the sector buffer that has been allocated to the FCB.
The FRESBUF routine is used to free the buffer. FGREAT exits
directly to GREAT ($12F0). The GREAT exit point loads the normal
return code ($01) into the A register and goes to RETURN.

Error Exits

The ERREOF exit is called when an end of file condition is found.
ERREOF loads the end-of-file condition code ($88) in the A register
and goes to RETURN.

The ERRIO exit is called if an error occurs during an I/O operation
(Figure 1, control flow 3). The error code from the DCB (control
path K) is loaded into the A register as the FMS return code and
control is passed to RETURN.

All other errors exits are at the ERxxx labels starting at $12B5.
The error code is developed by means of a series of 6502 INC
instructions which increment the ERRNO (which was initialized to
$9F at FMS entry). The final instruction at the end of the INC chain
loads the final ERRNO value into the A register and control is passed
directly to RETURN.

24

Chapter Seven

DEVICE
DEPENDENT
COMMANDS

A Device Dependent Command is any command which is not Open,
Close, Get Byte, Put Byte, or Status. When the command value in
the IOCB is greater than 15 ($0F), CIO will call the Device Handler
Device Dependent Command routine. The Device Handler must
determine if the command is a valid command for that device. The
Device Dependent Commands that for FMS are:

Rename

Delete

Lock

Unlock

Point

Note

Format

The FMS Device Dependent Command routine starts at
DFMDDC.

DFMDDC
Address — $BA7

Entry Registers — A = Don'’t Care.
X = IOCB number times 16.
Y = Don’t Care.
Exit Registers— A = Unknown.
X = IOCB and FCB number times 16.

Y = Unknown.

Function:

1) Call SETUP

2y If the command is Format (254), then go to the Format routine,

XFORMAT at $D18.

3) If the command is not Format, then check that the command

25

CHAPTER SEVEN

value is $20 through $26. If the command value is not in this
range then exit via the ERDVDC (Command Error) routine.

4) If the command is valid, go to the command viathe DCDCVT

vector table.

XFORMAT
The XFORMAT routine executes the FORMAT Device Dependent

Command.
Address — $D18

Entry Registers — A = Don’t Care.
X = IOCB and FCB number times 16.

Y = Don’t Care.
Exit Registers— A = Unknown.
X = Unknown.
Y = Unknown.

Functions:

1) Issue the format /O command to the drive. This will cause
the drive to perform the physical formating of the disk. If the
command returns with good status and there were no bad sectors
reported, then continue with the logical format operations. In
the event of physical format errors, exit via the ERDBAD error
exit.

2) Clearthedrive buffer to zero.

3) Set the sector count values into the DVDMSN (VTOC
displacement one) and the DVDNSA (VTOC displacement
three) fields.

4) Set all 90 sector bit map bits to one (available).
5) Deallocate the first four sectors for the boot sectors.

6) Deallocate the middle nine sectors for the VTOC and the

Directory.

7) Write the VTOC to the Disk.

8) Clear the eight directory sectors to zero.
9) Exit via the FGREAT exit.

XDELETE
The XDELETE routine executes the DELETE Device Dependent

Command.
Address— $C32
Entry Registers — A = Don't Care.

26

CHAPTER SEVEN

X = IOCB and FCB number times 16.

Y = Don't Care.
Exit Parameters — A = Unknown.
X = Unknown.
Y = Unknown.

Functions:
1) The filename is decoded via the FNDCODE routine.
2) The first filename is searched for via the SFDIR routine.
3) The file, if found, is deleted via the XDELO routine.

4) If the file just deleted was DXOS.SYS then the boot record is
re-written via the DELDOS routine.

5) The directory is searched for the next matching entry. If an
entry is found then the process repeats at step three. If no further
matching directory entries are found, then exit via FGREAT.

XDELO

The XDELQ routine is used to delete the file whose directory entry is
indicated by the CDIRD (current Directory Displacement) byte
($1305).
Address — $C53
Entry Registers — A = Don’t Care.
X = 10CB and FCB number times 16.

Y = Don't Care.
Exit Registers — A = Unknown.
X = Unknown.
Y = Unknown.

Functions:
1) The OPVTOC routine is called to insure that the disk is not
write protected.
2) The TSTLOCK routine is called to insure that the file is not
locked.
3) The file deleted bit is set in the directory entry flag and the
directory sector is written back to the disk.
4) The VTOC sector bit map bits for the sectors in the file are
set to one to make them eligible for reuse. This process is achieved
by reading each sector in the file sector chain and calling the
FRESECT routine to change the VTOC bit map.
5) The VTOC Write Required Bit is set so that the VTOC will
be written back to the disk.

27

CHAPTER SEVEN

XRENAME
The XRENAME routine executes the RENAME Device Dependent

Command.

Address — $BD9

Entry Registers — A = Don’t Care.
X = IOCB and FCB number times 16.

Y = Don'’t Care.
Exit Registers — A = Unknown.
X = Unknown.
Y = Unknown.

Functions:

1) The filename is decoded via the FNDCODE routine.

2) The directory is searched for the first entry to be renamed. If
no entry is found then the ERFNF (File not found) exit is taken.

3) The TSTLOCK routine is called to insure that the file is not
locked.

4) If TSTDOS determines that the old filename is DOS.SYS
then the boot record is rewritten via the DELDOS routine.

5) If new filename is DOS.SYS, then the boot record is rewritten
via the SETDOS routine.

6) The filename in the directory is changed to the new filename.
7) The directory sector is rewritten.

8) The directory is searched for the next filename match. Ifa
match is found, then the process repeats at step three. If no

further match is found then, exit via FGREAT.

XLOCK And XUNLOCK

The XLOCK routine executes the LOCK Device Dependent
Command. The XUNLOCK routine executes the UNLOCK Device
Dependent Command.

Address — $C7C

Entry Registers — A = Don’t Care.
X = IOCB and FCB number times 16.

Y = Don't Care.
Exit Registers — A = Unknown.
X = Unknown.
Y = Unknown.

28

CHAPTER SEVEN

Functions:

1) The XLOCK entry sets the LOCK bit value, DFDLOC ($20),
into TEMP4. The XUNLOCK entry sets a zero value into TEMP4.
Both routines then go to XLCOM.

2) The filéname is decoded via the FNDCODE routine.

3) The directory is searched for the first file entry match. If no
match is found, the ERFNF (file not found) exit is taken.

4) The files directory flag is modified to either LOCKED or
UNLOCKED by means of the value previously set into TEMP4.

5) The Directory sector is written back to the disk.
6) The CSEDIR routine is called to find the next filename match.

If amatch is found, then the process repeats at step four. If no

match is found, then exit via FGREAT.

XPOINT
The XPOINT routine executes the POINT Device Dependent

Command.
Address — $CBA

Entry Registers — A = Don’t Care.
X = [OCB and FCB number times 16.

Y = Don't Care.
Exit Registers— A = Unknown.
X = Unknown.
Y = Unknown.

Furctions:

1) If the FCBFLG indicates that the file can acquire sectors
(Opened for Output or Append), then exit via the ERRPOT

(point error) exit.

2) If the current sector is not the same as the sector POINTed to
by the IOCB AUX3 and AUX4 fields, then write the current
sector back to the disk (if it has been changed).

3) Read the POINTed to sector into the sector buffer.

4) Set the FCB next byte pointer, FCBDLN, to the value
indicated by the user Point data in the IOCB AUXS5 field.

5) Exit to FGREAT.

XNOTE
The XNOTE routine executes the NOTE Device Dependent

Command.

29

CHAPTER SEVEN

Address — $D03

Entry Registers — A = Don’tCare.
X = [OCB and FCB number times 16.

Y = Don’t Care.
Exit Registers— A = Unknown.
X = Unknown.
Y = Unknown.

Functions:
1) The current sector number and data displacement into the

sector is moved to the appropriate [OCB fields, ICAUX3,
ICAUX4, ICAUXS.

2) Exit via GREAT.

30

Chapter Eight

FMS
OPEN
ROUTINES

The FMS Open routine, DFMOPN, is called directly by CIO via the
FMS Device Vector Table, DFMSDH at $7CB.

DFMOPN
Tha DFMOPN routine is the FMS file open routine.
Address — $8AB

Entry Registers — A = Don't Care.
X = [OCB number times 16.

Y = Don't Care.
Exit Registers - A = Unknown.
X = Unknown.
Y = Unknown.

Functions:

1) Initialize for this operation by calling SETUP.
2) Decode the filename via FNDCODE.

3) Examine the open code in ICAUXI1 for the open-for-directory-
read command. If this is a directory read command, go to

LISTDIR.

4) If not a directory read, then search the directory for the first
match on the file name and save the resulting search condition
on the stack.

5) Determine the exact type of Open operation to be performed
by examining the [OCB ACUX1 field. If INPUT, go to DFOIN.
If Output, go to DFOUT. If Update, go to DFOUPD. If Append,
go to DFOAPN. If none of the above, exit via the ERDVDC

(device command error) exit.

31

CHAPTER EIGHT

DFOIN
DFOIN ($8D8) is entered when opening a file for Input. The routine

pops the stack to determine if the directory search for the file name
was successful. If the file name was found in the directory, then go to

DFOUIL. If the search was not successful, then exit to ERFNF (file not
found).

DFOUPD

DFOUPD ($8DD) is entered when opening a file for Update (Input
and Output). The routine pops the stack to determine if the file name
was found in the directory. If the file was not found, then exit to
ERFNEF (file not found). If the file was found, insure that the file is

not Locked by calling TSTLOCK. If the file is unlocked, then continue
at DFOUIL.

DFOUI

DFOUI ($8E3) is entered to finish opening a file for Input or Update.
The read setup routine, DFRDSU, is called. FMS then exits via the
GREAT exit.

DFDRDSU

DFDRDSU ($9AE) is entered to set up a data file for reading. It
begins by calling SETFCB to set some standard file information into
the FCB. It continues by setting up the FCB with various other
parameters to read the first data sector in the file. This sector is read
via the RDNSO routine. When the sector has been read into the
sector buffer, the code returns to the caller.

DFOAPN
DFOAPN ($BEC) is entered to open a file for Append.

1) Pop the stack to determine if the file has been found in the
directory. If the file was not found exit via ERFNF.

2) If the file was created by DOS 1, then exit via ERAPO.
3) Insure the file is not locked by calling TSTLOCK.

4) Insure the diskette is not write protected by calling
OPVTOC.

5) Allocate a new sector for the start of the Append chain by
calling GETSECTOR.

6) Save the sector number of the sector obtained in FCBSSN so
that it will be available when the file is closed.

32

CHAPTER EIGHT

7) Continue opening the file as if it were being opened for

Output at DHFOX2.

DIFOOUT

The DFOOUT ($911) routine is entered when opening a file for
Output.

1) Pop the stack to determine if the file was found in the
directory.

2) If the file was found, then delete it via the XDELO ($C53)

routine.
3) If the file was not found, then make a new entry in the directory

via the code at DFOX1 ($91D).
4) Allocate a data sector for the file via the GETSECTOR

routine.

5) Put the necessary information about the file into the directory
and write the directory sector back to the disk.

6) Continue at DHFOX2.

DIHFOX2

DHFOX2 ($97C) is entered to finish the Open process for files that
are being opened for Output or Append.

1) Finish initializing the FCB via SETFCB.

2) If the TSTDOS routine determines that the file name being
opened is DOS.SYS, then write out DOS via the WRTDOS

routine.

3) Exit via GREAT.

SETFCB
The SETFCB ($995) routine is used in the various Open file routines

to place certain common data into the FCB.

33

Chapter Nine

FMS
CLOSE
ROUTINES

The FMS close routine is called directly by CIO via the FMS Device
Vector Table, DFMSDH at $7CB.

DFMCLS
Address — $B15

Entry Registers — A = Don’t Care.
X = lIOCB number times 16.

Y = Don't Care.
Exit Registers— A = Unknown.
X = Unknown.
Y = Unknown.

Functions:
1) Initialize via call to SETUP.

2) If thefile was not opened for some form of output (Output,
Update or Append) then clear the FCB open flag, FCBOTC and
exit via FGREAT.

3) If the FCBFLG indicates that the file has not acquired sectors,
then continue at CLUPDT to close the Update file.

4) Werite the last data sector via WRTLSEC.

5) Read the file’s directory sector into the directory buffer via the
RRDIR routine.

6) Get the sector count from the directory.

7) If the file was opened for Output (i.e. it is not open for
Append), then continue at CLOUT.

8) Read all the data sector of the file until the end-of-file sector
is found.

9) Place the sector address of the start of the Append chain into
the link sector field of the (old) end-of file sector.

10) Continue at CLOUT.

34

CHAPTER NINE

CLOUT
The CLOUT ($B50) routine is entered to finish closing a file that had
been opened for Output or Append.
1) The sector count field of the directory is updated.
2) The open for output flag is turned off.
3) The file in use flag is set.
4) Thedirectory sector is written back to the disk by the DRTDIR
routine.
5) The VTOC sector is written back to the disk by the
WRTVTOC routine.
6) The FCB open code flag, FCBOTGC, is cleared to zero.
7) Exit via FGREAT.

CLUPDT
The CLUPDT ($B75) is called to finish the closing of a file that had
been opened for Update.

1) If the current sector in the sector buffer has been modified
then write it back to the disk via the WRCSIO routine.

2) Clear the FCB open flag, FCBOTC, to zero.
3) Exit via FGREAT.

35

Chapter Ten

GET BYTE
ROUTINE

The FMS GET BYTE routine, DFMGET, is called directly by CI1O
via the FMS Device Vector Table, DFMSDH at $7CB. The GET

BYTE routine’s function is to get and return the next sequential data

byte to CIO.

DFNIGET
Address — $ABF

Entry Registers — A = Don’t Care.
Y = IOCB number times 16.

X = Don’t Care.
Exit Registers— A = Unknown.
Y = Unknown.
X = Unknown.

Functions:
1) Initialize via the SETUP routine.
2) lf the FCB is opened for Directory read, then go to
GDCHAR.
3) If the current sector is empty, attempt burst /O (see Burst /O
section), then continue with number four.
4) Read the next sector via the RDNXTS routine. If the read
sector operation did not return an end-of-file condition, then
continue at step three, else exit via ERREOF (end-of-file error).
5) Get the data byte from the sector and place it in SVDBYT for
~he exit routines.

H) If the next byte in the file is the end-of-file byte, exit via
RETURN with the impending end-of-file condition code ($03),
else exit via GREAT.

36

Chapter Eleven

PUT BYTE
ROUTINE

The FMS PUT BYTE routine, DFMPUT, is called directly by CIO
via the FMS Device Vector Table, DFMSDH at $7CB. The PUT

BYTE routine’s function is to place the single data byte transmitted by
CIO into the data sector.

DFMPUT
Address — $99C

Entry Registers — A = The “put data” data byte.
X = The IOCB number times 16.

Y = Don’t Care.
Exit Registers — A = Unknown.
X = Unknown.
Y = Unknown.

Functions:
1) The data byte in the A register is saved in SVDBYT.
2) SETUP is called to initialize for this operation.

3) If the caller was not CIO, then prevent a burst [/O operation
from occurring.

4) If the file was not opened for output, then exit via ERDVDC
(device command error).

5) If the current data sector is full, write the sector via WRTNXS,
then attempt burst /O (see BURST /O section). If a burst /O
operation did take place, then get the next byte after the area
just written by burst /O and place it into the SVDBYT cell.

6) Increment the sector data byte count.

7) Move the data byte from SVDBYT to the next available data

byte in the sector.
8) Set the sector modified flag in the FCB.
9) Exit via GREAT.

37

Chapter Twelve

BURST 1/O

The CIO is designed to fill or empty a large user buffer with data bytes
sent to or received from a device handler, a byte at a time. To fill a
thousand-byte buffer, CIO would have to call FMS one thousand
times in rapid succession. While the process is simple and easy to
implement by both CIO and the Device Handlers, it can be very
slow. This is particularly true in the case of FMS which has a great
deal of overhead code to go through each time it is called. FMS
circumvents most of the CIO/FMS calls for large data transfers via the
BURST I/O routines.

Burst /O operates by reading or writing data sectors directly into
the user buffer (Figure 1, data path I). There are a number of tests
that must be passed before a burst I/O operation can take place. If any
of the tests fail, then the CIO/FMS data transfer reverts to the normal
mode of operation.

When the PUT BYTE routine is called, it will call the WTBUR
($A1F) routine when it is ready to start filling a new data sector.
WTBUR will not allow a burst /O operation to happen if the file has
been opened for Update. If the file has not been opened for Update,
then WTBUR goes to the common read/write burst [/O test routine,
TBURST at $A28. Ifthefile has been opened for Update, then exit
Burs: I/O indicating that a Burst /O did not happen. When WTBUR
calls TBURST, it has the A register set to non-zero to indicate that it
is write.

When the GET BYTE routine is called, it will call the RTBUR
($A26) routine when it is ready to read a new data sector. RTBUR

indicates that it is read by setting the A register to zero and then
enters TBURST.

TBURST
1) Save the A register in BURTYP. This value will indicate if
the burst operation is a read or a write.

2) If the /O command in the IOCB is for text [/O (a transfer
that is to end when the Atari end-of-line ($9B) character is
transferred), then TBURST will exit indicating (carry set) that a
burst 1/O operation did not occur.

38

CHAPTER TWELVE

3) If the user buffer length in the IOCB is not at least a full

sector in size, then exit without doing a burst 1/O.

4) If all the above tests pass, then perform a burst I/O operation.
The first step in the burst I/O operation is to change the zero
page sector buffer pointer, ZXBA ($47) from the FMS sector
buffer address to the user buffer address.

5) Ifthe operation is read, then read the next sector via RDNXTS.
If the read sector operation produced an end-of-file, then go to
BUREOF, else go to BBINC.

6) If the operation is write, then the area in the user buffer,
where the three bytes of data sector control information is to be
placed, will be saved. The data will be written via the WRTNXS

routine. The saved user data will then be copied back into the

user buffer. The code then continues at BBINC.
BBINC

The BBINC routine is entered after a single burst I/O sector has been
read or written. BBINC updates data counters in the FCB and in the
IOCB and tests for the end of the Burst /0.
1) The zero page sector buffer pointer is incremented by the
length of data in a sector (125 or 253).
2) The user buffer length is decremented by the length of data in
a sector.

3) The TBLEN routine is called to determine if there is enough
room left in the user buffer to read or write another full sector

(128 or 256 bytes). If another sector can be read or written, then
the process repeats at NXTBUR ($A3E).

4) If there is not enough room in the user buffer to perform
another full sector read or write, then BUREOF is entered.

BUREOF

1) The final address in the zero page sector pointer, ZSBA ($47),
is moved to the IOCB buffer address field.

2) The value in the zero page sector buffer pointer is restored by

the SSBA routine.

3) The caller is returned to with the carry cleared to indicate
that a burst /O operation has happened.

39

Chapter Thirteen

READING
THE DIRECTORY
AS A FILE

A formatted subset of the data in the Directory can be read as if the
Directory were a disk file. This is accomplished by using the open
directory code ($02) in the IOCB ICAUXI1 byte. When FMS
recognizes this code in the Open routine (at $8B1), it will go directly
to the LISTDIR routine. The LISTDIR routine prepares the FCB for
reading the directory as a file. The GET BYTE routine will recognize
the read directory condition from information stored in the FCBOTC
field (see SAC2) and go directly to the directory read character /O
routine GDCHAR.

LISTDIR
Address - $DAD

Entry Registers - A = Don’t Care.
X = [OCB and FCB number times 16.

Y = Don’t Care.
Exit Registers— A = Unknown.
X = Unknown.
Y = Unknown.

Functions:
1) The TEMP4 byte is used to count the characters that have
been transmitted by GDBYTE from the formatted line buffer.
LISTDIR sets this value to zero to indicate the start of a new
formatted line.
2) The SFEDIR routine is called to start a wild card search for the
file name in the directory.
3) If a match is found then FDENT is called to format the entry
and prepare for the GDBYTE calls. Exit via GREAT.
4) If a match is not found, then LDCNT is called to prepare to
send the xxx FREE SECTORS line.

40

CHAPTER THIRTEEN

GDCHAR
GDCHAR ($DB9) is entered from GET BYTE to get a single data

byte from a formatted directory line.

1) The TEMP4 flag is tested. If the value is negative, then all
formatted information has been transmitted. Exit is via the

ERREOF (end-of-file error) exit.

2) The value in TEMP4 is used as an index into the formatted
line buffer to get the next character. The character is placed into

SVDBYT for loading into the A register by the RETURN

routine.
3) The character retrieved from the buffer is examined for the

EOL ($9B) character.
4) If the character is not an EOL, then exit is via GREAT.

5) If the character was an EOL, then the line length is examined
to see if the line was a directoryentry line (i.e., if the length was
17) or the final xxx FREE SECTORS.

6) If the line was the final line, then TEMP4 is set to a negative
value ($80) to indicate that all formatted lines have been sent.

Exit is via GREAT.
7) If the line was not the final line, then CSFDIR is called to

find the next matching file name.

8) If a file name match is found, then FDENT is called to format
the found entry into the formatted line buffer. Exit is via

GREAT.

9) If a file name match is not found, then go to LDCNT to
format the final line.

LDCNT
LDCNT ($DE9) formats the final line of a directory read.
1) Read the VTOC.

2) Get the free sector count from the VTOC and convert it to
ATASCII via the CVDX routine.

3) Move the FREE SECTORS message to the formatted line buffer.
4) EXIT is via FGREAT.

FDENT

The FDENT ($E21) routine formats the current directory entry into
the formatted line bufferfor subsequent reading by GDBYTE.

1) The directory flag is checked for the file locked condition. If

41

the file is locked, then the “*” is placed in the formatted line.

2) Thefile name is moved from the directory entry to the
formatted line.

3) The file sector count is converted to ATASCII and placed in
the formatted line.

4) The EOL character is placed in the formatted line.

5) Exit is via the RTS instruction.

Chapter Fourteen

SECTOR
/O
ROUTINES

The FMS performs sector [/O by calling the SIO routine in the OS
ROM (Figure 1, control path 3). All sector I/O calls in the FMS occur
from: the BSIO routine. There are several other routines that are
designed to set up information for BSIO. These routines deal with

reading and writing sectors of a particular type such as data sectors,
directory sectors, and the VTOC sector.

BSIO
Address — $76C

Entry Registers — A = Sector number most significant byte.
Y = Sector number least significant byte.
X = If 1, then 128 byte I/O (810 drive).
If 2, then 256 byte /O (815 drive).
Exit Registers — A = Status byte from DCB.
Y = Unknown.

X = IOCB and FCB number times 16.

42

CHAPTER FOURTEEN

Functions:

1) The sector number is stored in the DCB from the A, Y register
pair. The DCB is the interface control block for SIO calls.

2} If the carry is clear, then the DCB is set up for read data. If
the carry is set, then the DCB is set up for write data.

3) The serial bus ID for the disk, and the disk timeout values are
placed into the DCB.

4) The error retry counter, RETRY, is set for four retries.

5) The I/O data length is set to 128 or 256 depending upon the
data in the X register.

6) The serial I/O routine ($E459) is called to execute the I/O.

7) If the I/O operation was good, then the X register is loaded
with the IOCB (and FCB) number times 16 from the CRFCB
cell and the status byte from the DCB is loaded into the A register.
Return is via the RTS instruction.

8) If the I/O operation was bad, then the retry counter is
decremented. If the retry value is positive, then the I/O is retried.

If the value is negative, then the routine is exited in the manner
described in step seven.

DsIO

The DSIO routine is called to perform data sector /O operations.
Address — $11F7

Entry Registers — A = Sector number most significant byte.
Y = Sector number least significant byte.

X = IOCB and FCB number times 16.

Exit Registers — A = [/O condition code.
Y = Unknown.
X = IOCB and FCB number times 16.

Functions:

1) The sector buffer address is obtained from the zero page sector

buffer pointer ZSBA ($47) and placed in the DCB buffer address
field, DCBBUF.

2) Thedrive typebyte isloadedinto the X register from DRVTYP.
If the drive is an 810, then the value will be one. If the drive is
an 815, then the value will be two.

3) BSIO is called.
4) The DSIO caller is returned to via the RTS instruction.

43

CHAPTER FOURTEEN

RDDIR And WRTDIR

The RDDIR and the WRTDIR routines are used to perform Directory
sector 1/O operations. The RDDIR entry ($106E) sets the carry to
indicate read. The WRTDIR entry ($1071) clears the carry to indicate
write. Both of the routines continue at DIRIO.

DIRIO
1) Save the read/write flag (carry sense) on the stack.
2) Set the address of the directory buffer into the DCB buffer
field, DCBBUF.
3) The CDIRS cell contains the number of the directory sector
to be read or written. This value ranges from zero to seven. The
DIRIO routine creates the actual sector number to read or write
by adding $169 to the CDIRS value. The resulting sector number
is placed in the A,Y register combination.

4) Continue at DSYSIO.

RDVTOC And WRTVTOC
The RDVTOC and WRTVTOC routine are called to initiate /O to

and from the VTOC sector. The RDVTOC routine ($108B) first
checks the write required byte in the VTOC sector buffer. If the value
of this byte is not zero, then the VTOC is already in the buffer (and
has been changed). If the VTOC is already in the buffer, then the
read does not have to be done; therefore, the RDVTOC routine will
return to the caller. If the write-required byte is zero, then RDVTOC
will clear the carry to indicate that the operation is read. The
WRTVTOC routine ($1095) sets the write required byte to zero, then
sets the carry to indicate a write operation. Both ROVTOC and
WRTVTOC continue at VTIO.

vTIiO

1) The read/write flag is pushed onto the stack.

2) The VTOC sector buffer address is moved from the zero page
drive buffer address pointer ZDRVA ($45) to the DCB buffer
pointer, DCBBUF.

3) The A,Y register combination is loaded with the VTOC
sector number ($168).

4) Continue at DSYSIO.

DSYSIO
1) The read/write sense is popped from the stack.

44

CHAPTER FOURTEEN

2) The drive type value is loaded into the X register from
DRVTYP.

3) BSIO is called.

4) If the I/O operation was good, thenreturn to the caller via the
RTS instruction.

5} If the I/O operation was bad, the exit via the ERRSYS exit
(fatal system /O error).

OPVTOC
The OPVTOC routine ($10BF) is used by various FMS routines to

insure that the diskette is not write protected before executing functions
that will write to the disk. This routine will read the VTOC via
RDVTOC and then attempt to write the VTOC via WRTVTOC. If
the diskette is write protected, the WRTVTOC will cause an /O
error exit (error number 144). If the diskette is not write protected,
then the routine will return to the caller. When OPVTOC does
return to the caller, the current disk VTOC is in the drive buffer.

45

Chapter Fifteen

- FILE NAME
DECODE
ROUTINE

The FNDCODE routine is used to transform the user supplied file
name into a form that is usable in FMS for wild card searching of the
directory. The primary and extension parts of the user file name are
padded with blanks and question marks as required. The following
examples show the types of transform performed by FNDCODE:

User File Name Transformed File Name
D:*.* mnnnn
D1:GLOP.* GLOP
D1:GLOP.BAS GLOP BAS
D2:*.ASM NNNMASM
D:GL?P.S* GLP Sn
D1:G* Gmmn

FNDCODE

Address — $E9E

Entry Registers - A = Don’t Care.
X = IOCB and FCB number times 16.
Y = Don’t Care.

Exit Registers — A = Unknown.
X = [OCB and FCB number times 16.

Y = Unknown.

Functions:
1) The user file name buffer is searched for the colon (:) delimiter.
[f the delimiter is not found within 256 characters then exit to
ERRFN routine (file name error).
2) The FMS file name buffer, FNAME, is cleared to blanks.
3) The EXTSW byte is set to zero. When EXTSW is zero, the
primary file name field is being processed. When EXTSW is

46

CHAPTER FIFTEEN

minus, then the extension file name field is being processed.

4) The next character in the user file name buffer is examined.
5) If the character is an asterisk (*), then the field is padded with
question mark characters to the end of the field.

6) If the character is a period and the extension field is being
processed, then exit via the RTS instruction.

7) If the character is a period and the primary field is being
processed, then switch to the extension field processing.

8) If the character is a question mark, then put it into the FNAME
via FDSCHAR.

9) If the character is alphanumeric (A through Z, or 0 through
9), then put it into FNAME via FDSCHAR.

10) If the character is none of the above, then assume that end
of the filename has been found and exit via the RTS instruction.
11) If a character was stored, then continue at step four.

FDSCHAR

1) If the character counter register, X, indicates that the primary
field is full, then exit without storing the character.

2) If the character counter register, X, indicates that the extension
field name is full, then exit without storing the character.

3) Store the character into FNAME indexed by the X register.
4) Increment the X register.
5) Return to caller via the RTS instruction.

47

Chapter Sixteen

DIRECTORY
SEARCHING

The Directory search routine searches the directory entries fora file
name that matches the name in FNAME. The routine has two entry
points: SFDIR which is used to begin the search at the start of the
directory, and CSFDIR, which is used to continue searching the
directory at the entry just past the previously found matching entry.

The routines have five memory cells that they use for controlling
the search operation: DHOLES, DHOLED, CDIRS, CDIRD and
SFNUM. The CDIRS cell contains the current relative directory
sector number (zero through seven). The CDIRD cell contains the
displacement into the directory sector of the current entry. DHOLES
gives the relative directory sector number (zero through seven) of the
first hole or available entry in the directory. The DHOLED cell gives
the displacement to the first available entry that is the hole. The
SFNUM cell is used to contain the current file number of the entry
being examined. The value in SFNUM will be from zero through 63.

If the value of DHOLES is $FF at the end of the search, then the
directory is full.

The directory search routine will exit with the carry clearif a
match was found. It will exit with the carry set if no matching entry
was found.

The SFDIR routine ($F21) is called to start searching the directory at
the start of the directory.

1) Initialize DHOLES, CDIRS, SFNUM to $FF.
2) Initialize CDIRD to $70.
3) Continue at CSFDIR.

CSFDIR
The CSFDIR routine ($F31) is called to continue searching the

directory.

1) Increment the file number, SENUM.

48

CHAPTER SIXTEEN

2) Increment CDIRD by the size of a directory entry (16).

3) If the CDIRD is now greater than, orequal to, 128 ($80) then
increment CDIRS by one. If the value of CDIRD is now eight,
then exit with the carry set to indicate that a match was not
found. If CDIRD is less than eight, then read the next directory
sector via RDDIR. Set CDIRD to zero.

4) If the directory entry flag field is zero then the end of the used
portion of the directory has been reached. If a hole has not been
found, then mark this entry as a hole. Exit with the carry set to
indicate that the file was not found.

5) If the directory entry flag field indicates that the file is open
for output, then skip this entry.

6) If the directory entry flag field indicates that the file has been
deleted, and a hole has not been found, then mark this entry as a
hole and continue searching the directory.

7) If the file is in use, then check the file name in the directory
entry for a match with the name in FNAME. Wild card characters
in FNAME (question marks) are assumed to match the
corresponding characters in the directory entry file name.

8) If the names match, then exit with the carry clear to indicate
that a match was found.

9) If a match was not found, then continue to search the
directory.

49

Chapter Seventeen

WRITE
NEXT
SECTOR

The write next sector routine, WRTNXS, is used to write a data
sector to disk.

Address — $F94

Entry Registers — A = Don’t Care.
X = IOCB and FCB number times 16.
Y = Don’t Care.

Exit Registers— A = Unknown.
X = IOCB and FCB number times 16.
Y = Unknown.

Functions:

50

1) If the file has been opened for update, and the sector has not
been modified, then do not write the sector. Read the next data
sector and then return to caller.

2) If the file has been opened for update, and the sector has been
modified, then write the current sector. Read the next data
sector into the sector buffer and return to the caller.

3) If the file is not opened for update, then allocate a new sector
to the file by calling GETSECTOR.

4) Move the sector byte count from the FCB FCBDLN field to
the data sector byte count field.

5) Move the address of the newly acquired sector from the FCB
FCBLSN field into the link field of the current data sector.

6) Write the current sector to the disk via WRCSIO.

7) If the I/O was bad, mark the FCB by placing a zero value into
FCBOTC as closed and exit via RETURN with the I/O error
number as the return code.

8) If the I/O was good, then increment the FCB sector counter
field, FCBCNT.

9) Call MVLSN to move the sector number of the link sector
number field of the FCB, FCBLSN, to the current sector number
field of the FCB, FCBCSN.

10) Set the current data length field of the FCB, FCBDLN, to

zero.

11) Set the maximum data length field of the FCB, FCBMLN,
to 125 (if 810 drive) or 253 (if 815 drive).

12) Return to user via the RTS instruction.

Chapter Eighteen

READ
NEXT
SECTOR

The read next sector routine, RDNXTS, reads the next sector in the
file sector chain into the sector buffer. If there are no more sectors in
the chain, then the routine returns with the carry set to indicate end-
of-file. If the routine returns with the carry clear, then the next sector
has been read.

RDNXTS
Address — $100F

Entry Registers — A = Don’t Care.
X = IOCB and FCB number times 16.
Y = Don’t Care.

Exit Registers — A = Unknown.
X = IOCB and FCB number times 16.

Y = Unknown.
Functions:

1) If the file has been opened for Update, then WRTNXS is

51

CHAPTER EIGHTEEN

52

called to write the current sector if it has been modified.

2) If the FCB link sector number field, FBCLSN, is zero then
there are no further sectors to read. Return to the caller with the
carry set to indicate that the end-of-file has been reached.

3) Call MVLSN to move the FCB link sector number field,
FCBLSN, the FCB current sector number field, FCBCSN.

4) Call RWCSIO with the carry set to read the next sector.

5) If the I/O operation was bad, exit via the ERRIO exit (I/O
error).

6) Insure that the file number in the sector just read agrees with
the file number in the FCB. If the file numbers are not the same,
exit via the ERFNMM exit (file number mismatch). Note: if the
routine was called by delete, return to delete indicating end-of-

file.

7) Move the link sector number from the data sector to the FCB
link sector field in the FCB, FCBLSN.

8) Move the sector data length information from the data sector
to the FCB maximum data length field, FCBMLN.

9) Reset the FCB data length field, FDBDLN, to zero.

10) Return to the caller with the carry clear to indicate that a
sector has been read.

Chapter Nineteen

GET AND
FREE
SECTOR
ROUTINES

The get sector routine, GETSECTOR, is called when a new sector is
needed. The routine searches the bit map in the VTOC for a free
sector. The sector found is deallocated from the bit map and the
sector number is returned to the caller. The free sector routine,

FRESECT, is given a sector number to be freed. FRESECT locates

the required bit map bit in the VTOC and tumns it on (sets it to one).

The sector is now eligible for reuse.

GETSECTOR
Address — $1106

Entry Registers — A = Don’t Care.
X = IOCB and FCB number times 16.
Y = Don’t Care.

Exit Registers — A = Unknown.
X = IOCB and FCB number times 16.

Y = Unknown.
Functions:

1) The Y register is used as an index into the bit map bytes.

2) The bit bytes are examined sequentially from the first bit map

byte to the last bit map byte until a non-zero byte is found. The
displacement to this byte is saved in TEMP1.

3) If no bits are found in the bit map, then the ERRNSA exit
(no sectors available) is taken.

4) The number-of-sectors-available-field, in the VTOC, is

decremented by one.

5) The VTOC write required byte in the VTOC is set to a non-

53

CHAPTER NINETEEN

zero value to indicate that the VTOC has been changed and
must be written back to the disk.

6) The non-zero bit map byte that was found in the bit map
search is retrieved. The bits in this byte are shifted left until a bit
moves into the carry flag. The carry is then set clear and the bits
shifted back to their original position. The byte with the newly
allocated sector bit turned off is placed back into the bit map.

7) The number of bits shifted and the index to the bit map byte
are used to develop the sector number represented by the bit.

8) The sector number is stored in the FCB link sector field,
FCBLSN.

9) The user then returned to via the RTS instruction.

FRESECT

Address — $10C5

Entry Registers - A = Don’t Care.
X = IOCB and FCB number times 16.
Y = Don’t Care.

Exit Registers — A = Unknown.
X = IOCB and FCB number times 16.

Y = Unknown.

Functions:

54

1) The sector to be freed is in the FCB current sector field,
FCBCSN. If the sector number is zero, then FRESECT exits
back to the user via the RTS instruction.

2) The sector number is divided by eight to determine the bit
map byte which represents the sector. The remainder from this
division represents the bit within the byte.

3) The byte is retrieved from the bit map, the bit is turned on,
and the byte placed back into the bit map.

4) The number of available sectors field in the VTOC is

incremented by one.

5} The VTOC write required byte is set to non-zero to indicate
that the VTOC has been changed and needs to be written back
to the disk.

6) The caller is returned to via the RTS instruction.

Chapter Twenty

THE
BOOT PROCESS

When the Atari computer is turned on, the routines in the OS ROM
will (under certain conditions) read the first sector from the disk in
drive one into memory. It will then examine certain specific locations
in this record to decide how to boot the disk. In the following
discussion, refer to Figure 20-1. The OS ROM code will load BRCNT
consecutive sectors (starting with sector one) onto memory, starting
at the address contained in BLDADR. When the OS ROM code has
firished this task, it will make a JSR call to the code that is seven
bytes into the start of the boot area. In the case of FMS, this is the
JMP XBCONT instruction at $706. The XBCONT code will continue
the boot load process.

The XBCONT code examines the DFSFLG to see if a DOS.SYS
file exists. If the file exists, then the sector number of the first sector
in DOS.SYS will be in DFLINK. The routine will then read all the
sectors in the chain starting at DFLINK into the memory area pointed
to by DFLADR. When the entire DOS.SYS file is read into memory,
XBCONT returns to the OS ROM code.

The OS ROM code will eventually vector through the BINTADR
so that the FMS can initialize itself. In the DOS 2.0S system,
BINTADR points into the DUP.SYS code. DUP.SYS then receives
control from the OS ROM rather than the FMS. One of the tasks that
DUP.SYS performs during its initialization is to call the FMS
initialization routine.

XBCONT
The XBCONT routine ($714) is entered by the OS ROM code during

the boot process to allow the boot process to continue in the manner
best suited for the code being booted.

Functions:

1) If the DFSFLG indicates that a DOS.SYS file does not exist,
then the OS ROM is returned to with the carry set to indicate
that the boot has failed.

55

CHAPTER TWENTY

2} The address contained in DFLADR is moved to the zero page
address pointer, ZBUFP, and to the DCB buffer pointer field,
DCBBUF.

3) The sector number contained in DFLINK is loaded into the
A)Y register pair, the carry is cleared to indicate read, and BSIO
is called to read a DOS.SYS sector.

4) The next sector link is obtained from the link field of the data
sector just read.

5) If the sector link value is zero, then the DOS.SYS end-of-file
has been reached. The OS ROM will be returned to with the
carry clear to indicate that the boot read was good.

6) If the sector link value is not zero, then the zero page buffer
pointer and the DCB buffer pointer are incremented by the
amount of data in the sector (125 for 810 drives, 253 for 815

drives).

7) The process continues by reading the next sector into
memory.

Sector 1 $700 |

Sector 2 $780

Sector 3 $800

r

56

$700 BFLAG Flag (=0) 1
S7T01 BRCNT Number of Consecutive Sectors toRead
$702 BLDADR AddresstolLoadBootSectorsat
$704 BIWTARR Initialization Address
5704 JMP XBCONT BootContinue Vector
5709 SABYTE Number of Sector Buffers to Allocate
S70A DRVBYT Drive Bits
$708B Unused
$70C SASA Buffer Stort Address
S70E DFSFLG DOSFlag
S70F DFLINK Sector Pointerto DOSSYS File
ST BLDISP Displacement in Sectorto Sector Link
§712 DFLADR Addressof Startof DOSSYS File
Figure 201
Boot Records

Chapter Twenty-One

MAI N‘FﬁéNING
BOOT RECORD

The boot record (sector 1) contains information about the DOS.SYS
file. When DOS.SYS is opened for output, FMS will write all of FMS
out to the disk as part of the open process. It will also modify sector
zero to indicate that a DOS.SYS file exists and to indicate where on
the disk it is. If DOS.SYS is ever Deleted or Renamed (to something
not DOS.SYS), then the boot record must be modified to indicate
that a DOS.SYS file does not exist. If a file is ever renamed to

DOS.SYS, then the boot record is modified to point to the new
DOS.SYS file.

WRTDOS

The WRTDOS routine ($120A) is used to write a new DOS.SYS file
to disk and to update the boot record to indicate that a DOS.SYS file
exists.

Functions:

1) The sector number which is contained in the FCB sector
number link field, FCBLSN, is used as the first sector of the
DOS.SYS file. This sector number is placed in the boot record

area in page seven along with the other necessary information.
2) Sectors one, two, and three are written from the memory area

from $700 through $87F.
3) The FMS is written to the DOS.SYS via the WDO routine.
4) Exit is via GREAT.

wWDO

The WDO routine ($1267) is used to write the FMS to the DOS.SYS
file.

Functions:

1) The address contained in DFLADR is moved to the zero page

57

CHAPTER TWENTY-ONE

buffer pointer, ZBUFP.

2) The FMS is copied from its area in memory to the file sector

buffer in 125 byte chunks.
3) The buffers are written to disk by the WRTNXS routine.

4) The process continues until the entire FMS area has been
written.

5) The caller is returned to via the RTS instruction.

DELDOS

The DELDOS routine ($1219) is used to modify the boot record to
indicate that DOS.SYS does not exist.

Functions:

1) The DFSFLG is set to zero to indicate that DOS.SYS does not

exist.

2) The area from $700 to $87F is written to sectors one, two,
and three.

3) The caller is returned to via the RTS instruction.

58

ATARI
DOS
2.0S

Copyright © 1982 Optimized Systems Software, Inc.

This listing is protected against unauthorized reproduction by the Copyright Law of the United
States. Any reproduction utilized for profit or other commercial advantage is precluded without
the specific prior written authorization of Optimized Systems Software, Inc., the owner of the
copyright. Any such reproduction does not constitute fair use and may subject the individual to
both civil and criminal penalties. Federal Law provides for a maximum fine of $10,000 or
imprisonment for not more than one year, or both, for infringement of this copyright.

Contact the President, Optimized Systems Software, Inc., 10379 Lansdale Avenue, Cupertino,
California, 95014, prior to reproducing or utilizing any portion of this listing. Any attempt to
change the form of publication of this listing, that is, rendering it into machine-readable form or
otherwise, is a precluded reproduction if done for profit or other financial advantage.

59

ATARI DOS 2.0S

FPMS - 128/256 BYTE SECTOR (2.

2008

0080

0700
2043
0340
0003
2308
E453
9098
231a
09020
@2E7
1549
21832
Q@DF

22146

Q0F

2010
2036

60

gs)
--- Copyright and Author Notice ---

1081 .PAGE * --- Copyright and Author Notice —---"
19902 ;
1903 ;
18064 ;COPYRIGHT (C) 1978,1979,1980,1982
1885 ;OPTIMIZED SYSTEMS SOFTWARE,
19006 ;CUPERTINO, CA.
1897 ;
1998 ; THIS PROGRAM MAY NOT BE REPRODUCED,
1609 ;STORED IN A RETRIEVAL SYSTEM, OR
1916 ;TRANSMITTED IN WHOLE OR IN PART,
1411 ;IN ANY FORM, OR BY ANY MEANS, BE IT
1012 ;ELECTRONIC,MECHANICAL, PHOTOCOPYING,
1913 ;RECORDING, OR OTHERWISE WITHOUT THE
1814 ;PRIOR WRITTEN PERMISSION OF
1815 ; OPTIMIZED SYSTEMS SOFTWARE, INC.
1616 ; 18379 LANSDALE AVENUE
1817 ; CUPERTINO, CALIFORNIA 95014 (U.S.A.)
1918 ;
1919 ; PHONE: (408) 446-3099
1020 ;
1821 ;
1022 '.iﬁﬁiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
1923 ;
1624 ; PROGRAMMER PAUL LAUGHTON
1925 ; UPDATED: 19-AUG-802
1026 ;

1527 '.iiiiiiiiiiiiiiiiiiiiﬁﬁﬁiiiiiiiiiii*
1028 ;

System Equates

IOCB

1929
1930
1931
1932
1933
1934
1935
1036
1937
1038
1939
1049
1041
1042
1043
1044
1045
1946

1047

1048

1949
1050
1951
1052
1953
1854
1955
1056

.PAGE " System Equates™

FMSORG

L2222 2223222222222 R 222222222222 222 2}

= $700
FMSZPG = $43
IOCBORG = $340
LMASK = 23 ;s LINK MASK
DCBORG = $308
DHADR = SE453
EOL = $9B
DEVTAB = $31aA
2ICB = $20
LMADR = $2E7
DUPINIT = $1540 ; INIT ADDR FOR DUP
STAK = $102 ;STACK LOC FOR PUT BYTE
OSBTM = SDF ;HI BYTE OF ADDR LESS THAN OS
SPACE
DSKTIM = $246 ;ADDR OF OS WORST CASE DISK
TIME OUT
TIMOUT = 15 :TIME OUT VALUEE OF 15 SECS.
.PAGE " IOCB"
w= IOCBORG
; IOCB ~ IO CONTROL BLOCK
; THERE ARE B I/O CONTROL BLOCKS
7 1 IOCB IS REQUIRED FOR EACH
; CURRENTLY OPEN DEVICE OR FILE

ATARI DOS 2.0S

1857 IOCB
2344 1058 ICHID *= *+l :DEVICE NUMBER
2341 1659 ICDNO *= *+l ;DEVICE HANDLER
2342 1068 ICCOM *= *+l ; I/O COMMAND
2343 1861 ICSTA *= *+l ;I/0 STATUS
2344 1862 ICBAL *= *4l
2345 1863 ICBAH *= *4+1 ;BUFFER ADR (H,L)
a3415 18964 ICPUT *= *42 ;PUT CHAR DH ADDR
23413 1965 ICBLL *= *l
2343 1966 ICBLH *= *+1 ;BUFFER LEN (H,L)
234A 1867 ICAUX1 *= *4+1 sAUX 1
2343 1868 ICAUX2 *= *+]1 ;sAUX 2
a34cC 1869 ICAUX3 *= *41 ;AUX 3
2340 1878 ICAUX4 *= *+l ;AUX 4
@34E 1871 ICAUXS *= *tl ;sAUX 5
@34F 1872 ICAUX6 *= *41 ;AUX 6
0010 1673 ICLEN = *-IOCB
1974 ;
2359 1975 = *+ICLEN*7 ;SPACE FOR 7 MORE IOCB'S
1976 ;
1877 ; ICCOM VALUE EQUATES
1878 ;
2891 1879 ICOIN = $81 ;OPEN INPUT
2932 1980 ICOOUT = $82 ;OPEN OUTPUT
2083 1681 ICIO = $83 ;OPEN UN/OUT
2094 1982 ICGBR = $04 ;GET BINARY RECORD
2005 1983 ICGTR = $05 ; GET TEXT RECORD
2886 1984 ICGBC = $26 ;GET BINARY CHAR
2087 1885 ICGTC = $a7 ;GET TEXT CHAR
2008 1086 ICPBR = $@8 ;GET BINARY RECORD
29¢e9 1687 ICPTR = $29 ;s PUT TEXT RECORD
OO¢A 1988 ICPBC = $SOA ; PUT BINARY CHAR
20¢B 1689 ICPTC = $OB ; PUT TEXT CHAR
2gec 1098 ICCLOSE = $ac ;CLOSE FILE
29¢D 1091 ICSTAT = $@D ;GET STATUS
OOCE 19092 ICDDC = S$SOE ;DEVICE DEPENDENT
OOCE 1093 ICMAX = S$SOE ;MAX VALUE
2O¢'F 1094 ICFREE = SOF ; IOCB FREE INDICATOR
1995 ;
1996 ; ICSTA VALUE EQUATES
1997
291 1998 ICSOK = $O1 ;STATUS GOOD, NO ERRORS
2062 1899 ICSTR = $@2 ; TRUNCAIATED RECORD
IOCB
28133 1168 ICSEOF = $23 ;END OF FILE
28130 1191 ICSBRK = $80 ;s BREAK KEY ABORT
2831 1182 ICSDNR = $81 ;DEVICE NOT READY
2032 1163 ICSNED = $82 ;NON EXISTENT DEVICE
2833 1164 ICSDER = $83 ;DATA ERROR
2934 1185 ICSIVC = $84 ; INVALID COMMAND
2885 1186 ICSNOP = $85 ;DEVICE/FILE NOT OPEN
20386 1187 ICSIVN = $86 ; INVALID IOCB #
2987 1198 ICSWPC = $87 sWRITE PROTECT
1199 :
1116 ; ZERO PAGE IOCB LABELS
1111 ;
2021 1112 ICDNOZ = ICDNO-IOCB+ZICB
2028 1113 ICBLLZ = ICBLL-IOCB+ZICB ;BUF LEN
2029 1114 ICBLHZ = ICBLH-IOCB+ZICB
0024 1115 ICBALZ = ICBAL-IOCB+ZICB ;BUF ADDR
2025 1116 ICBAHZ = ICBAH-IOCB+ZICB
2822 1117 ICCOMZ = ICCOM-IOCB+ZICB
2026 1118 ICPUTZ = ICPUT-IOCB+ZICB ;PUT RTN ADDR

61

ATARI DOS 2.0S

DCB
17A8 1119 .PAGE " DCB"
17A8 1120 = DCBORG
1121 ;
1122 ; DCB - DATA CONTROL BLOCK
1123 ; THE DCB IS AN IOCB LIKE CONTROL
1124 ; BLOCK USED TO INTERFACE THE DISK
1125 ; FILE MANAGEMENT SYSTEM TO THE
1126 ; DISK HANDLER
1127 ;
1128 DCB
23812 1129 DCBSBI *= "4l ;SERIAL BUS ID
2301 1136 DCBDRV *= "4l ;DISK DRIVE #
@382 1131 DCBCMD *= "4l ;s COMMAND
23083 1132 DCBSTA *= *4l :1/0 STATUS
2304 1133 DCBBUF *= *42 :I/0 BUFFER ADDR (H,L)
305 1134 DCBTO *= *42 sTIME OUT CNT
2383 1135 DCBCNT *= *42 :1/0 BYTE COUNT
230a 1136 DCBSEC *= *42 :1/0 SECTOR NUMBER
1137
1138 ; DCBCMD VALUE EQUATES
1139 ;
9852 1146 DCBCRS = 'R ;Read sector ($52)
28517 1141 DCBCWS = 'P ;Put sector ($508)
9053 1142 DCBCST = 'S ;Status request ($53)
2821 1143 DCBCFD = ' ; FORMAT DISKETTE ($21)
1144 ;
1145 ; *** SPECIAL NOTE:
1146 ; DCBCWS may be changed to 'W ($57)
1147 ; if desired to have disk perform
1148 ; a verifying read after each write.
1149 ; Disk write ('W) operations will take
1158 ; longer, but will be more reliable.
1151 ;
1152 ;
1153 ; DCBSTA VALUE EQUATES
1154 ;
2098 1155 DCBSOK = $O1 1 STATUS NORMAL
2981 1156 DCBDNR = $81 ;sDEVICE NOT READY
9082 1157 DCBCNR = $82 ;s CONTROLLER NOT READY
2983 1158 DCBDER = $83 ;DATA ERROR
23084 1159 DCBIVC = $84 ; INVALID COMMAND
298" 1160 DCBWPR = $87 ;s WRITE PROTECT
ZERO PAGE
238¢C 1161 .PAGE " ZERO PAGE"
238¢C 1162 *= FMSZPG
1163 ;
204% 1164 ZBUFP *= *42 s BUFFER PTR
904°% 1165 ZDRVA *= *+2 s ZERO PG DRIVE PTR
29047 1166 ZSBA = *42 sZERO PG SECTOR BUF PTR
904 1167 ERRNO *= *4+1 ;s ERROR NUMBER
1168 ;
1169 ;
@045, 15 . INCLUDE #E:
2042 20 .INCLUDE #D:ATFMS1.SRC
BOOT RECORD
20842 2099 .PAGE "BOOT RECORD"
29452, 2091 = FMSORG
2002 ;
2883 ; THE FOLLOWING BYTES ARE STORED
2004 ; ON DISK SECTOR @ THEY COMPRISE

62

ATARIDOS 2.05

2005 ; THE BOOT LOAD RECORD

2006 ;
27¢0 99 2007 BFLG .BYTE @ ;BOOT FLAG UNUSED=@
27¢1 03 2008 BRCNT .BYTE 3 ;NO CONSECTIVE BOOT RECORDS TO

READ
27¢2 0007 2909 BLDADR .WORD FMSORG ;BOOT LOAD ADDR
3784 49015 2019 BINTADR .WORD DUPINIT ;INIT ADDR

97¢6 4C1497 2011 BCONT JMP XBCONT ;BOOT READ CONT PT
2012
2013 THE FOLLOWING BYTES ARE SET BY

2014 ; THE CONSOLE PROCESSOR. THEY ARE
2015 ; ACTED UPON DURING FMS INIT ONLY.

2016 THEY ARE PART OF THE BOOT RECORD
2017 THUS DEFINING THE DEFAULT
2018 ;INITIALIZATION PARMS
2019 ;
27619 03 2029 SABYTE .BYTE 3 sMAX # CONCURRENT OPEN FILES
270A 91 2021 DRVBYT .BYTE @1 ;DRIVE BITS
27¢B 99 2922 SAFBFW .BYTE @ ;STORAGE ALLOCATION DIR SW
276C 9115 2023 SASA .WORD ENDFMS ;STORAGE ALLOCATION START ADDR
2024 ;
2@25 ; THE FOLLOWING CODE READS THE FMS
2826 ; AND CONSOLE PROCESSOR (DOS) FROM
2027 ; THE DOS.SYS FILE
2028
P73E 09 2029 DFSFLG .BYTE @ ;DOS FLAG
2030 ;
2¢31 ; @0 NO DOS FILE
2932 ; @1 128 BYTE SECTOR DISK
2033 : @2 256 BYTE SECTOR DISK
2034 ;
A73F @@ 2935 DFLINK .BYTE @,0 ;DOS FILE START SECTOR NUMBER
a71e 09
27L1 7D 2036 BLDISP .BYTE 125 ;DISPL TO SECTOR LINK
2712 CB@7 2037 DFLADR .WORD DFMSDH ;ADDR START OF DOS.SYS FILE
2038 ;
2939 XBCONT
23714 ACOEQ7 2040 LDY DFSFLG :GET DOS FLAG
@717 F@A36 2941 BEQ BFAIL ;BR IF NO DOS.SYS FILE
2042 ;
2719 AD1207 2043 LDA DFLADR :MOVE LOAD START ADDR
271C B8543 2044 STA ZBUFP ;TO ZERO PAGE PTR
Q71E BD@4¢3 2045 STA DCBBUF ; AND TO DCB
9721 AD1307 2846 LDA DFLADR+1
2724 B544 2047 STA ZBUFP+1
0726 BDO503 2848 STA DCBBUF+1
2049 ;
BOOT RECORD
2059 ;
2729 AD1997 2051 LDA DFLINK+41 ;GET 1ST SECTOR #
072C ACOFQ7 2052 LDY DFLINK
@72F 18 2053 XBC1 CLC
0739 AEQEQ7 2054 LDX DFSFLG ; LOAD DISK TYPE CODE
9733 206CO7 2055 JSR BSIO ;GO READ BOOT SECTOR
2736 3017 2056 BMI BFAIL
2057 ;
9738 AC1107 2058 LDY BLDISP ; POINT TO LINK
273B Bl143 2059 LDA (ZBUFP),Y ;GET LINK HI
273D 2903 2060 AND #LMASK ;MASK TO LINK BITS
273F 48 2061 PHA
2740 C8 2062 INY
0741 1143 2063 ORA (ZBUFP),Y
2743 FOAOE 2064 BEQ BGOOD
2745 B143 2065 LDA (ZBUFP),Y ;GET LINK LOW
2747 A8 2066 TAY

63

ATARI DOS 2.0S

2748 205707 2067
2068 ;
27413 68 2069
074C 4C2F07 2070
2071 ;
274F A9CO 2072 BFAIL
275). DRg1 2073
2074 ;
2753 68 2075 BGOOD
2076 ;
2754 OA 2077 XBRTN
2755 A8 2078
2756 60 2079
2089 ;
2757 18 2081 INCBA
2758 A543 2082
@752 6D1167 2883
@750 8BDP483 2084
2766 8543 2085
@762 A544 2086
2764 6900 2087
@76¢. 8DA503 2088
2769 8544 2089
@76k 60 2099
2091 ;
SECTOR I/O
276C 2092
2093 ;
2094 ; BSIO
2095 ;
276C 2096 BSIO
2097 ;
@76C BD@BA3 2098
@76F BCOAQ3 2099
2199 ;
0772 A952 2191 BSIOR
0774 AD49 2102
2776 99004 2103
2104 ;
2778 A959 2105
277A AQB@ 2106
2107 ;
2198 DSIOl
277C 8D@203 2109
@77F B8C@303 21190
2111 ;
2782 A931 2112
2784 AQOF 2113
2114 ;
2115 DS10O2
2786 BDEAA3 2116
2789 BC@6@3 2117
2118 ;
278C A993 2119
@78E BDFFl2 2129
2121 ;
2791 A9P0 2122
2793 AQ8B0Q 2123
@795 CA 2124
2796 F004 2125
2126 ;
2798 A901 2127
@797 AAQO 2128
2129 ;
279C 8D@903 2130 DSIO3

64

JSR

PLA
JMP

LDA
BNE

PLA

ASL
TAY
RTS

CLC
LDA
ADC
STA
STA
LDA
ADC
STA
STA
RTS

INCBA

XBCl

#sCO
XBRTN

ZBUFP
BLDISP
DCBBUF
ZBUFP
ZBUFP+1
0
DCBBUF+1
ZBUFP+1

;GO INCREMENT BUF ADR

s RESTORE LINK HI
;GO READ NEXT SECTOR

; SET FOR CARRY SET
;ANY P,Y = §80

;SET FOR CARRY CLEAR

; INC BUFFER PTR
;BY DATA LINK (125)

.PAGE "SECTOR I1/0O"

- DO SECTOR 1/0O

STA
STY

LDA
LDY
BCC

LDA
LDY

STA
STY

LDA
LDY

STA
STY

LDA
STA

LDA
LDY
DEX
BEQ

LDA
LDY

STA

*

DCBSEC+1
DCBSEC

#DCBCRS
$540
DSIO1
#DCBCWS
#5880
DCBCMD
DCBSTA
#531
#TIMOUT
DCBSBI
DCBTO

43
RETRY

#
#5890

DSIO03

#1
L4

DCBCNT+1

;3 SET SECTOR HI
;SECTOR LO

;ASSUME READ SECTOR
;AND GET DATA
;BR IF READ

;ELSE LOAD WRITE
;AND PUT DATA

SECTOR

;SET COMMAND
;AND SIO CMD

;DISK SERIAL BUS
; TIMEOUT DEFAULT

1D
LOADED

;SET ID

;SET TIME OUT
;SET RETRY COUNT
;ASSUME 128 BYTE
;SECTOR DISK

;SO BR

;ELSE IS 256

;SET I/0 BYTE CNT

ATARI DOS 2.05

@'79F 8C@28023 2131 STY DCBCNT
2132 ;
2133 DSI04
@7A2 2059E4 2134 JSR $E459 ;CALL SERIAL I/0O
@7A5 101D 2135 BPL DSIOS5 ;IF GOOD I/0 THEN RTS
2136 ;
@7A7 CEFF12 2137 DEC RETRY ;TST IF ANOTHER RETRY AVAIL
@7AA 3018 2138 BMI DSIOS5 ;NO THEN RTS WITH ERROR
2139 ;
@7AC A240 2140 LDX #5490 ;DO RETRY-RESET TYPE ACTION
@7AE A952 2141 LDA #DCBCRS ;ASSUME READ-CK IF IS
@7B@ CDP2@3 2142 CMP DCBCMD ; IF COMMAND GET SECTOR

SECTOR 1/0

27B3 FO09 2143 BEQ STRTYP ;YES THEN STORE GETSECTOR IN O
@7B5 A921 2144 LDA #DCBCFD ;TEST IF FORMAT CMD
@787 CD@2@3 2145 CMP DCBCMD ;IT ALSO RECIEVES DATA
@7BA FO02 2146 BEQ STRTYP ;YES THEN SET AS GET DATA
@7BC A280 2147 LDX #3890 ;ELSE STORE PUTSECTOR
@7BE BE@303 2148 STRTYP STX DCBSTA

2149 ;
@7C1 4CA207 2150 JMP DSIO4 ;RETRY THE I/O

2151 ;
@7C4 AE@113 2152 DSIO5 LDX CURFCB ;RELOAD CURRENT FCB
@7C7 AD@303 2153 LDA DCBSTA ;AND I/O STATUS SET FLAGS
@7CA 69 2154 RTS

2155 ;

FILE MANGER ENTRY POINT

27CB 2156 .PAGE "FILE MANGER ENTRY POINT"
2157
2158 ; DFMSDH - DISK FILE MANAGEMENT DISK
2159 ; HANDLER ENTRY POINT
2169 ;
2161 DFMSDH
#7CB AAQ8 2162 +WORD DFMOPN-1 ;OPEN FILE
@7CD 140B 2163 +WORD DFMCLS-1 ;CLOSE FILE
@7CF BE@A 2164 .WORD DFMGET-1 ;GET FILE
@27D1 CB@9 2165 .WORD DFMPUT-1 ;PUT BYTE
27D3 900B 2166 -WORD DFMSTA-1 ;STATUS
27D5 A60B 2167 +WORD DFMDDC-1 ;DEVICE DEPENDENT CMD
2168
2169 ; INITIALIZATION CODE
2179 ;
2171 ; GIVE ROOM FOR BOOT EXPANSION [1!
2172 ;
27D7 2173 *= STE@
@7E® 2174 DINIT = *
2175 ;
2176 ; SET UP DRIVE INFO
2177 ;
2178 ; DRVTBL - 8 BYTES~ONE FOR EACH POSSIBLE DRIVE
2179
2180 ; 9 = NO DRIVE
2181 ; 1 = 128 BYTE SECTOR DRIVE
2182 ; 2 = 256 BYTE SECTOR DRIVE
2183 ;
2184 ; DBUFA(L,H) 8 TWO BYTE ENTRYS THE
2185 ; DRIVE (VTOC) BUFFER ADR FOR A DRIVE
2186 :
¢7E@ AD@CO7 2187 LDA SASA ;MOVE START OF ALLOC
¢i7E3 B8543 2188 STA ZBUFP sAREA TO ZBUFP
¢/I7E5 AD@D@7 2189 LDA SASA+l1
€7E8 B544 2190 STA ZBUFP+1
2191

65

ATARI DOS 2.0S

@7EA.
@7ED

a7Fe

@7F2
@7FE
@7FE

@7FR
@7FC
@7FF
280z
280°<

FILE

2807
2809
280B

280D
9BOE
#2811
2813
2816

2819
@81B
@BlE
2820
2822

2823
2824
2827
282A
g82¢C
282F
2831
2834

2837
2838

283A

283D
@83E

2849
7843

2845

66

ADOAO7
8DOAC13

A207

8EOD13
PEOC13
B@@D

A900
9D1113
9D2913
9D3113
F236

MAMGER

AQ05
A9090
9143

E8
B8E0103
A953
800203
2053E4

AQ02
ADEA@2
2920
D@1
88

98
AE@OD13
9D1113
A543
9D2913
A544
9D3113
207908

88
F203

2079008

CA
19B2

AC@2907
A200

A900

2192
2193
2194
2195
2196
2197
2198
2199
2209
2201
2202
2203
2204
2205
2206

LDA DRVBYT ;TEMP 1 IS DRIVE

STA TEMP1 ; EXCESS BITS FROM BOOT
7

LDX #7 ;TEMP 2 IS
DIA STX TEMP2 ;DR # MINUS 1

ASL TEMP1 ;SHIFT DR BIT TO CARRY

BCS DIHAVE ;BR IF DR EXISTS

LDA #@ DRVTBL,X ;SET NO DRIVE

STA DRVTBL,X
STA DBUFAL,X
STA DBUFAH, X
BEQ DIDDEC ;GO DEC DRIVE #

ENTRY POINT

2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2239
2231
2232
2233
2234
2235
2236
2237
2238
2239
2249
2241
2242
2243
2244
2245
2246
2247
2248
2249
2259
2251
2252
2253
2254
2255

DIHAVE
LDY #DVDWRQ ;SET WRITE READ OFF
LDA #@
STA (2ZBUFP),Y ;IN THE DRIVE BUFFER
INX ;PUT DR # IN DCB
STX DCBDRV
LDA #DCBCST ;GET DRIVE STATUS
STA DCBCMD
JSR DHADR
H
LDY #2 ;ASSUME 256 BYTE DRIVE
LDA S$2EA ;GET STATUS BYTE
AND #5280
BNE DI256 ;BR IF 256
PEY
DI256 TYA
LDX TEMP2 ;SET DR TYPE INTO
STA DRVTBL,X :TBL AT DRIVE DISPL
LDA ZBUFP ;MOVE CURRENT ALLOC
STA DBUFAL,X ;ADDR TO DBUFA
LDA ZBUFP+1 ;AND INC ALLOC
STA DBUFAH,X ;BY 128 BYTES
JSR DINCBP sVIA DINCBP
DEY sIF DR WAS A
BEQ DIDDEC ;128 BYTES THEN DONE
JSR DINCBP ;ELSE INC PTR BY 128
DIDDEC DEX ;DEC DRIVE
BPL DIA sBR IF MORE TO TEST
; SET UP SECTOR ALLOCATION TABLE
; THE SECTOR ALLOCATION TABLE (SECTBL)
; WAS 16 ONE BYTE ENTRIES ONE FOR
; EACH POSSIBLE 128 BYTE BUFFER SABYTE
; IN THE BOOT RECORD DETERMINES THE
: NUMBER OF ENTRYS TO ALLOCATE
; NON-ALLOCATED BYTE ARE MINUS
; SABUF(L,H) CONTAINS THE ADDR OF THE SECTOR BUFFER
LDY SABYTE ;GET AND SAVE COUNT
LDX #0
DINXTS LDA #9 s ASSUME ALLOCATE

ATARI DOS 2.0S

2347
2348
@34A

FILE

@348
@34E
234F

2851
2853
2856
2858
985B

085E
@85F
2861

2863
2865
2868
286A

286D

2878
2871
€873
2875
2877
2879
287B
287D

287E
¢'87E
€880
€882
€885
€886

FILE
2888

2888
288A
288D
288F
2891
2893
2894
2895
2896
2898
289A

88
1001
98

MANGER

9D1913
98
300D

A543
9D3913
A544
9D4913
207008

E8
EQl0
D@E2

A543
B8DE782
A544
8DEB@2

4C7E@8

18

A543
6980
8543
A544
6900
8544
69

AQ7F
A909
998113
88
D@FA

MANGER

p.\1%1)
B91A@3
F@0C
C944
Foo8
cs8
cs8
cs8
COlE
DOFQ
1]

2256
2257
2258

ENTRY POINT

2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2309
2301
2302

ENTRY POINT

2303
2304
2385
2306
2307
2308
2309
2319
2311
2312
2313
2314
2315
2316

~

[0 ETIEYIRN

()~ e~

DEY
BPL
TYA

STA
TYA
BMI

LDA
STA
LDA
STA
JSR

INX
CPX
BNE

LDA
STA
LDA
STA

JMP

DINCBP -

INCBP CLC

LDA
ADC
STA
LDA
ADC
STA
RTS

LDY
LDA
STA
DEY
BNE

DISETS

SECTBL, X
DISNI

ZBUFP
SABUFL, X
ZBUFP+1
SABUFH, X
DINCBP

#16
DINXTS

SET LOW MEM

ZBUFP
LMADR
ZBUFP+1
LMADR+1

CLRFCB

ZBUFP
$128
ZBUFP
ZBUFP+1
0
ZBUFP+1

CLEAR FCBS TO ZERO

*

$S7F
30
FCB,Y

CFCBX

. PAGE

LDY
LDA
BEQ
CMP
BEQ
INY
INY
INY
CPY
BNE
BRK

30
DEVTAB, Y
ADI2

$#'D

ADI2

#30
ADI1

sDEC COUNT OF ALLOCATED
;s IF PLUS STILL ALLOCATE
;ELSE DE ALLOCATE

1SET ALLOCATE BYTE
1 IF NO ALLOCATED
;THEN DON'T ALLOCATE BUF

;MOVE BUFFER ADDR
:TO SECTOR BUF PTR
;s INC SECTOR ADDR

;1 INC BUF #

;+ IF NOT ALL 16
;DO AGAIN

sMOVE FINAL ADDR
; TO LOW MEM PTR

;CONT INIT

INC ZBUFP BY 128

;1128 OF FCB

:TO BE CLEARED

;FIND AH
;s UNUSED
sOR DISK
sEMPTY

;ELSE BREAK

67

ATARI DOS 2.0S

289B
289D
28A0
28A2
@8A5
@8A7

@BAA

OPEN

@8AB

@BAB
@BAE
28B1
28B4
28B7
28B9
28BB

@BBE
28C1

28C2
28C5
28cC7
28C9
28CB
28CD
@8CF
28D1
28D3
28D5

28D8
28D8
28D9
28DB

28DD
98DD
@8DE
0BE®Q

@BE3
@B8E3
@BE6
B@BE9
OPEN
@BEC

A8EC
@8EC

68

n944
I91A03
A9CB
991B23
A907
991C@23

5@

206411
209EQE
BD4A@3
9D8213
2902

F0@23

4CAD@D

20210F
28

BD8213
c994
FOOF
c998
F044
c9acC
F@0C
Cc999
F217
4CBF12

28
BOPE
9906

28
BOO9
20ACOC

20AEQ9
4CF212

4CBB12

28

2317
2318
2319
2320
2321
2322
2323
2324

2325
2326
2327
2328
2329
23309
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362

2363
2364
2365
2366
2367

2368

2369
2370

2371
2372
2373
2374
2375
2376

ADI2 LDA
STA
LDA
STA
LDA
STA

RTS

#'D
DEVTAB,Y

:SET DISK

#DFMSDH&255 ;SET FMS ADDR

DEVTAB+1,Y

#DFMSDH/256

DEVTAB+2,Y

.PAGE "OPEN"

; DFMOPN - FILE OPEN EXECUTION ENTRY PT
DFMOPN
JSR SETUP : DO FCB SET UP
JSR FNDCODE :GO DECODE FILE NAME
LDA ICAUX1,X ; GET AUX1 (OPEN TYPE CODES)
STA FCBOTC,X :PUT INTO FCB
AND #OPDIR : IS THIS LIST DIRECTORY
BEQ OPN1 :BR IF NOT
JMP LISTDIR :GOTO DIR LIST CODE
OPN1 JSR SFDIR :GO SEARCH FILE DIR
PHP
LDA FCBOTC,X :GET OPEN TYPE CODE
CMP #OPIN : INPUT
BEQ DFOIN
CMP #0OPOUT sOUTPUT
BEQ DFOOUT
CMP #OPIN4+OPOUT ;UPDATE
BEQ DFOUPD
CMP #OPOUT+OPAPND ;APPEND
BEQ DFOAPN
JMP ERDVDC :ERROR
;s DFOIN - OPEN FOR INPUT
DFOIN = b
PLP :GET SEARCH FLAG
BCS OPNER1 :ERROR IF NOT FOUND
BCC DFoOUI
; DFOUPD - OPEN FOR UPDATA
DFOUPD = *
PLP :GET SEARCH FLAG
BCS OPNER1 :BR NOT FOUND
JSR TSTLOCK :TEST LOCK
DFOUI = *
JSR DFRDSU :SET UP FOR READ
JMP GREAT : DONE
OPNER1 JMP ERFNF sFILE NOT FOUND
- PAGE
; DFOAPN - OPEN APPEND
DFOAPN = *

PLP

:GET READ STATUS

ATARI DOS 2.0S

@8ED
Q8EF
28F2
28F5
28F7
28F9
28FC
Q8FF
2992
2995
2998
290B
P9QE

2911
2911
2912

2914
2917
291A

291D
291D
0920
02922

2925
2928
292B
@92E
2931
2934
2937
293A
293C
B93E

2941
2942
2943
2945

2948
2948

OPEN

#94B
@94E

2951
2954

2957

2959
295C
AI5E
2961

2964
2966
2969
296B

BOFA

ACO513
B90114
2902

FO15

20ACOC
20BF10
200611
9DBE13
BD8B13
9D8D13
4C7C09
4CB712

28
B@029

20530C
AC@513
4C4809

AD@213
3070
800613

206E10
AD@313
8D@513
ADO413
8002713
20BF10
AC@513
A20A

A920

990614

c8

CA
10F9
AEQ113

200611

AC@513
990514

BD8B13
9902414

A943

990114
A900

999314
990214

A200
BD5913
C93F
F203

2377
2378
2379
23890
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2493
2404

2405
2406
2407
2408
2499
2410
2411
2412
2413
2414

2415
2416
2417
2418
2419
2429
2421

2422
2423

2424
2425
2426
2427

2428
2429
2439
2431
2432
2433
2434
2435
2436

APOER

BCS
LDY
LDA
AND
BEQ
JSR
JSR
JSR
STA
LDA
STA
JMP
JMP

DFOOUT -

DFOOUT

DFOX1

OPN1B

OPN1A

OPN2

PLP
BCS

JSR
LDY
JMP

LDA
BMI
STA

JSR
LDA
STA
LDA
STA
JSR
LDY
LDX
LDA
STA

INY
DEX
BPL
LDX

JSR

LDY
STA

LDA
STA

LDA

STA
LDA
STA
STA

LDX
LDA
CMP
BEQ

OPNER1 sBR NOT FOUND
CDIRD ;s IF OLD.
FILDIR+DFDFL1,Y ;FILE TYPE
#DFDNLD ;s THEN

APOER s ERROR

TSTLOCK ;s TEST LOCKED
OPVTOC sREAD VTOC
GETSECTOR ;GET A SECTOR

FCBSSN+1,X ;MOVE START SECTOR #
FCBLSN,X ;TO START SECTOR #
FCBSSN, X

DHFOX2 ;CONTINUE AS OPEN
ERAPO

OPEN FOR OUTPUT

*
sGET SEARCH FLAG

DFOX1

XDEL@ ; DELETE THE FILE OR FILES

CDIRD

OPNI1A

*

DHOLES sWAS THERE A HOLE

OPNER2 sBR IF NO HOLE

CDIRS ;s SAVE HOLE SECTOR AS CURRENT
DIR SEC

RDDIR ;GO READ CURRENT DIR SECTOR

DHOLED sMOVE HOLE DISPL TO

CDIRD sCUR PIR DISPL

DHFNUM ;MOVE HOLE FN

SFNUM ;s TO CURRENT

OPVTOC

CDIRD

#10

#5290

FILDIR+DFDPFN,Y ;BLANK FILL FILE ENTRY
FOR FILE NAME

OPN1B
CURFCB

*
GETSECTOR ;GET A SECTOR

CDIRD sGET DIR DISPL
FILDIR+DFDSSN+1,Y ;PUT SECTOR INTO DIR
REC

FCBLSN, X

FILDIR+DFDSSN,Y

#DFDINU+DFDOUT+DFDNLD ;SET DIR ENTRY IN
USE

FILDIR+DFDFL1,Y

0 ; SET NOT LOCKED

FILDIR4+DFDCNT+1,Y ;SET COUNT = &
FILDIR+DFDCNT,Y

0

FNAME, X sMOVE FILE NAME
#'2 ;s IF WILD CARD
OPN2A ;CHANGE TO BLANK

69

ATARI DOS 2.0S

096D 990614 2437 STA FILDIR+DFDPFN,Y ;TO DIRECTORY
0970 2438 OPN2A = *
0970 C8 2439 INY
8971 EB 2440 INX
0972 EG@B 2441 CPX #11
0974 96F@ 2442 BCC OPN2
2443 ;
0976 AE@113 2444 LDX CURFCB ;RESTORE X REG
0979 207110 2445 JSR WRTDIR ;GO WRITE DIRECTORY
897C 2446 DHFOX2 = *
097C 209509 2447 JSR SETFCB
@97F 20E20F 2448 JSR WRTN6 ;FIX UP AS IF WRITE
@982 A98@ 2449 OPN3 LDA #FCBFAS ;SET NEW FILE
0984 9DB513 2450 STA FCBFLG,X
0987 209812 2451 JSR TSTDOS ;IF NOT DOS
098A D@O3 2452 BNE DHFOX3 ;BR
098C 4COAl2 2453 JMP WRTDOS ;ELSE DO IT
@98F 2454 DHFOX3 = *
098F 4CF@12 2455 JMP GREAT
2456 ;
0992 20BD12 2457 OPNER2 JSR ERDFULL ;DIRECTORY FULL
2458 ;
2459 ;
8995 2460 SETFCB = *
0995 A98@ 2461 LDA #0 ;CLEAR
0997 9DA513 2462 STA FCBFLG,X ;FLAG
@99A AD@713 2463 OPNF1 LDA SFNUM ;MOVE FILE NUM TO FCB
999D @A 2464 ASL A
@99E @A 2465 ASL A
@99F 9DB113 2466 STA FCBFNO,X
09A2 A9G@ 2467 LDA #@
@9A4 9DB713 2468 STA FCBDLN,X ;DATA LENGTH
@9A7 9DBF13 2469 STA FCBCNT,X ;SET CNT = @
@9AA 9D9@13 2470 STA FCBCNT+1,X
@9AD 60 2471 RTS
@9AE 209509 2472 DFRDSU JSR SETFCB ;SET UP FCB
@981 AC@513 2473 LDY CDIRD ;MOVE START SECTOR TO LINK
OPEN
0984 B9P114 2474 LDA DFDFL1+FILDIR,Y ;SET NEW
@9B7 2962 2475 AND #DFDNLD ;SECTOR
@989 9DB413 2476 STA FCBSLT,X ;FLAG
@9BC B9G414 2477 LDA FILDIR+DFDSSN,Y
@9BF 9D8B13 2478 STA FCBLSN,X
@9C2 B96514 2479 LDA FILDIR+DFDSSN+1,Y
99C5 9DBC13 2480 STA FCBLSN+1,X
99C8 201710 2481 JSR RDNSO ;READ 1ST SECTOR
09CB 60 2482 RTS
@9cc 25 .INCLUDE #E:
@9cc 30 .INCLUDE #D:ATFMS2.SRC
PUT BYTE
@9cc 3eee .PAGE "PUT BYTE"
3001 ;
3¢@2 ; DFMPUT - PUT A FILE BYTE
3003 ;
3604 DFMPUT
@9CC 8D@B13 3605 STA SVDBYT
@9CF BD4183 3006 LDA ICDNO,X
@902 8521 3087 STA ICDNO-IOCB+ZICB
09D4 206411 30808 JSR SETUP
@9D7 AC@O13 3689 LDY ENTSTK ;CHK TO SEE IF ENTRY WASN'T
FROM CIO
@9DA B90201 3010 LDA STAK,Y ;IF HI BYTE RTS IS NOT IN OS
ADDR

70

ATARI DOS 2.0S

29DD
@9DF
29Kl

29E3
A9K5
99518
BIEA
291C
AP
291*9
29173
a9r5
291’8
@9)7A
@9rD
Q9P
QA1
OA33

OAA6
OAA9
@AAC

OADE
OA10
#Al3
OAl6

OAl19
AAlC

C9DF
BOO4
A909

8522
BD8213
2908
F@2D
BCB713
98
DD8613
9011
20940F
BO22
201FOA
AOO0
B@AS5
B124
8D@813

FEB713
AD@813
9147

A940

1p8513
9D8513
4CF012

4CBF12
4CF412

BURST I/0

QAlFP

OAL1F
2a22
or24

oA 26

02.28
g3.2B
@r2D
@r2F

@231
2134

@136
0F38
an3a
@a3C

@A3E
oh4l

On43
oi46
oi48

OM4A
OM4B

BD8513
19026
3002

A900

8D1013
A522
2962
FO19

20AEQA
BO14

A524
8547
A525
8548

AD1013
3009

200F10
9033
BO53

38
60

3811
3012
39013

39014
39015
3016
3017
3018
3019
3020
3021
39022
3923
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3939
3040
3041

3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3853
3054
3055
3056
30857
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3079
3071
3072
3073

CMP
BCS
LDA

STA
FRMCIO LDA
AND
BEQ
LDY

CMP
BCC
JSR
BCS
JSR
LDY
BCS
LDA
STA

PUT1 INC
LDA
STA

LDA
ORA
STA
JMP

PUTER JMP
PEOF JMP

$0SBTM
FRMCIO
0

ICCOMZ
FCBOTC, X
$OPOUT
PUTER
FCBDLN, X

FCBMLN, X
PUT1
WRTNXS
PEOF
WTBUR

i 14

PUT1

:SPACE THEN A NON-CIO ENTRY
;BR IF FROM CIO

;ELSE PREVENT FROM DOING BURST
1/0

: IF NOT OPEN

;s OUTPUT

sERROR

;GET DATA LENGTH

;s IF SECTOR NOT FULL
:THEN BR

;ELSE WRITE FULL SECTOR
:BR IF EOF

sTEST BURST

:BR IF NOT BURST

(ICBALZ),Y ;PUT NEXT BYTE

SVDBYT

FCBDLN, X
SVDBYT
(2SBR),Y

$FCBFSM
FCBFLG,X
FCBFLG,X
GREAT

ERDVDC
ERREOF

sAFTER BURST AREA

;s INC DATA LEN

;GET DATA BYTE

sAND PUT IN SECTOR BUFFER

s INDICATE SECTOR MODIFIED

: DONE

.PAGE "BURST I/0O"

X ve ~n o~

TBUR LDA
BPL
BMI

:
RTBUR LDA

TBURST STA
LDA
AND
BEQ

JSR
BCS

LDA
STA
LDA
STA
NXTBUR LDA
BMI

H

JSR
BCC
BCS

NOBURST SEC
RTS

FCBFLG, X
NOBURST
TBURST

14

BURTYP
ICCOMZ
$2
NOBURST

TBLEN
NOBURST

ICBALZ
ZSBA

ICBAHZ
ZSBA+1

BURTYP
WRBUR

RDNXTS
BBINC
BUREOF

TEST BURST I/0 AND DO IF POSSIBLE

:IF NOT AQUIRING SECTORS
:THEN UPDATE AND
;NO BURST

;SET READ TYPE

;SET BURST TYPE
s IF CMD

;IS TEXT MODE

;s THEN NO BURST

; IF USER BUFFER LESS
s THEN SECTOR, NO BURST

sMOVE USER BUFFER

sADDR TO SECTPOR
;BUFFER PTR

:GET 1/0 TYPE
;BR IF WRITE
;DO SECTOR READ
;BR IF EOF

;BR RD EOF

;INDICATE NO BURST

71

ATARI DOS 2.0S

BA4C
OA4F

OAS2
BAS3
OASS
OAS8
OAS9
OASB
OASE
GASF
OA61

OA64
BA67

OAG6A
BA6D

ADFB12
ap8713

AB
B147
8D2913
cs8
B147
8DOA13
cs
B147
8DOB13

20940F
ACFB12

AD@913
9147

BURST I/0

OA6F
oA70
OA73
BA75
PA76
OA79

OA7B
@AA7C
OATE
2Aa8l
2AB3
BABS
OAB7

2n89
OABA
BABC
OABF
BA91
BA93
BA95
BA96

2A98
OA9B

BA9D
GA9D
OA9F
OAAL
OAA3

OAAS
OAAB
BAA9

GAAC
GAAD

OAAE
OAAE

[y

c8
ADOA13
9147
cs8
ADOB13
9147

18
A547
7D8613
8547
A548
6900
8548

38
AS528
FDB613
8528
AS529
E900
EA
8529

20AEQA
98A)

AS547
8524
A548
8525

BC8813
88
200011

18
60

ADFE12

3874
3875
3876
3877
3978
3879
3080
3081
3082
3983
3084
3985
3986
3087
3088
3089
3090
3091

3092

3293
3094
39895
3096
3897
3098
3099
3100
3101
3192
3103
3104
3105
3106
3107
3198
3109
3119
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3139
3131
3132
3133
3134
3135
3136
3137

H

WRBUR LDA
STA

7
TAY
LDA
STA
INY
LDA
STA
INY
LDA
STA

JSR

LDY
LDA
STA

INY
LDA
STA
INY
LDA
STA

W e ~e

BINC CLC
LDA
ADC
STA
LDA
ADC
STA

SEC
LDA
SBC
STA
LDA
SBC
NOP
STA

JSR
BCC
BUREOF =
LDA
STA
LDA
STA

~

LDY
DEY
JSR

BURST CLC
RTS

TEST USER

3 e ve we

BLEN = .
LDA

DRVMDL ;WRITE FULL SECTOR
FCBDLN,X ;DATA COUNT

(ZSBA),Y ;SAVE DATA TO BE

SVD1 ;TO BE CLOBBERED
(ZSBA),Y ;BY WRTNXT

SVD2

(zSBA),Y

SVD3

WRTNXS :WRITE SECTOR
DRVMDL ; RESTORE CLOBBERED DATA
sVD1

(zZSBA),Y

SVD2

(ZSBA),Y

SVD3

(zSBA),Y

ZSBA ; INC SECTOR
FCBMLN,X ;BUFFER ADDR BY
ZSBA ;ACTUAL DATA LEN
ZSBA+1 :GOT OT PUT

40

ZSBA+1

ICBLLZ ;DEC USER
FCBMLN,X ;BUFFER LEN BY
ICBLLZ ;ACTUAL DATA LEN
ICBLHZ ;GOT OR PUT

40

ICBLHZ

TBLEN : IF USER BUF LEN
NXTBUR :NOW >= SECTOR, DO AGAIN
. ;END OF BURSTING
ZSBA :MOVE FINAL ADDR BACK
ICBALZ ;TO USER BUF PTR
ZSBA+1

ICBAHZ

FCBBUF,X ;RESTORE ZSBA

SSBA

BUF LEN FOR BURST

*
DRVTYP ;IF DRIVE NOT

ATARI DOS 2.0S

GAR1
OAE3

GAES
AART7

OAER9

C901
DO34

A528
38F3

A529

BURST 1/0

OAEB
GAED
@AEE

D@EF
38
60

GET' BYTE

OARF

OABF
GARF
BAC2
BACS
OACT
OAC9

BACC
@ACF
@AD2
GAD4
@AD7
GADA
@ADC
@ADC

@ADF
OALEQ
BAI2
PAZS5
OAE6
OAET
@AEA
GAEA
GAED
GAEF
OAF2
OAF4
OAF7
@AF9

@OAFB 4CD312 3183

OAFE 4CF@12 3185 GET3

206411
BD8213
2982
F003
4CB90@D

BD8713
DD8613
9008
20260A
200F10
90FQ

4CF412

A8
B147
8D0@813
c8

98
9D8713

BC8B13
DOOF
BC8C13
DABA
DD8613
9805
A903

STATUS

21301

21301 206411
21304 289EQE
21307 20210F

ORGA BOO6

3138
3139
31490
3141
3142
3143
3144

3145
3146
3147

3148
3149
3159
3151
3152
3153
3154
3155
3156
3157
3158
3159
31690
3161
3162
3163
3164
3165
3166
3167
3168
3169
3179
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182

3184

3186
3187
3188
3189
3190
3191
3192
3193
3194

PEEEES

Do v o

CMP
BNE

LDA
BMI

LDA

BNE
SEC
RTS

«PAGE

JSR
LDA
AND
BEQ
JMP

LDA
CMP
BCC
JSR
JSR
BCC

JMP

TAY
LDA
STA
INY
TYA
STA

LDY
BNE
LDY
BNE
CMP
BCC
LDA

JMP

JMP

.PAGE

JSR
JSR
JSR
BCS

$1 7128 BYTE SECTOR TYPE
TBL256 ;s THEN DO 256 BYTE TEST
ICBLLZ
BURST

ICBLHZ s IF BUF LEN HI »>= 256
BURST ;s THEN CAN BURST

"GET BYTE"

*
SETUP

FCBOTC, X

#OPDIR
GET1
GDCHAR

FCBDLN, X
FCBMLN, X

GET2
RTBUR
RDNXTS
GET1

*

ERREOF

(2ZSBA),Y

SVDBYT

FCBDLN, X

*

FCBLSN, X

GET3

DFMGET - GET A FILE BYTE

;GO SET UP
;: IF OPEN FOR
;DIR CNT

s THEN GO TO DIR RTN

;GET DATA LEN

;s TEST EMPTY SECTOR
;BR IF NOT EMPTY

;DO BURST IF POSSIBLE
;GET NEXT SECTOR

;BR IF NOT EOF

;ELSE EOF ERROR

;GET DATA BYTE
;SAVE THE BYTE
;sAND SET NEW VALUE

;DO EOF LOOK AHEAD
;s IF LSN NOT ZERO

FCBLSN+1,X ;THEN

GET3

FCBMLN, X

GET3
$s03

RETURN

GREAT

DFMSTA - GET A FILE

SETUP

FNDCODE

SFDIR
SFNF

"STATUS"

;NOT EOF

:IF LSN=@ THEN CHECK FOR
;LAST BYTE

;IF LAST BYTE THEN RTS

STATUS

SETUP

DECODE FILE NAME
SEARCH FOR FILE
BR NOT FOUND

H
H
7
H

73

ATARI DOS 2.0S

@BAC 20ACAC 3195
@BOF 4CFO1l2 3196

3197
9B12 4CBB12 3198 SFNF

JSR TSTLOCK
JMP GREAT

JMP ERFNF

s TEST LOCKED
;FILE EXISTS AND UNLOCKED

CLOSE.
9B15 3199 .PAGE "CLOSE"
3200 ;
3201 ; DFMCLOSE - CLOSE A FILE
3202 ;
3203 DFMCLS
OB15 206411 3204 JSR SETUP
9B18 BNB213 3205 LDA FCBOTC,X ;GET OPEN CODE
OB1B 2908 3206 AND #OPOUT : IF NOT OUTPUT
@B1D F@4E 3207 BEQ CLDONE : THEN DONE
3208 ;
9B1F 3E8513 3209 ROL FCBFLG,X ;IF NOT ACQUIRING SECTORS
9B22 9051 3210 BCC CLUPDT sTHEN IS UPDATE
3211 ;
9B24 20ABOF 3212 JSR WRTLSEC sWRITE LAST SECTOR
3213 ;
9B27 20800B 3214 JSR RRDIR ;GO GET DIRECTORY
@B2A BD9913 3215 LDA FCBCNT+1,X ;GET CNT OF SECTORS
9B2D 48 3216 PHA
@B2E BD8F13 3217 LDA FCBCNT,X
oB31 48 3218 PHA
3219 ;
#B32 BD8213 3220 LDA FCBOTC,X :GET OPEN CODE
9B35 2901 3221 AND #OPAPND ;s IF NOT APPEND
9B37 FO17 3222 BEQ CLOUT :BR
3223 ;
9B39 20AEQ9 3224 JSR DFRDSU ;ELSE SET UP FOR READ
9B3C 200F10 3225 APP1 JSR RDNXTS sREAD TO EOF
JB3F 99FB 3226 BCC APPl1
3227 ;
9B41 BD8D13 3228 LDA FCBSSN,X :;MOVE START SECTOR
9B44 9D8B13 3229 STA FCBLSN,X TO EOF LINK SECTOR
9B47 BDSBE13 3238 LDA FCBSSN+1,X
@B4A 9D8C13 3231 STA FCBLSN+1,X
9B4D 20B30F 3232 JSR WRTN2 ;THEN WRITE AS NOT EOF
3233 ;
@B50 ACO513 3234 CLOUT LDY CDIRD :GET DIR DISPL
9B53 18 3235 CLC
JB54 68 3236 PLA
9B55 799214 3237 ADC FILDIR+DFDCNT,Y
9B58 9990214 3238 STA FILDIR+DFDCNT,Y
JB5B 68 3239 PLA
@B5C 790314 32490 ADC FILDIR+DFDCNT+1,Y
OBSF 990314 3241 STA FILDIR+DFDCNT+1,Y
3242 ;
9B62 A942 3243 LDA #DFDINU+DFDNLD ;SET ENTRY TO IN USE
9B64 990114 3244 STA FILDIR+DFDFL1,Y
PR67 207119 3245 JSR WRTDIR sWRITE DIR
OB6A 209510 3246 JSR WRTVTOC sWRITE VTOC
3247 ;
@B6D A900 3248 CLDONE LDA #0 ;CLEAR OPEN CODE
JB6F 9D8213 3249 STA FCBOTC,X
CLOSE
9B72 4CEAl2 3250 JMP FGREAT
3251
@B75 3252 CLUPDT = *
@B75 3E8513 3253 ROL FCBFLG,X ;IF SECTOR NOT MODIFIED
oB78 99F3 3254 BCC CLDONE ; THEN DONE

4

ATARI DOS 2.0S

@B7A 20F8OF 3255
@B7D 4C6DOB 3256
3257
CLOSE
oBEG 3258
3259
3268
3261
2RO 3262
#BE@ BDB113 3263
2B83 4A 3264
28B4 4A 3265
#BB5 8DA713 3266
3267
3268
#BB8 209BEB 3269
#BSB 8DE613 3270
PBEE 209BGB 3271
gBO1 209D8B 3272
2894 A 3273
@BY5 8DB513 3274
3275
@BY8 4C6E1P 3276
gBOB A9B8 3277
gB9D AGE3 3278
8BYF 1E8113 3279
PBA2 2A 3280
gBA3 88 3281
#BA4 DEF9 3282
ZBA6 60 3283
DEVICE DEPENDENT
@BA7 3284
3285
3286
3287
3288
#BA7 286411 3289
@BAA BD4283 3290
@BAD C9FE 3291
@BAF F@25 3292
#BB1 €927 3293
#BB3 BEIE 3294
#BB5 38 3295
#BB6 E928 3296
gBB8 9819 3297
@BBA BA 3298
@BBB A8 3299
@BBC BICS6B 3300
@BBF 48 3301
@BCE BIC6PR 3302
#BC3 48 3303
#BC4 60 3304
3385
3306
@BC5 @BD8 3307
#BC7 BC31 3308
#BCY @BD2 3309
@BCB @C7B 3318
@BCD 8CB2 3311
@BCF @CB9 3312
gBD1 #D2 3313
3314
2027 3315

JSR WRCSIO ;ELSE WRITE IT
JMP CLDONE ; THEN DONE
. PAGE
; RE-READ DIR RECORD
RRDIR = *
LDA FCBFNO,X :GET FILE NUMBER
LSR A
LSR A
STA SFNUM
7
JSR FNSHFT ;SET ACU=FILE NO/64
STA CDIRS ;TO GET DIR SECTOR
JSR FNSHFT ;SET ACU TO REM=16
JSR FNSHF1
ASL A
STA CDIRD ;TO GET DIR DISPL
JMP RDDIR
FNSHFT LDA #0
FNSHF1 LDY #3 :SHIFT 3 BITS OF
FNSHF2 ASL FCBFNO,X :FILE NO INTO ACU
ROL A
DEY
BNE FNSHF2
RTS
COMMAND
.PAGE "DEVICE DEPENDENT COMMAND"
H
; DFMDDC - DEVICE DEPENDENT CMD EXECUTION
DFMDDC
JSR SETUP ;SET UP FOR EXECUTION
LDA ICCOM,X ;GET COMMAND
CMP #254 ;IS IT FORMAT
BEQ XFV ;BR IF
CMP #MAXDDC :TEST RANGE
BCS DVDCER ;BR OUT OF RANGE
SEC
SBC #5280 : SUBTRACT BASE OF CMDS
BCC DVDCER ;BR OUT OF RANGE
ASL A
TAY
LDA DVDCVT,Y
PHA ; PUSH EXECUTION ADDR
LDA DVDCVT+1,Y
PHA
RTS
DVDCVT
.DBYTE XRENAME-1 ;20-RENAME
.DBYTE XDELETE-1 ;21-DELETE
.DBYTE DVDCER-1 ;INVALID CMD
.DBYTE XLOCK-1 ;23-LOCK
.DBYTE XUNLOCK-1 ;24-UNLOCK
.DBYTE XPOINT-1 ;25-POINT
.DBYTE XNOTE-1 ;26-NOTE
H
MAXDDC = $27 :MAX DVDC+l

75

ATARI DOS 2.0S

3316 ;
@BD3 4CBFl12 3317 DVDCER JMP ERDVDC
@BD6 4C180D 3318 XFV JMP XFORMAT : FORMAT VECTOR

RENAME
2BD9 3319 .PAGE "RENAME"
3329 ;
3321 ;XRENAME - RENAME A FILE OR FILES
3322 ;
3323 XRENAME
9BD9 209EQE 3324 JSR FNDCODE ;DECODE FILE NAME
9BDC 8C@D13 3325 STY TEMP2 ;SAVE FNAME INDEX
@BDF 20210F 3326 JSR SFDIR ;GO FINE FILE IN DIR
@BE2 9003 3327 BCC XRN1 ;BR IF FOUND
?BE4 4ACBBl12 3328 JMP ERFNF
3329 ;
@BE7 20ACOC 3330 XRN1 JSR TSTLOCK ;TEST LOCK
@BEA 209B12 3331 JSR TSTDOS ; IF NOT DOS
@BED D@93 3332 BNE XRNI1A ; THEN
@BEF 201912 3333 JSR DELDOS ; DON'T CHANGE SO
3334 XRN1A
9BF2 AC@D13 3335 LDY TEMP2 ;GET INDEX FOR END FN1
JBF5 20B4QE 3336 JSR FNDCNX ;GO DECODE NEXT FILE NAME
@BF8 209B12 3337 JSR TSTDOS ; IF NOT DOS
@BFB D@OF 3338 BNE XRNI1B ; THEN
JBFD AC@513 3339 LDY CDIRD
9C29 B99514 3349 LDA FILDIR+DFDSSN+1,Y
2Ca3 48 3341 PHA
2C24 B99414 3342 LDA FILDIR+DFDSSN,Y
2Cca7 A8 3343 TAY ;A,Y NEW DOS
aco8 68 3344 PLA
gCc@9 205312 3345 JSR SETDSO :GO WRITE SECTOR ZERO
3346 ;
3347 XRNI1B
acac A200 3348 LDX %0
JCPE AC@513 3349 LDY CDIRD
3359 ;
@Cl1 BD5913 3351 XRN2 LDA FNAME, X ;MOVE FILE NAME
@Cl4 C93F 3352 CMP #'? ;FROM FNAME TO DIR ENT
2Cl6 FOO3 3353 BEQ XRN3 ;BUT DON'T CHANGE WILD CARD
@C18 990614 3354 STA FILDIR+DFDPFN,Y ;CHARS INDICATED IN
FNAME
AC1B C8 3355 XRN3 INY
aclc E8 3356 INX
@C1D E@0B 3357 CPX #11
OC1F 90F0 3358 BCC XRN2
@C21 AE@113 3359 LDX CURFCB ;RESTORE X-REG
3360 ;
9C24 207110 3361 JSR WRTDIR ;GO WRITE CIR DIR RECORD
3362 ;
0C27 209EPE 3363 JSR FNDCODE ;GET OLD FILENAME AGAIN
@C2A 20310F 3364 JSR CSFDIR ;CONTINUE SEARCH OF DIR
@Cc2D 90B8 3365 BCC XRN1l ;BR IF FOUND ANOTHER
3366 ;
@C2F 4CEAl2 3367 JMP FGREAT ;GO TO GOOD ENDING
DELETE
fC32 3368 .PAGE "DELETE"
3369
3370 ; XDELETE - DELETE ALL FILENAMES THAT MATCH
3371
3372 XDELETE
BC32 209EQE 3373 JSR FNDCODE ;GO DECODE FILENAME
pc3s 20210F 3374 JSR SFDIR ;SEARCH DIR FOR FILENAME

76

ATARI DOS 2.0S

ac3s
@C3A
@C3A
@c3D
oc40
aca2

2cas
ac4s8
2C4B
@Cc4D
2Ccs50

@Cc53

2C56
2cs59
acsc
OCSE

2C6l
2C64

2Cce67
@C6A
acé6c
ac6c
@C6F

oCc72
2Cc72
2Cc74
2c76
ac78

ac79

LOCK

acic

ecic
6C7E
acsl

283
@85

aces
2¢8B
@CBE
2¢990

293
296
2¢99
2C9B
@C9E
@CAl

OCA4
@CA7

B@3F 3375
3376
20530C 3377
209B12 3378
DO@3 3379
201912 33890
3381
3382
207110 3383
20310F 3384
90ED 3385
2095190 3386
4CEA12 3387
3388
20BF10 3389
3390
AC@513 3391
20ACOC 3392
A980 3393
990114 3394
3395
20AEQ9 3396
4C6COC 3397
3398
200F10 3399
BOO6 3400
3401
20C510 3402
4C670C 3403
3404
3405
AQ@5 3406
A9FF 3407
9145 3408
60 3409
3410
4CBB12 3411
AND UNLOCK
3412
3413
3414
3415
3416
3417
A920 3418
8DOF13 3419
D@@5 3420
3421
A900 3422
BDOF13 3423
3424
209EQE 3425
20210F 3426
9003 3427
4CBB12 3428
3429
ACO513 3430
B90114 3431
29DF 3432
ADOF13 3433
990114 3434
207110 3435
3436
20310F 3437
90EA 3438

XDELX

XDELY

XDEL3

XDEL@

XDEL1

XDEL2

XDEL2A

XDEL4

DFNF

5 e ve e

LOCK

BCS

JSR
JSR

JSR

JSR
JSR
BCC
JSR
JMP

JSR

LDY
JSR
LDA
STA

JSR
JMP

JSR
BCS

JSR
JMP

LDY
LDA
STA
RTS

JMP

DFNF :BR NOT FOUND

-

XDEL@

TSTDOS

XDELY

DELDOS

WRTDIR ;WRITE DIR ENTRY
CSFDIR ;LOOK FOR NEXT MATCH
XDELX :BR IF FOUND
WRTVTOC

FGREAT

OPVTOC

CDIRD ;GET DIR DISPL
TSTLOCK ;GO TEST LOCK

#DFDEDE ;LOAD DELETED FLAG
FILDIR+DFDFL1,Y :DELETE FILE

DFRDSU
XDEL2A

RDNXTS s READ NEXT SECTOR

XDEL4
*

FRESECT s FREE CURRENT SECTOR
XDEL2

*

#DVDWRQ ;TURN ON WRITE REQ'D
#SFF
(ZDRVA),Y

ERFNF ;FILE NOT FOUND

.PAGE "LOCK AND UNLOCK"

LDA
STA
BNE

XUNLOCK

XLCOM

XLC1

LDA
STA

JSR
JSR
BCC
JMP

LDY
LDA
AND
ORA
STA
JSR

JSR
BCC

XLOCK - LOCK A FILE
XUNLOCK - UNLOCK A FILE

#DFDLOC : SET LOCK

TEMP4

XLCOM ;GO TO COMMON

0 $SET UNLOCK

TEMP4

FNDCODE ; DECODE FILE NAME
SFDIR ;FIND 1ST MATCH

XLC1 :BR MATCH FOUND
ERFNF :BR NOT FOUND

CDIRD ;GET CURRENT DISPL
FILDIR+DFDFL1,Y ;GET LOCK BYTE
#SDF : TURN OFF LOCK

TEMP4 ;OR IN LOCK/UNLOCK
FILDIR+DFDFL1,Y ;SET NEW LOCK BYTE
WRTDIR ;GO WRITE

CSFDIR ;LOOK FOR NEXT MATCH
XLC1 ;BR FOUND

71

ATARI DOS 2.0S

GCA9 4CEAl2 3439 JMP FGREAT ;ELSE DONE

3440 ;

3441 ; TSTLOCK - TEST FILE LOCKED

3442 ;

3443 TSTLOCK
BCAC ACO513 3444 LDY CDIRD sGET DIR DISPL
GCAF B99114 3445 LDA FILDIR+DFDFLl,Y ;LOAD LOCK BYTE
BCB2 2920 3446 AND #DFDLOC ;sMASK LOCK BIT
SCB4 DOO1 3447 BNE TLF ;BR IF LOCKED
ACB6 69 3448 RTS

3449

BCB7 4CC1l12 3450 TLF JMP ERFLOCK

POINT
OCBA 3451 +PAGE "POINT"
3452 ;
3453 ; XPOINT - POINT REQUEST
3454 ;
3455 XPOINT
GCBA BD8513 3456 LDA FCBFLG,X ;IF ARQ SECTORS
GCBD 3941 3457 BMI PERR1 ; POINT INVALID
OCBF BD4DP3 3458 LDA ICAUX4,X ;IF REQUEST IS NOT
@CC2 DD8BAL13 3459 CMP FCBCSN+1,X ;SAME AS CURRENT
@CC5 DPP8 3460 BNE XP1 ; THEN BR
@CC7 BD4CP3 3461 LDA ICAUX3,X
@CCA DD8913 3462 CMP FCBCSN,X
@CCD F@1E 3463 BEQ XP2 ;ELSE NO NEED TO CHANGE
3464 ;
ACCF BD8513 3465 XP1 LDA FCBFLG,X ;IF NOT MODIFIED
@CD2 FOP8 3466 BEQ XPlA :BR
9CD4 20F8OF 3467 JSR WRCSIO ;ELSE WRITE IT
@CD7 A900 3468 LDA #0
9CD9 9D8513 3469 STA FCBFLG,X
@cDpC 3470 XP1A = *
@CDC BD4D@3 3471 LDA ICAUXA4,X
OCDF 9D8C13 3472 STA FCBLSN+1,X
@CE2 BD4C@3 3473 LDA ICAUX3,X
OCES5 9D8B13 3474 STA FCBLSN,X
@CE8 201710 3475 JSR RDNSO sREAD REQ SECTOR
OCEB BOOA 3476 BCS XPERR
3477 ;
OCED BD4E@3 3478 XP2 LDA ICAUX5,X ;TEST REQ DATA LEN
@CF@® DD8613 3479 CMP FCBMLN,X :LESS THEN MAX
OCF3 9085 3480 BCC XP3
ACF5 F993 3481 BEQ XP3
ACF7 3482 XPERR = b
@CF7 4CC312 3483 JMP ERRPDL ;IF NOT THEN ERROR
3484 ;
OCFA 9D8713 3485 XP3 STA FCBDLN,X :;SET NEW DATA LEN
OCFD 4CF@12 3486 JMP GREAT
3487

9DP9 4CB912 3488 PERR1 JMP ERRPOT

NOTE
2D23 3489 .PAGE "NOTE"
3499 ;
3491 ; XNOTE - EXECUTE NOTE REQUEST
3492 ;
3493 XNOTE
OD@3 BD8713 3494 LDA FCBDLN,X :DATA LENGHT VALUE
@D26 9D4E@3 3495 STA ICAUX5,X ;TO AUX 2
2D@9 BD8913 3496 LDA FCBCSN,X ;CUR SEC NO (LO)
@DBC 9D4CO3 3497 STA ICAUX3,X ;TO AUX 3
@DOF BDBA13 3498 LDA FCBCSN+l,X ;CUR SEC NO (HI)

78

ATARI DOS 2.0S

@D..2 9D4D@3 3499
@D..5 4CF012 3500

FORMAT

opis

opls
@D1A
aDlp
@DLF
aD.22
aD24
aD27
aD.29
@D2C
@D2F
2D31
oD 34

oD37
oD39
@D3B

@D3D
@D3D
@D3F
@D41
oD43
aD45
oD46
D48
@D4A
@D4C

@D4F

@D52
@D 54
@D55
@D57
oD58

@D5A
@D5C
@D5E
oD69
oD61
oD63
aD65
2D66
D67

A548
8092503
A547
8DA403
A921
802203
A940
8D@303
AEFE12
A931
AC4602
208607

1019
C099
D@12

AOO9
B147
C9FF
DOB7
c8
B147
C9FF
FO@3
4CB512

4CD312

A909
AB
9145
cs8
10FB

AOO9
A902
9145
cs8
A9C3
9145
cs8
c8
9145

FORMAT

or69
OL6B
@r6cC
OC6E
OC6F
or79

A902
88
9145
cs8
cs8
9145

3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517

3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551

3552
3553
3554
3555
3556
3557

STA
JMP

ICAUX4,X
GREAT

.PAGE "FORMAT"

;TO AUX 4

XFORMAT - FORMAT A DISKETTE

?
;

XFORMAT

LDA

STA

LDA

STA

LDA

STA

LDA

STA

LDX

LDA

LDY

JSR

BPL
CPY
BNE

TSTFMT =
LDY
LDA
CMP
BNE
INY
LDA
CMP
BEQ

XFBAD JMP

XFERR JMP

XF@
LDA
TAY
XF1l STA
INY
BPL

~

LDY
LDA
STA
INY
LDA
STA
INY
INY
STA

LDA
DEY
STA
INY
INY
STA

ZSBA+1
DCBBUF+1
ZSBA
DCBBUF
#DCBCFD
DCBCMD
$540
DCBSTA
DRVTYP
#3531
DSKTIM
DSIO2

XF@
#5990
XFERR

*
0
(2SBA),Y
#SFF
XFBAD
(ZSBA),Y
#SFF
XFERR
ERDBAD

RETURN

40
(ZDRVA),Y
XF1

(14

$2
(ZDRVA),Y
#$C3
(ZDRVA),Y

(ZDRVA),Y

$502

(2ZDRVA),Y

(ZDRVA),Y

tMOVE VTOC BUF ADR
:TO DCB

sFORMAT
:TO DCB
;TELL SIO RECIEVING DATA

:GET DR TYPE 128 OR 256

;BUS I.D.

;GET FORMAT TIME OUT VALUE
;GOTO LOCAL DISK HANDLER THEN
SIO

;IF NO ERRORS CONT FORMATING
;ELSE CK FOR DEVICE DONE ERROR
:NO, THEN ERROR EXIT

;ELSE CK FOR BAD SECTOR INFO
s RETURNED BY CONTROLLER

:BAD SECTORS RET ERR MSG

:NOT BAD SEC ERR, REQ ERR EXIT

;DO ERROR EXIT

;SET
;TYPE = 2

sSET MSN AND
;NSA=107=2C3

79

ATARI DOS 2.0S

oD72
@D74
D76
@D7&
oD7%
@oD7E

oD7D
gD7¥F
2D81

D8
[5)01: 1
D87
op8%
@D82.
@D8C

@D8E

@D91
@D9:
@D94.
@D97
@D9¢
@092
@D9C
@D9F
@DAZ
O@DAE

@DA

@DAR

AQGOA
A9FF
9145
c8

Cco64
DAF9

A9OF
AOBA
9145

A@37
A900
9145
c8

A97F
9145

299510

A999

A907
8D@613
207119
CE@613
19F8

201912

4CEA12

3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3599
3591
3592
3593

LIS'T DIRECTORY

@DAD

@DAD
@DAY
@DB2
@DB'5
@DB7

@DB9
@DBC

ODBRE
@DCl

80

A909
8D@F13
20210F
992C
BA30

2C@F13
3053

ACOF13
B147

3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3687
3608
3689
3619
3611
3612
3613
3614
3615
3616
3617
3618
3619
3628
3621

LDY #DVDSMP

LDA #SFF ;SET SECTOR MAP TO
XF2 STA (ZDRVA),Y ;ALL ONES
INY
CPY #DVDSMP+90
BNE XF2
LDA #S$OF ;DEALOCATE 1ST 4 SECTORS

LDY #DVDSMP ;FOR BOOT
STA (ZDRVA),Y

LDY #DVDSMP+45 ;DEALLOCATE MIDDLE 9

LDA

STA (ZDRVA),Y ;FOR

INY ;VTOC AND FILE DIR
LDA #S$7F

STA (ZDRVA),Y
JSR WRTVTOC sWRITE THE VTOC

LDA #0 :@ FILLE DIR SECTORS
TAY

XF3 STA FILDIR,Y ;USE FILE DIR BUFFER

INY
BPL XF3

LDA #7 sWRITE TO ALL 8 DIR SECTORS
STA CDIRS

XF4 JSR WRTDIR

H
i
H
H
H
;
7
H
7
H
i
7
H
H

DEC CDIRS
BPL XF4

JSR DELDOS ;SET NO DOS

JMP FGREAT ;DONE

.PAGE "LIST DIRECTORY"

LISTDIR - LIST THE DIRECTORY

GDCHAR - GET NEXT DIR CHARACTER

THE DIRECTORY IS LISTED VIA OPEN
LIST DIRECTORY FUNCTION EACH DIR
ENTRY THAT MATCHES THE FILE SPEC

IS CONVERTED TO A PRINTABLE FORMAT
INTO A SECTOR BUFFER. THE GET BYTE
ENTRY IS USED TO GET THE PRINTABLE
CHARACTERS ONE AT A TIME. THE

LAST LINE PRINTED IS ALWAYS A

COUNT OF THE NUMBET OF SECTORS IN USE
AND THE NUMBER REMAINING AVAILABLE SECTORS

ISTDIR
LDA #0
STA TEMP4
JSR SFDIR ;SEARCH FOR A FILE NAME
BCC LDENT1 :sBR IF FOUND
BCS LDCNT ;BR IF NOT FOUND
GDCHAR
BIT TEMP4 :TEST FLAG
BMI LDDONE sBR IF ALL DONE
;
LDY TEMP4 ;GET COUNT OF CHARS SENT

LDA (ZSBA),Y ;GET NEXT CHAR

ATARI DOS 2.05

2DeC3
2DCé
2D
@DCB
@DeCD
@DCF
DDl
2Dn3

@DD6

@Dn9
@DDhB
@DDE
@Dzl

@D:z3
@D1z6

@D129
@D=C
@DIIE
@DF9

LIST

@DF1
@DF2
ODF4
@DF5

@DF6

@DF9
ODFB
@DFD
QEQQ
QEQ2
QE®3
QEQ4
QEG6

QE@9
QEOB
QEPE

QE1l1l

BE14
QE15
QE16
QE17
QE18
@E19
OE1A
QE1B
QF1C
@E:1D
QFE1E
QE1F
0F.20
2¢0D
QE21
QK21

8D@813 3622
EEQF13 3623
C99B 3624
DO 3625
Cco11 3626
BOO8 3627
A980 3628
8DOF13 3629
3630
4CFQ12 3631
3632
A909 3633
8DOF13 3634
20310F 3635
B@26 3636
3637
20210E 3638
4CFQ12 3639
3640
208B1@ 3641
AQ04 3642
B145 3643
48 3644
DIRECTORY
88 3645
B145 3646
A8 3647
68 3648
3649
20570E 3650
3651
AQQ3 3652
A20C 3653
BD14@E 3654
9147 3655
c8 3656
CA 3657
10F7 3658
20670E 3659
3660
A909 3661
8DOF13 3662
4CEAl12 3663
3664
3665
4CF412 3666
3667
53 3668
52
4F
54
43
45
53
20
45
45
52
46
20
3669
35
40

STA
INC
CMP
BNE
CPY
BCS
LDA
STA

GDCRTN JMP
LDENT LDA
STA
JSR
BCS
LDENT1
JSR
JMP

LDCNT JSR
LDY
LDA
PHA

DEY
LDA
TAY
PLA

JSR

LDY
LDX
MVFSCM LDA
STA
INY
DEX
BPL
JSR

LDA
STA
JMP

LDDONE
JMP

SVDBYT
TEMP4
$EOL
GDCRTN
17
LDENT
1580
TEMP4

GREAT

40
TEMP4
CSFDIR
LDCNT

FDENT
GREAT

RDVTOC
#DVDNSA+1
(ZDRVA),Y

(ZDRVA),Y

CVDX

33
$FSCML-1
FSCM, X
(ZSBA),Y

MVFSCM
CVDY
$0

TEMP4
FGREAT

ERREOF

FSCM .BYTE "SROTCES

FSCML =

*-FSCM

.INCLUDE #E:

. INCLUDE

; IN SVDBYT

: INC COUNT

;TEST IF EOL DONE

sBR NOT EOL

sWAS THIS AN ENTRY
sBR IF IT WAS

;s ELSE INDICATE END
:IN TEMP4

;DONE
;CLEAR CHAR COUNTER

;SEARCH FOR NEXT MATCH
;BR NO MORE MATCHES

;FORMAT ENTRY
; DONE

s READ VTOC
;GET # SECTOR AVR

sAND CONVERT
;SET EOL

;PUT IN CUTE
;s MSG

; SET CHAR CNT

;END OF FILE

EERF "

#D:ATFMS3. SRC

81

ATARI DOS 2.0S

LIST
PE21

PE21
QE23
PE25
PE27
QE2A
QE2D
QE21?
PE31
QE33
QE3’3
QE36
QE38
QE3A

QE31B
QE3R
QE40
OE4..
QE42
OE44

QE46G
PE48
PE4A
OE4AR

QE4L
QES1
QE54

QES5”
QE59
QESC
QESE
QE6).
QE62

QE6%
QE67
QE6%
QE6E:
QE6L
QE7¢

PE71

LIST

OE74

PE7€
QE79
@E7C
QE7LC
OE7E
QE81
QE84
QE85
OE88

82

DIRECTORY
4900
4901
49062
4903
4004
AGP0O 4005
A920 4906
9147 4907
AE®513 4008
BD@114 4009
2920 4019
F204 4911
A92A 4012
9147 4913
c8 4914
A920 4015
9147 4016
c8 4917
4018
BD@614 4019
9147 4020
E8 49021
c8 4022
[od21%)s] 49023
90F5 4024
4925
A920 4926
9147 4927
c8 4028
8C@F13 4029
4030
AE@513 4831
BC@214 4032
BD2314 4833
4934
4935
A264 4936
20716E 4037
A20A 4038
20710E 4039
98 4949
208DOE 49041
4042
AQ11 4943
A99B 4944
9147 4845
AQ0QO 4946
8COF13 4847
69 4948
4949
8EPE13 4050
DIRECTORY
A2FF 4051
4052
8D@D13 4053
8COC13 40854
E8 4455
38 4056
ADOC13 4057
EDPE13 4058
A8 4959
AD@D13 40690
E990 4061

.PAGE

FORMAT DIR ENTRY INTO A SECTOR BUFFER

7
FDENT

LD1

LD2

~

CVDX

CVDY

CVDIGIT STX

CcvDl

LDY
LDA
STA
LDX
LDA
AND
BEQ
LDA
STA
INY
LDA
STA
INY

LDA
STA
INX
INY
CPY
BCC

LDA
STA
INY
STY

LDX
LDY
LDA

LDX
JSR
LDX
JSR
TYA
JSR

LDY
LDA
STA
LDY
STY
RTS

LDX

STA
STY
INX
SEC
LDA
SBC
TAY

SBC

$0 ;s START AT DISPL ZERO
#520 s START WITH A BLANK
(2SBA),Y

CDIRD

FILDIR+DFDFL]1, X

#DFDLOC ;BUT IF FILE LOCKED
LDl

$'* ;s CHANGE TO AST
(ZSBA),Y

520 ;s FOLLOWED BY A BLANK
(2ZSBA),Y

FILDIR+DFDPFN,X :MOVE THE I2 CHAR
(2SBA),Y ;FILE NAME

$#13
LD2

520 ;s FOLLOWED BY A BLANK
(ZSBA),Y

TEMP4 ;SAVE INDEX = 15
CDIRD

FILDIR+DFDCNT,X :;SET A,Y
FILDIR+DFDCNT+1,X ;=SECTOR COUNT

$100 ; CONVERT AND MOVE
CVDIGIT ;108S DIGIT

t10

CVDIGIT ;105 DIGIT
STDIGIT ;1S DIGIT

$17 ; THEN PUT OUT
$EOL ;AND EOL

(2SBA),Y

#0

TEMP4 ;SET CHAR CNT = @
TEMP3 :SAVE DIGIT VALUE
$#SFF

TEMP2 :SAVE CURR VALUE HI
TEMP1 :AND LOW

s INC DIGIT COUNTER

;s SUBRTACT DIGIT VALUE
TEMP1 s FROM CUR VALUE
TEMP3

TEMP2
30

ATARI DOS 2.0S

OESA

@ES8C
OESD
QE8P
@E92
GE9}
@E97
PE9A
GE9D

FILE
OE9E

GE9E
@EAl
@EA3
GEAG
OEAB
GEAA
OEAC
OEAD
@EAF
GEB1

PEB3

OEB4
OEB6

OEBSB
OEBB
GEBC

@EBE
OECO

@EC3
PEC4

BZEA

8A
9930
AC@F13
9147
EEOF13
AD@D13
AC@C13
60

4962
4963
4964
4965
4066
4067
4068
4069
4070
4071

NAME DECODE

BD4483
8543
BD4503
8544
A@02
Bl43
88
3858
C93A
D@F7

cs8

A20B
A920

9D5913
CA
10FA

A209
B8EOC13

c8
Bl143

4072
4073
4074
4075
4976
4977
4978
4979
49089
4981
4982
4983
4084
4985
4086
4087
4088
4089
4999
4091
4092
4093
4094
4095
4096

4097
4998
4099
4100
4101
4102
4103
4104
4105
4106
41967
4108
4109
4119
4111
4112

4113
4114
4115
4116
4117
4118
4119
4129
4121
4122

BCS CvDl :IF NOT GONE MINUS, DO AGAIN
1

TXA :DIGIT TO ACU
STDIGIT ORA #$30 ;PLUS ASCII ZERO

LDY TEMP4 ;GET OUTPUT INDEX

.

H
.
H
.
H
H
H
H

H
H
;
.
H

;

.
7
b
H
H
H
H

i

STA (2SBA),Y ;AND SET DIGIT

INC TEMP4 INC OUTPUT INDEX
LDA TEMP2 :LOAD VALUE HI
LDY TEMP1 ;AND VALUE LO

RTS

.PAGE "FILE NAME DECODE"
FNDCODE - DECOPE A FILE NAME

THE USER FILENAME IS POINTED TO BY
ZBUFP, IT IS ON THE FORM P.X WHERE P

IS THE PRIMARY FILE NAME (1 TO 8 CHARS)
AND X IS THE EXTENDED FILE NAME

(6 TO 4 CHARS). THE PERIOD IS OPTIONAL
(IF NOT PRESENT, THEN NO EXTENSION).

THE DECODED FILENAME WILL BE 12 CHARS

IN LENGTH. THE P FIELD WILL BE

LEFT JUSTIFIED IN THE 1ST 8 BYTES.

THE X FIELD WILL BE LEFT JUSTIFIED IN
THE LAST 4 BYTES. BLANKS ARE USED

TO PAD THE FIELDS TO FULL SIZE.

IF THE USER SPECIFIED P OR X FILEDS
CONTAIN MORE THAN 8 OR 4 CHARS, THEN THE
EXTRA CHARS ARE IGNORED. THE '*'

WILD CARD CHAR WILL CAUSE THE REST

OF THE FIELDS TO FILLED WITH THE

'?' WILD CARD CHAR. ANY NON-ALPHANUMERIC
CHAR TERMINATES THE FILENAME.

NDCODE

LDA ICBAL,X
STA ZBUFP

LDA ICBAH,X
STA ZBUFP+1

LDY #2 ;FIND THE °'D’
FDOA LDA (2BUFP),Y
DEY
BMI FNDERR ;BR IF 256 CHARS SEEN
CMP #':
BNE FDOA
FDOB
INY
FNDCNX
LDX #11 ;CLEAR FILENAME TO BLANKS
LDA #$20
FDO STA FNAME,X
DEX
BPL FD@
H
LDX #0 ;SET FNAME CHAR CNT TO @
STX EXTSW :SET NOT IN EXTENSION
FD1 INY :INC ZBUFP INDEX

LDA (ZBUFP),Y ;GET BUF CHAR

83

ATARI DOS 2.08

FILE NAME DECODE

4123 ;
OEC6 C92A 4124 CMP #'* ; TEST FOR WILD CARDS
PEC8 D@OB 4125 BNE FD3 ;BR NOT WILD CARD
4126 ;
OECA A93F 4127 FD2 LDA #'? ;s LOAD ? WILD CARD
OECC 200AQF 4128 JSR FDSCHAR ;GO STORE IT
OECF 90F9 4129 BCC FD2 ;BR IF PORX NOT FULL
OED1 10F@ 4130 BPL FD1 ; BR IF AT START OF X
OED3 302E 4131 BMI FDEND ;BR IF AT X END
4132 ;
OED5 C92E 4133 FD3 CMP #'. sWAS CHAR FIELD SEPERATOR
GED7 D@BC 4134 BNE FD4 ;BR IF NOT
OED9 2C@AC13 4135 BIT EXTSW sWAS THERE ALREADY 1 CHAR
PEDC 3925 4136 BMI FDEND ;BR IF WAS END
OEDE A208 4137 LDX #8 ;s ADV FNAME INDEX TO XFIELD
OEEQ 6EOC13 4138 ROR EXTSW ;SET EXTSW - MINUS
OEE3 90DE 4139 BCC FD1 ;CONT WITH NEXT CHAR
4149
OEE5 C93F 4141 FD4 CMP #'? WAS IT WILD CARD
OEE7 FO14 4142 BEQ FD6 ;BR IF WILD CARD
4143 ;
OEE9 C941 4144 CMP #'A ;IS CHAR ALPHA
OEEB 9004 4145 BCC FD5 ;BR NOT ALPHA
GEED C95B 4146 CMP #$5B ;TEXT HI ALPHA
@EEF 900C 4147 BCC FD6 ;BR IF NOT APLHA
4148 ;
OEF1 E00Q 4149 FD5 CPX #0 ; IF FIRST CHAR NOT
GEF3 F@12 4159 BEQ FNDERR ;s ALPHA THEN ERROR
4151 ;
OEF5 C930 4152 CMP #$30 ;IS CHAR NUMERIC
OEF7 900A 4153 BCC FDEND ;BR NOT NUMERIC (END OF NAME)
OEF9 C93A 4154 CMP #S$3A ; TEST NUMERIC HI
OEFB BO@6 4155 BCS FDEND ; BR NO NUMBER
4156 ;
OEFD 200A0F 4157 FD6 JSR FDSCHAR sSTORE THE CHAR
OFP9 ACC30E 4158 JMP FD1 sAND CONTINUE WITH NEXT
4159
OF@3 AEQ113 4169 FDEND LDX CURFCB ;s RESTORE X REG
OFP6 60 4161 RTS
4162 ;
@F@7 4CC512 4163 FNDERR JMP ERRFN ;s INDICATE FILENAME ERROR

FMS - 128/256 BYTE SECTOR (2.8S)
FILE NAME DECODE

OFOA 4164 . PAGE
4165 ;
4166 ; FDSCHAR - STORE FILENAME CHAR
4167
4168 ; ON ENTRY
4169 ; A = CHAR
4178 ; X = NEXT FN POSITION
4171 ;
4172 ; ON EXIT
4173 ; CARRY - SET IF FIELD FULL
4174 ; MINUS - IF START OF EXECUTION
4175 ; PLUS - IF END OF EXECUTION
4176 ;
4177 FDSCHAR
OFOA EQ08 4178 CPX #8 ;AT EXECUTION
OFAC 990D 4179 BCC FDSC2 sBR IF NOT
OF@E FB9O5 4180 BEQ FDSC1 ;BR IF 1ST CHAR OF
4181 ;
OF1@ EGOC 4182 CPX #12 ;AT END OF EXIT
OF12 99097 4183 BCC FDSC2 ;BR NOT AT END

84

ATARI DOS 2.0S

OF14

OF15
OF18
OF1A

OF1B
OF1E
OF1F
OF20

60

2C8C13
3001
60

9D5913
E8
18
60

4184
4185
4186
4187
4188
4189
4190
4191
4192
4193

DIRECTORY SEARCH

OF21

@F21
OF 23
OF 26
9F 29
@F 2C
OF 2E

@F31
PF34
OF 35
OF38
OF3A

@F3C
OF 3F
9F41
0F44
0F46

2F48
gF4B

OF4D
OF'50

A9FF
8D0213
8D@613
8D9713
A979
8D@513

EE®713
18
AD@513
6910
1911

EE@613
A998
CDP613
9092
FQ48

206E10
A900

8D@513
A8

4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218

4219
42290
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232

4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244

RTS
H
FDSC1 BIT EXTSW ;DO NOT STORE CHAR UNLESS
BMI FDSC2 ;s PERIOD WAS SEEN
RTS
FDSC2 STA FNAME,X ;SET CHAR INTO NAME
INX ;s INC TO NEXT CHAR
CLC
RTS

.PAGE "DIRECTORY SEARCH"

SFDIR - SEARCH FILE DIRECTORY
CSFDIR - FILE DIRECTORY SEARCH

THE FILE DIRECTORY IS SEARCHED FOR THE
FILENAME IN FNAME. THE SEARCH STARTS

AT THE CENTRAL SECTOR+1 AND WILL CONTINUE
FOR UP TO A TOTAL OF 8 SECTORS. WHEN
TESTING FOR FNAME MATCH, '?' FNAME

CHARS WILL ALWAYS MATCH THE CORESPONDING

DIR FILENAME CHAR. IF A MATCH IS FOUND
CDIRS CONTAINS THE RELATIVE DIRECTORY SECTOR
NUMBER (8-7) AND CDIRD (AND THE Y REG)
CONTAINS THE DISPLACEMENT OF THE ENTRY.
AFTER A MATCH HAS BEEN FOUND, THE DIRECTORY CAN
BE SEARCHED FOR ANOTHER MATCH VIA THE CSFDIR
ENTRY POINT. IF A MATCH HAS NOT BEEN FOUND
THEN DHOLES AND DHOLED WILL POINT TO A
DIRECTORY HOLE THAT CAN BE USED.

IF DHOLED = FF THEN THE DIRECTORY IS FULL.
THE CARRY IS RETURNED CLEAR IF FILE FOUND,
SET IF FILE NOT FOUND.

FDIR
LDA #SFF ;s INIT TO -1
STA DHOLES ;DIR HOLE SECTOR
STA CDIRS ;CUR DIR SECTOR
STA SFNUM ;FILE NUMBER
LDA #5790 ;INIT TO -16 (~ENTRY LENGTH)
STA CDIRD ;CUR DIR DISPL
CSFDIR
INC SFNUM
CLC
LDA CDIRD ;CDIRD=CDIRD+ENTRY LEN
ADC #DFDELN
BPL SFD2 ;s IF RESULT <128 THEN BR
: ELSE AT END OF DIR SECT
INC CDIRS ;s INC TO NEXT DIR SECTOR
LDA #8 ;s TEST END OF DIR
CMP CDIRS
BCC SFD1 ;BR NOT END
BEQ SDRTN
SFD1 JSR RDDIR sREAD THE NEXT DIR RECORD
LDA #0 :SET DIR DISPL = @
SFD2 STA CDIRD ;SET NEW DIR DISPL
TAY ;PUT DISPL IN Y AS INDEX

85

ATARI DOS 2.0S

DIRECTORY SEARCH

@F5..
OF54

OF56
OF58
OF5Ah

@F5C
OF5E
OF6).
OF63
OF65

OF6¢&
OF62.
OF6E:
OF6C
AF6E

OF7¢f
OF71

@F7:
@F7¢

OF 7€
OF7E
OF7E
OF81
OF84
OF87

OF82
@F8I

OF8F

OF99
OF93

B99114 4245
FO1D 4246

301B 4247
2991 4248
D@DS5 4249

4259

4251
A200 4252
BD5913 4253
C93F 4254
FO@5 4255
D99614 4256

DACY 4257

E8 4258
c8 4259
E99B 4260
DOEE 4261

4262
18 4263
991D 4264

4265

4266
AD@213 4267

1912 4268
4269
4270
4271
AD@613 4272
809213 4273
AD®513 4274
8D@313 4275
AD@713 4276
8DA413 4277
4278
B99114 4279

30A2 4280
4281
4282
4283
38 4284
AE®113 4285
60 4286

SFD3

SFD4

SFDSH

ELSE

SFDSH1

ELSE

SDRTN

WRITE DATA SECTOR

OF94

OF94
OF97

OF99

OF9A

@F9C
@F9LC
OFAL
OFA2
OFAS

86

4287
4288
4289
4299
4291

BD8513 4292
300F 4293

4294
oA 4295
1909 4296

4297
oA 4298
9D8513 4299
20F80F 4309
3924 4301
4COF10 4382

43983

e me v

RTNXS

WRU1

LDA
BEQ

BMI
AND
BNE

ENTRY IN

LDX
LDA
CMP
BEQ
CMP

BNE
INX
INY
CPX
BNE

CLC
BCC

LDA
BPL

LDA
STA
LDA
STA
LDA
STA

LDA
BMI

FILDIR+DFDFL1,Y ;GET FLAG 1

SFDSH ;BR IF UNUSED (END OF USED
ENTRIES)}

SFDSH ;BR IF DELETED

#DFDOUT ; IF OPEN OUTPUT

CSFDIR ;DON'T FIND IT

USE, TEST FOR MATCH

2 ;TEST MATCH ON 12 CHARS

FNAME, X ;FILE NAME CHAR

$'? ;IS FNC WILD CARD

SFD4 ;THEN IT MATCHES

FILDIR+DFDPFN,Y ;ELSE IT MUST MATCH FOR

REAC

CSFDIR ;s IF NOT MATCH THEN TRY NEXT
;INC CHAR CNT

11 ;TEST ALL

SFD3 ;AND CONTINUE CHECK
;WE HAVE A MATCH

SDRTM

DHOLES ; IF DHOLES NOT MINUS

SFDSH1 ;THEN ALREADY HAVE A GOOD HOLE

CDIRS sMOVE CURR DISPL SECTOR

DHOLES ;AND CURRENT DIR DISPL

CDIRD :TO HOLE SECTOR AND DISPL

DHOLED

SFNUM ;SAVE HOLE

DHFNUM ;FILE NUMBER

FILDIR+DFDFL1,Y ;IF HOLE WAS A DELETED
CSFDIR :ENTRY THEN CONTINUE

WE ARE AT END OF

SEC

LDX
RTS

+USED ENTRIES THUS FILE NOT
FOUND

CURFCB sRESTORE X REG

.PAGE "WRITE DATA SECTOR"

LDA
BMI

ASL
BPL

ASL
STA
JSR
BMI
JMP

WRTNXS - WRITE NEXT SECTOR

FCBFLG,X :;IF ACQUIRING SECTORS

WRTN1 ; THEN NOT UPDATE
A ; IF SECTOR NOT MODIFIED
WRU1 ;THEN DON'T IT

A
FCBFLG,X ;TURN OFF FLAG BITS

WRCSIO :WRITE CURRENT SECTOR
WRNERR ;BR IF BAD I/0O
RDNXTS ;s ELSE READ NEXT SECTOR

ATARI DOS 2.0S

OFA8

OFAB
OFAE
OFBl1

OFB3
OFB6
OFBY
OFBC
OFBR
OFBI*
OFC2

OFC4
OFC7

OFC"H
OFCe
OFCI?
OFDL
OFD4
OFD7

OFDA
OFD>D
OFD?

OFE2
OFES5
OFE7
OFEA
@FED

200611

BD8713
ACFB12
9147

BD8C13
1D8113
ACF812
9147
c8
BD8B13
9147

20F80F
1911

AD@3083
8DOF13
A909

9D8213
AD@F13
4CD312

FESF13
DOA3
FE9013

200210
A900

9D8B13
9D8C13
9D8713

4304
4305
4306
4327
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337

WRTN1 JSR

WRTLSEC LDA

WRTLS1 LDY
STA

:

WRTN2 LDA
ORA
LDY
STA
INY
LDA
STA

JSR
BPL
WRNERR LDA
STA
LDA
STA
LDA
JMP

WRTN5
INC
BNE
INC
WRTN6
JSR
LDA
STA
STA
STA

WRITE DATA SECTOR

OFF?
OFF3

OFF 5
@FF7

OFF3
OFF9
OFFC
@FFF

1002
1085
1008
1008
100E

100F
100F

READ

180'F

10¢/F
1012

ADF812
908613

18
60

38

BD8A13
BC8913
4CF711

BD&B13
9D8913
BD8C13
9D8A13
60

4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
45

50

DATA SECTOR

BD8513
F0Oa3

5000
5001
5002
5003
5004
5805
5006

LDA

STA
WRNRTS

CLC

RTS

WRCSIO SEC
RWCSIO LDA
LDY
JMP

MVLSN LDA
STA
LDA
STA
RTS

GETSECTOR ;GET A NEW SECTOR

FCBDLN,X ;GET DATA LEN
DRVLBT ;s INTO LAST BYTE
(ZSBA),Y ;OF SECTOR

FCBLSN+1,X ;MOVE LINK SECTOR
FCBFNO,X ;PLUS FILE NUM
DRVMDL ;TO BYTES 126,127
(2ZSBA),Y ;OF SECTOR BUFF

FCBLSN, X

(ZSBA),Y

WRCSIO sWRITE SECTOR
WRTN5 ;BR NOT ERROR
DCBSTA :SAVE ERROR STATUS
TEMP4

0 ;CLOSE FILE
FCBOTC, X

TEMP4 s RECOVER ERROR CODE
RETURN

FCBCNT,X ;INC SECTOR CNT
WRTN6

FCBCNT+1,X

MVLSN ;sLINK TO CUR
1]

FCBLSN,X ;LINK =0
FCBLSN+1,X

FCBPLN,X ;DLN =@

DRVMDL
FCBMLN, X

sWRITE CUR SECTOR
FCBCSN+1, X
FCBCSN, X
DSIO

FCBLSN,X ;MOVE LINK
FCBCSN, X

FCBLSN+1, X
FCBCSN+1, X

-INCLUDE #4E:
. INCLUDE #D:ATFMS4.SRC

«PAGE "READ DATA SECTOR"

M3 e me v

DNXTS
LDA
BEQ

RDNXTS - READ NEXT SECTOR

FCBFLG,X ;IF NOT UPD MODE
RDNSO :BR

87

ATARI DOS 2.0S

1014 4C940F 5007
1217 5088 RDNSO
1417 BDS8B13 5009
181A 1D8C13 5010
101D D@32 5011
101F 38 5012
1029 69 5013
1021 200210 5814 RDNS1
1024 18 5815
18025 20F90F 5016
1028 3635 5817
5018 ;
5819 ; ELSE
5020 :
102A ACF812 5021
142D B147 5022
1A2F 29FC 5823
1431 DD8113 5024
1634 D@2C 5@25
5026 ;
1836 B147 5027
1938 2903 5028
143A 9D8C13 5829
143D C8 5030
103E Bl147 5831
1849 9D8B13 5832
5833 ;
1043 C8 5834
1044 Bl147 5835
1046 48 5836
1047 BD8413 5037
184A DOE8 5038
5039 ;
144C 68 5040
144D 3002 5041
184F A97D 5842
1851 297F 5043 RDNS2
1853 48 5044
5845 ;
1854 68 5846 RDNS3
1855 9D8613 5847
5048 ;
1458 A90¢ 5049
1A5A 9D8713 5050
READ DATA SECTOR
165D 18 5851
105E 6@ 5852
105F 2QE512 5653 RDIOER
1062 5854 RDFNMM
1862 BD42@3 5855
1065 C921 5856
1067 FO03 5657
1069 20C712 5058
106C 38 5059 RDDELE
106D 60 5860
5861 ;

READ/WRITE DIR

106E 5062
5063 :
5064 ;
5065 ;
106E 18 5866 RDDIR

88

GOTO

LDY
LDA
AND
CMP
BNE

LDA
AND
STA
INY
LDA
STA

INY
LDA
PHA
LDA
BNE

PLA
BMT
LDA
AND
PHA

PLA
STA

LDA
STA

CLC
RTS
JSR

LDA
CMP
BEQ
JSR
SEC
RTS

WRTNXS ;ELSE WRITE FIRST
*
FCBLSN,X ;IF LSN NOT
FCBLSN+1,X ;2ERO
RDNS1 :BR
;ELSE EOF
MVLSN :MOVE LINK TO CURRENT
s READ
RWCSIO ;CURRENT SECTOR
RDIOER :BR IF OK READ
1/0 ERROR
DRVMDL
(2SBA),Y ;TEST FOR SAME
#SFC ;FILE NO
FCBFNO, X
RDFNMM ;IF NOT THEN ERROR
(2SBA),Y :MOVE LINK SECTOR
#s03
FCBLSN+1,X
(2SBA),Y
FCBLSN, X
;INC TO LEN BYTE
(2SBA),Y ;GET LEN BYTE
:SAVE IT
FCBSLT,X :GET SECTOR LEN TYPE
RDNS3 :BR IF NEW TYPE
:GET LEN
RDNS2 :BR IF OLD SHORT SECTOR
$125 ;ELSE SET FULL SECTOR
#S7F :TURN OFF MSB
:BALANCE STACK
FCBMLN,X :SET MAX LEN
t0 :SET CUR DATA LEN = 0
FCBDLN, X
ERRIO :I/0 ERROR
* ;FILE NUMBER MISMATCH
ICCOM, X
$521 ;WAS THIS DELETE
RDDELE :BR IF DELETE
ERFNMM :BR NOT DELETE
; INDICATE EOF TO DELETE

.PAGE "READ/WRITE DIR"

CLC

RDDIR/WRDIR READ/WRITE DIRECTORY

:SET READ

ATARI DOS 2.0S

106¢F

1871

1072
1853
1875
1878
185A

187D
187E
1861
1883
1884
1886

1868

9901

38
28

A914
8D@583
A901

BD%403

18

AD@613

6969

A8
A901

6900

4ACAB1#9

5067
5068
5069
5079
5871
5072
5073
5074
5875
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085

READ/WRITE VTOC

108B

188B
188D
188F
1891
1892
19093

1895
1097
1999
1909B

199C
169D
109F
1022
10214

1627
1429

102B

181C
10ALF
1882
1914

18E5
18E7
1089

10EC

AP0O5
B145
F92091
69
18
9007

ARG5
A980
9145
38

28
A546
8D@583
A545
8D0403

AP68
A901

28

AEFE12
206C0A7
3801
60

c983
FO03
4CES512

4CC912

5086
5087
5888
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5899
5100
5101
5102
5103
5104
5185
5106
5187
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130

BCC

WRTDIR SEC

DIRIO PHP
LDA
STA
LDA
STA

CLC
LDA
ADC
TAY
LDA
ADC

JMP

DIRIO

;SET WRITE

;SAVE READ WRITE
#FILDIR/256 ;MOVE BUF ADDR
DCBBUF+1 ;TO DCB

#FILDIR&255
pcBBUF
CDIRS ;CDIRS+
$569 1 ((40*18)/2)+1
;INTO A,Y
$1 ;IS DIR SECTOR NUMBER
0
DSYSIO :GO DO SYSTEM 1/0

.PAGE "READ/WRITE VTOC"
; RDVTOC/WRCTOC - READ/WRITE VTOC
RDVTOC
LDY #DVDWRQ 1 IF WRITE REQD
LDA (2ZDRVA),Y
BEQ RDVGO
RTS
RDVGO CLC 1SET READ
BCC VTIO
WRTVTOC
WRVTOC LDY $#DVDWRQ 1 TURN OFF
LDA $#0 sWRITE READ
STA (2DRVA),Y
SEC
VTIO PHP 1SAVE R/W
LDA 2ZDRVA+1 tMOVE BUF ADPDR
STA DCBBUF+1 ;1 TO DCB
LDA 2DRVA
STA DCBBUF
LDY #$S68 :tREAD SECTOR
LDA #1 ;(40*18)/2
DSYSIO
PLP
DSYSIA
LDX DRVTYP ;s LOAD DRIVE TYPE
JSR BSIO ;GO DO I/0
BMI DSIOER 1BR IF ERROR
RTS sRETURN
DSIOER CMP #DCBDER ;WAS IT DATA ERROR
BEQ DEAD :1BR IF WAS
JMP ERRIO 1ELSE USER PROBLEM
DEAD JMP ERRSYS sFATAL ERROR
;s OPEN VTOC

89

ATARI DOS 2.0S

5131 OPVTOC

10BF 208B10 5132 JSR RDVTOC sREAD IT
16C2 4C9510 5133 JMP WRTVTOC ;s THEN WRITE IT
5134 ;
5135 ; INSURES NOT PROTECTED
5136 ;
FREE SECTOR
18ChH 5137 +.PAGE "FREE SECTOR"
5138 ;
5139 ; FPRESECT -~ FREE CURRENT SECTOR
5146
5141 FRESECT
18C!%5 BD8913 5142 LDA PCBCSN,X
16C8 1D8A13 5143 ORA FCBCSN+1,X
16CB FO38 5144 BEQ FSRTS
18CDh A900 5145 LDA %0
18Cy A@03 5146 LDY #3 :DIVIDE SECTOR #
10D.. 5E8A13 5147 FS1 LSR FCBCSN+1,X ;BY 3 TO GET BYTE NO
10D4 7E8913 5148 ROR FCBCSN,X ;:;WITH REM IN ACU
18D 6A 5149 ROR A
10D8 88 5150 DEY
10D% DOF6 5151 BNE FSl1
5152
190D AOG5 5153 LDY #5
10DD 6A 5154 FSs2 ROR A ;TO FOR BYT BIT NO
10D 88 5155 DEY
18DI" D@FC 5156 BNE FS2
5157 ;
10E]. A8 5158 TAY ;BIT NO (8-7) INTO Y
10E:! A900 5159 LDA 30
10E4 38 5160 SEC s SHIFT IN A BIT
18E5 6A 5161 FS3 ROR A ; TO PROPER LOCATION
10E6 88 5162 DEY
18E” 108FC 5163 BPL. FS3
16E9 48 5164 PHA :SAVE MASK
10E24 BD8913 5165 LDA FCBCSN,X ;GET BYTE NO
10ED 690A 5166 ADC #DVDSMP ;ADD OFFSET TO SMAP
10EYT A8 5167 TAY sRESULT IS VTOC INDEX
5168
10F¢ 68 5169 PLA ;GET BIT MASK
10F1 1145 5178 ORA (ZDRVA),Y ;OF BIT TO BIT MAP
18F% 9145 5171 STA (ZDRVA),Y ;AND SET RESULTS
5172 :
10Ft AQ03 5173 LDY #DVDNSA ; INC NO OF SECTORS AVAIL
10F7 B145 5174 LDA (ZDRVA),Y
10F¢ 18 5175 CLC
10F2 6901 5176 ADC #1
10FC 9145 5177 STA (ZDRVA),Y
10FE C8 5178 INY
10FF Bl45 5179 LDA (ZDRVA),Y
1101 6900 5180 ADC #0
1103 9145 5181 STA (ZDRVA),Y
5182 ;
110¢ 5183 FSRTS = *
118¢ 6@ 5184 RTS
5185
GET SECTOR
11166 5186 .PAGE "GET SECTOR"
5187
5188 GET SECTOR - GET A FREE SECTOR FOR

7
5189 ; USE IN FCB AT X REG. THE SECTOR
5190 ;NUMBER IS PLACED IN FCBLSN

90

ATARI DOS 2.0S

1106

11088
1109
110k
116D
110F

1111
1114
1115
1116
1118
1114
111C
111E
111F
112
1123

1125
1126
1128

112A
1128

112D
1128
1121
1131
1134
1135
1136
1133
1131

AQG29

c8

Cco64
BO54
B145
FOF7

8C@C13
48
38
AQG0O3
B145
E901
9145
c8
B145
E900
9145

c8
ASFF
9145

68
AOFF

c8

oA
90FC
8C@D13
4A

88
18FC
AC@C13
9145

GET SECTOR

113D
113E
1141

1143
1144

1148
1149
114c¢
114D
1147

115
1152
1155
1158
11518

38
ADOAC13
ES0OA

AOP0
8COAC13

oA
2E@C13
c8
Ccoa3
90F7

18
6DOD13
9D8B13
AD@C13
6900

5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
52085
5206
52087
5208
5209
52190
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236

5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254

-

H
.
H
H
;
.
7

H

.
H

THE SEARCH FOR A FREE SECTOR STARTS
AT THE DVDSMP BYTE.
NUMBERED SEQUENTIALLY FROM ZERO TO

MAXSM WITH THE LEFT BIT OF THE DVDSMP
BEING WITH ZERO.

ETSECTOR

LDY

i
GS1 INY

~

CPY
BCS
LDA
BEQ

STY
PHA
SEC
LDY
LDA
SBC
STA
INY
LDA
SBC
STA

INY
LDA
STA

PLA
LDY

GS2 INY

ASL
BCC
STY

GS3 LSR

DEY
BPL
LDY
STA

SEC
LDA
SBC

LDY
STY

GS4 ASL

ROL
INY
CPY
BCC

CLC
ADC
STA
LDA
ADC

$DVDSMP-1

$#90+DVDSMP

GSERR
(ZDRVA),Y
GS1

TEMP1

#DVDNSA
(ZDRVA),Y
$1
(ZDRVA) ,Y

(ZDRVA),Y
$0
(ZDRVA),Y

#SFF
(ZDRVA),Y

#SFF

A

GS2
TEMP2
A

GS3
TEMP1
(ZDRVA),Y

TEMP1
#DVDSMP

#0
TEMP1

A
TEMP1

#3
GS4

TEMP2
FCBLSN, X
TEMP1

8

SECTORS ARE

;SET Y TO START MAP-1

; INC SMAP INDEX

:AT END OF MAP?

;BR IF AT END

;GET A MAP BYTE

;BR NO FREE SECTOR IN BYTE

; SAVE MAP INDEX
;DEC NO OF SECTORS AVAIL

;SET READ REQD

;SET BIT COUNTER =-1

;SHIFT MAP BYTE

;UNTIL A FREE SECTOR

;s FOUND

;SAVE BIT NUMBER

;AND SHIFT BYTE

;BACKS TO ITS ORIGINAL
;POSITION AND PUT IT
;BACK INTO THE MAP

;SECTOR NAP BYTE
;=DISPL-DVDSMP

;CLEAR SECT NO HI

sMULT REL SECTOR MAP

;ADD BIT NO TO
;SECTOR #

sAND PUT INTO
; FCBLSN

91

ATARI DOS 2.0S

115D 9D8C13 5255 STA
5256 ;

1160 69 5257 KTS
5258 ;

1161 4CCB12 5259 GSERR JMP
5269 ;

SETUP ROUTINE

1154 5261 «.PAGE
5262 ;
5263 ; SETUP - A

5264 ; TO SET UP
5265 ; TO ACCESS
5266 ;
5267 SETUP
1154 A99F 5268 LDA
1156 8549 5269 STA
1158 8E@113 52790 STX
5271
115B BA 5272 TSX
115C E8 5273 INX
115D E8 5274 INX
115E 8E@913 5275 STX
5276 :
1171 AEQ113 5277 LDX
1174 A421 5278 LDY
1176 8CP103 5279 STY
1179 88 5280 DEY
117A B92913 5281 LDA
117D 8545 5282 STA
117F B93113 5283 LDA
1132 8546 5284 STA
5285 ;
1184 B91113 5286 LDA
1187 F@52 5287 BEQ
1139 8DFE12 5288 STA
5289 ;
118C A8 5290 TAY
118D B9FB12 5291 LDA
1199 8DF812 5292 STA
1193 B9FB12 5293 LDA
1196 8DFB12 5294 STA
5295 ;
1199 BC8813 5296 LDY
119C 88 5297 DEY
119D 1831 5298 BPL
5299 ;
119F A0PP 5300 LDY
11A1 B91913 5301 GSBl LDA
1114 FOO8 53082 BEQ
1116 C8 5383 GSB2 INY
1117 CO10 5304 CPY
111n9 90F6 5385 BCC
5306 ;
11AB 4CCD12 5307 GSB3 JMP
5308 ;
11AE ADFEl2 5309 GSB4 LDA
11B1 4A 5310 LSR
1182 BA1O 5311 BCS
SETUP ROUTINE
1134 c8 5312 INY
1135 CO1@ 5313 CPY
1137 B@F2 5314 BCS
11139 B91913 5315 LDA

92

FCBLSN+1,X

ERRNSA

;NO SECTOR AVAIL

"SETUP ROUTINE"

ROUTINE USED FOR ALL COMMANDS
FMS CONTROLL CELLS
A PARTICULAR FILE.

#59F
ERRNO
CURFCB

ENTSTK

CURFCB
ICDNO2Z
DCBDRV

DBUFAL, Y
ZDRVA
DBUFAH,Y
ZDRVA+1

DRVTBL,Y
DERR1
DRVTYP

DRVMDL, Y
DRVMDL
DRVLRT,Y
DRVLBT

FCBBUF, X
SSBA

40
SECTBL, Y
GSB4

$16
GSB1

ERRNSB

DRVTYP
A
GSBS

#16
GSB3
SECTBL, Y

;INIT ERROR CODE
;TO ZERO
;SAVE FCB

;GET CURRENT FCB

sMOVE DRIVE NO

;TO DCB

;DEC FOR ACCESS TO TABLES
sMOVE WRITE BUFFER

sADD TO ZERO PAGE PTR

;GET DRIVE TYPE
;BR IF NOT EXISTS
;SAVE TYPE

sMOVE MAX DATA LEN
sAND LAST SECTOR BYTE
;DISPL TO LAST OF

;s TABLES

;GET SECTOR BUF #
;DEC TO ACCESS TBL
sBR IF ONE IS ALLOCATED

;s IF NON ALLOCATED
sTRY TO FIND ONE
;BR ONE FOUND
;DEC TRY COUNT

;BR MORE TO TRY
;s NO SECTOR BUFFERS AVAIL

;FOUND ONE IF 256 BYTES
: DRIVE NEEDED TO CONT
;BR NOT 256 BYTES

sELSE TRY NEXT CONTIG
: TEST END OF BUFFERS
sAND BR IF NO MORE
;ELSE SEE IF ITS THREE

ATARI DOS 2.0S

11BC
11BE

11BF
11c1l

l1c4
11C6
11co
11Ca
11co

11Dp03
11D3
11D%
11p8
11DA

11D1

D@EB
88

A980
991A13

A988
991913
98
9D8813
FEB8813

B93913
8547

B94913
8548

60

4CCF12

5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336

SETUP ROUTINE

11D

11DE
11DE
11E1
11E3
11E4
11E6
11E9
11EC
11EF
11F9
11F2
11F3
11F6

DATA

11F7

11F7
11F8
11FA
11FD
11FF
1202

1223
12¢6
12¢9

BCB813
FP13
88
A900
9D8813
991913
ADFE1l2
4a
BPO4
4A
991A13
60

SECTOR

48
A547
8D0P4063
A548
8009503
68

AEFEl2
206C07
60

WRITE DOS

120A

5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354

1/0

5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5378

5371
5372

BNE GSB2 ;BR NOT FREE
DEY
i
LDA #580 ;s ALLOCATE SECOND OF 2
STA SECTBL+1,Y
GSB5 LDA #§80 ;s ALLOCATE FIRST OR ONLY
STA SECTBL,Y
TYA
STA FCBBUF,X ;PUT BUF NO INTO FCB
INC FCBBUF,X ;INC BUF NO SO NOT ZERO
SSBA LDA SABUFL,Y ;MOVE BUFFER ADDR
STA ZSBA ;TO ZERO PAGE PTR
LDA SABUFH,Y
STA ZSBA+1
RTS
DERR1 JMP ERRDNO ;BAD DRIVE NO
- PAGE
; FREE SECTOR BUFFERS
FRESBUF = *
LDY FCBBUF,X ;GET BUF NO
BEQ FSBR ;BR IF NONE
DEY ;DEC FOR TBL ACCESS
LDA #0 ;FREE
STA FCBBUF,X ;IN FCR
STA SECTBL,Y ;AND TABLE
LDA DRVTYP ;IF 128 BYTES
LSR A ;DRIVE
BCS FSBR ;FREE ONLY ONE
LSR A ;ELSE
STA SECTBL+l,Y ;FREE 2
FSBR RTS
.PAGE "DATA SECTOR I/O"
; DSIO - DATA SECTOR I/O
DSIO
PHA ;SAVE ACU DATA
LDA ZSBA ;WRITE SECTOR BUF
STA DCBBUF ;ADR MOVED TO
LDA ZSBA+1 ;DCB
STA DCBBUF+1
PLA ;RESTORE ACU
LDX DRVTYP
JSR BSIO ;DO THE I/O
RTS
+PAGE "WRITE DOS"

93

ATARI DOS 2.0S

120A
120D
1219
1213
1216

1219

121B

121E
1229
1223
1225

1228
122A
122D

1239
1233
1235
1236

1239
123a
1235
123=
1242
1245
1247

124A
124D
1252

1252

1253
1256
1259
125¢
12517

BC8913
BDBA13
205312
206712
4CF@12

A990

8DOEB7

A9@7
8D@503
h999
8D2493

h999
8DOAS3
8DOBOA3

EE@AG3
A201
38
207287

18
ADZ403
6989
8D2493
ADO503
6900
8D@503

ADOAD3
CcDg187
DODE

60

B8COF37
801087
ADFEl2
8DOES7
ACFB812

WRITE DOS

1262 8Cl1l107

1265

DOB4

WRITE DOS

1267
1267
126A
126C
126F

1271
1273

94

AD12@7
8543
AD1307
8544

AQ@G9
B143

5373 :

5374 ;

5375 WRTDOS
5376 LDY
5377 LDA
5378 JSR
5379 JSR
5389 JMP
5381 :

5382 DELDOS
5383 LDA
5384 DDl

5385 STA
5386 ;

5387 WRTSCO
5388 LDA
5389 STA
53990 LDA
5391 STA
5392 ;

5393 LDA
5394 STA
5395 STA
5396 ;

5397 WRNBS INC
5398 LDX
5399 SEC
5400 JSR
5481 ;

5402 ;

5403 CLC
54904 LDA
5405 ADC
5406 STA
5407 LDA
5408 ADC
54909 STA
5419 :

5411 LDA
5412 CMP
5413 BNE
5414 :

5415 RTS
5416 ;

5417 SETDSO STY
5418 STA
5419 LDA
5420 STA
5421 LDY
5422 STY
5423 BNE
5424 ;

5425 «PAGE
5426 WD@ LDA
5427 STA
5428 LDA
5429 STA
5430 ;

5431 WDl LDY
5432 WD2 LDA

WRTDOS - WRITE DOS TO DISK

FCBCSN,X ;MOVE START ADDR

FCBCSN+1, X

SETDSO sWRITE SECTOR @

WD@ ;WRITE DOS

GREAT

30 ;SET FILE NOT EXISTS

DFSFLG

#FMSORG/256 ;MOVE FMS START

DCBBUF+1 ;ADDR TO DCB

#FMSORG&255

DCBBUF

$0 ;CLEAR SECTOR NO TO ZERO

DCBSEC

DCBSEC+1

DCBSEC ;INC SECTOR NO

$1 :GET DRIVE TYPE

BSIOR ;DO THE WRITE

DCBBUF ;INC SECT ADDR

#128

DCBBUF

DCBBUF+1

$0

DCBBUF+1

DCBSEC ;TEST FOR WRITE

BRCNT ;OF ALL BOOT SECTORS

WRNBS ;BR NOT ALL

DFLINK s SET LINK START

DFLINK+1

DRVTYP

DFSFLG

DRVMDL

BLDISP

DD1 ;GO WRITE SECTOR @
"

DFLADR ;MOVE FILE START ADDR

ZBUFP ;TO ZBUFP

DFLADR+1

ZBUFP+1

L3 $MOVE 125

(ZBUFP),Y ;BYTES OF DOS

ATARI DOS 2.0S

1275
1277
1278
127B
127D
127E

1231
1234
1237
1239
1238
123D
1230
1232

1294
1297

129A

TEST

129B

1298
129D
1200
12A3
12A5
12n6
12a8

1ZA9
1ZAA
1ZAB
1ZAC
1Z2AD
1ZAE
12AF
14BO
12B1
12B2
12B3
12B4

12B5
1:B7

12B9
1¢BB
12BD
12BF
12C1
12¢3
12C5
12¢7
12C9

9147
c8
CCF812
90F6
98
9p8713

205707
[s2l-D)
900B
DOOF
A543
CDBCa7
9002
DOD6

20940F
4C7112

60

5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452

5453
5454

STA
INY
CPY
BCC
TYA
STA

JSR
CMP
BCC
BNE
LDA
CMP
BCC
BNE

wD3 JSR
JMP

wD4 RTS

(ZSBA),Y

DRVMPL
wD2

FCBDLN,X

INCBA
SASA+1
wD3
wWD4
ZBUFP
SASA
wD3
wD4

WRTNXS
WD1

s AND RETURN

DOS FILE NAME

APOB
B95813
D9AB12
DOA3
88
D@F5
60

44
4F
53
20
20
20
20
20
53
59
53
20

E649
E649

E649
E649
E649
E649
E649
E649
E649
E649
E649

5455
5456
5457
5458
5459
5468
5461
5462
5463
5464
5465
5466
5467
5468

5469
5470
5471
5472
5473

5474
5475
5476
5477
5478
5479
5480
5481
5482

.PAGE

;TO SECTOR BUFFER

;s SET DATA LEN

;INC ZBUFP BY 125
;s IF NOT END OR
;sPAST END OF DOS
;s THEN WRTNXS

s ELSE

; DONE

sWRITE NEXT SECTOR

sRETURN, CLOSE WILL WRITE
FINAL SECTOR

"TEST DOS FILE NAME"

TSTDOS -~ TEST FOR DOS SYS FILE NAME;

TSTDOS
LDY #11

TDF1 LDA FNAME-~1,Y
CMP DFN-1,Y
BNE TDFR
DEY
BNE TDFl

TDFR RTS

;

DFN .BYTE "DOS

ERDBAD INC
ERAPO INC

ERRPOT INC
ERFNF INC
ERDFULL INC
ERDVDC INC
ERFLOCK INC
ERRPDL INC
ERRFN INC
ERFNMM INC
ERRSYS INC

ERROR ROUTINES

ERRNO
ERRNO

ERRNO
ERRNO
ERRNO
ERRNO
ERRNO
ERRNO
ERRNO
ERRNO
ERRNO

;LOOK AT 12 CHARS

;s TEST DECODE FILENAME CHAR
sWITH DOS FILENAME CHAR
sBR NOT MATCH

;BR IF MORE, ELSE RTN EQ

sys "

;sBAD SECTOR AT FORMAT TIME
sATTEMPT APPEND TO OLD TYPE
FILE

; POINT INVALID

sFILE NOT FOUND

;DIRECTORY FULL

;DEVICE COMMAND INVALID
sFILE LOCKED

: POINT DATA LENGTH

;sFILE NAME ERROR

;FILE NUMBER MISMATCH
:FATAL SYS DATA I/O ERROR

95

ATARI DOS 2.0S

12CB
l2CrC
12CF

12p1
12D3
12D6
12D9
12pC
12DD
12E9
12E1

TEST
12E4

12E5
12E8

12EA
12ED
12F9
12F2
12F4
12F6

MISC

12F8

12F#8
12F9
12F A

12F8
12FC
12FD
12FE
12FF
1306
1301
1392
130%
1304
1305
130¢
1397
1308
130¢
13092
139

130¢C
138D
130F
13@F
131¢@

1311
131¢
1329
1331

96

E649 5483 ERRNSA

E649 5484 ERRNSB

E649 5485 ERRDNO
5486 ;

A549 5487

AE@113 5488 RETURN

9D4303 5489

AE0013 5499

9A 5491

AE@113 5492

AB 5493

ADAB13 5494

DOS FILE NAME

62 5495
5496 ;

AD@383 5497 ERRIO

39E9 5498
5499 ;

AE@113 5500 FGREAT

20DE11 5501

A901 5582 GREAT

D@ADF 5503

A988 5504 ERREOF

30DB 5505
5506 ;

STORAGE
5507
5508 :
5509 ; MISC
5519 :

20 5511 DRVMDL

7D 5512

FD 5513
5514 ;

20 5515 DRVLBT

7F 5516

FF 5517
5518 DRVTYP
5519 RETRY
5520 ENTSTK
5521 CURFCB
5522 DHOLES
5523 DHOLED
5524 DHFNUM
5525 CDIRD
5526 CDIRS
5527 SFNUM
5528 SVDBYT
5529 SVD1
5538 SVD2
5531 SVD3
5532 EXTSW
5533 TEMP1
5534 TEMP2
5535 TEMP3
5536 TEMP4
5537 BURTYP
5538
5539 DRVTBL
5540 SECTBL
5541 DBUFAL
5542 DBUFAH

INC ERRNO ;NO SECTOR AVAIL

INC ERRNO ; NO SECTOR BUFFERS AVAIL
INC ERRNO ;DRIVE NO ERROR

LDA ERRNO ;GET ERROR NUMBER
LDX CURFCB ;GET CUR FCB NO

STA ICSTA,X ;PUT IN FCB

LDX ENTSTK ;GET ENTRY STACK PTR
TXS ;s AND RESTORE

LDX CURFCB

TAY

LDA SVDBYT ;GET SAVED DATA BYTE
RTS

LDA DCBSTA ;GET 1/0 ERROR CODE

BMI RETURN

LDX CURFCB
JSR FRESBUF ;FREE SECTOR BUFFER

LDA #01 ;SET ALL OK
BNE RETURN
LDA #$88 ;SET EOF CODE

BMI RETURN

.PAGE "MISC STORAGE"

NON ZERO PAGE STORAGE AREA

.BYTE @ sMAX DATA LEN

.BYTE 125 ;128 BYTE SECTOR

.BYTE 253 $256 BYTE SECTOR

.BYTE @ ;DISPL TO LAST SECTOR BYTE
.BYTE 127 ;128 BYTE SECTOR

.BYTE 255 ;256 BYTE SECTOR

*= *+1 ;DRIVE TYPE

*= *+1 ;1/0 RETRY COUNTER

*= *+1 ;ENTRY STACK LEVEL

*= *+1 ;CURRENT FCB (IOCB ALSO)
*= *+1 ;DIR HOLE SECTOR

*= *+1 ;DIR HOLE DISPL

*= *+]1 DIR HOLE FILE NO

*= *+1 ;s CURRENT DIR DISPL

*= *+1 ;CURRENT DIR SECTOR

*= *+1 ; FILE NUMBER

*= *+1 ;SAVED OUTPUT DATA BYTE
*= *+1 sSAVE DATA BYTES

*= *+1 ;FOR WRITE BURST

*= *+1

*= %] ; TEMP1

*= A4 ; TEMP2

*= *+1 : TEMP3

*= *+1 ; TEMP4

*= *+1 ;sBURST I/O TYPE

*= *+8 ;s DRIVE TABLE

*= %416 :

*= *+8 s VTOC BUFFER

*= *+8 ;:PTR FOR DRIVE N

ATARI DOS 2.0S

1381
1382
1383
1384
1385
1386
1387
1388
1389
138B
138D

138F
2219

1391

0004
2908
2002
2001

2080
20490

FILE

1491

5543
5544
5545
5546
5547
5548
5549
5559

5551

SABUFL *= *+16 s SECTOR BUFFER

SABUFH *= *+16 ;FOR SECTOR N

FNAME *= *+12 sFILE NAME

AFNAME *= *+12 sAUXILLARY FILE NAME

MDRV W= "1 sMAX DR NO

Z = * :PUT ON SAME BOUNDRY AS
PRODUCTION

= $1381 ;s VERSION

CONTROL BLOCKS

5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5599
5591
5592
5593

DIRECTORY

5594
5595
5596
5597
5598
5599
5609
5601

.PAGE "FILE CONTROL BLOCKS"

FILE CONTROL BLOCK

ONE FILE CONTROL BLOCK IS USED FOR EACH
OPEN FILE. THE RELATIVE FCB USED
RELATES DIRECTLY TO THE IOCB #

THAT OPENED THE FILE. THUS THERE ARE

8 FCBS. THE FCB ARE (CONVIENTLY)

THE SAME SIZE AS IOCBS. EACH FCB
CONTAINS ALL THE INFORMATION REQUIRED
TO CONTROL THE PROCESSING ON AN

o S8 Se e Se %k me Ne NE e ne e

OPEN FILE

FCB
FCBFNO *= "1 sFILE # LEFT JUSTIFIED
FCBOTC *= "1 ;OPEN TYPE CODE

*= *41 ;s SPARE
FCBSLT *= *+]1 sFLAG FOR NEW SECTOR LEN TYPE
FCBFLG *= "1 s WORKING FLAG
FCBMLN *= *+1 sMAX SECTOR DATA LEN
FCBDLN *= *+1 ;CUR SECTOR BUF DATA LEN
FCBBUF *= "1 ;s SECTOR BUF NO
FCBCSN *= *42 1 CUR SECTOR #
FCBLSN *= *42 s LINK/ALLOCATE SECTOR #
FCBSSN *= *42 ;CUR FILE RELATIVE SECTOR #
FCBCRS
FCBCNT *= *+2 ;s SECTOR COUNT
FCBLEN = *-FCB ;FCB LEN

= FCBLEN*7+* ; ALLOCATE 7 MORE FCBS

OPEN CODE BITS
USED IN IOCB AUXI1

- AND FCBOTC
OPIN = $04 ;s INPUT
OPOUT = $@8 ;s OUTPUT
OPDIR = $02 sLIST DIRECTORY
OPAPND = $01 ;s APPEND
FCBFAS = $80 ;s FCBFLG - ACQ SECTORS
FCBFSM = $40 ;s FCBFLG ~ SECTOR MODIFIED

.PAGE "FILE DIRECTORY"

DISK FILE DIRECTORY

THE FILE DIRECTORY OCCUPIES 8
CONSECTUIVE SECTORS STARTING AT THE
CENTRAL SECTOR+1. EACH FILE DIRECTORY
SECTOR CONTAINS 8 ENTRIES. THERE
I

S 1 ENTRY FOR EACH NAMED FILE. THE

97

ATARI DOS 2.0S

5682 ; THERE ARE A TOTAL OF 64 NAMED FILES
5683 ; PER VOLUME
5604 ;
5605 ; THE FILE NUMBER IS USED THROUGH THE
5606 ; THE SYSTEM IS THE RELATIVE (TO ONE)
5607 ; FILE DIRECTORY ENTRY NUMBER.
5608 ;
5609 ; THE EQUATES BELOW ARE FOR A SINCE NAMED
5619 ; FILE ENTRY
5611 ;
000¢ 5612 DFDFL1 = %) ;FLAG1 (1)
20931 5613 DFDCNT = 1 ;SECTOR COUNTER (LOW)
2233 5614 DFDSSN = 3 ;START SECTOR NO (2)
000°< 5615 DFDPFN = 5 ;PRIMARY FILE NAME (8)
29910 5616 DFDXFN = 13 ;EXTENDED FILE NAME (4)
001 5617 DFDELN = 16 s ENTRY LENGTH
5618
5619 ; DFDFL1 VALUE EQUATES
5620
000¢ 5621 DFDEUU = %] ;ENTRY UNUSED
oa8ei 5622 DFDEDE = $80 ;ENTRY DELETED
004¢' 5623 DFDINU = $40 ;ENTRY IN USE
0001 5624 DFDOUT = $01 ;FILE OPEN FOR OUTPUT
002¢ 5625 DFDLOC = $20 ;s ENTRY LOCKED
000: 5626 DFDNLD = $02 ;FILE HAS NEW TYPE SECTOR LEN
BYTE
5627 ;
1401 5628 FILDIR *= *+256 ;RESUME FILE DIR SPACE
5629 ;
VOLUME DIRECTORY
1501 5630 .PAGE "VOLUME DIRECTORY"
5631 ;
5632 ; DISK VOLUME DIRECTORY
5633 ; THE VOLUME DIRECTORY OCCUPIES THE CENTRAL
5634 ; VOLUME SECTOR. THE VOLUME DIRECTORY
5635 ; CONTAINS INFORMATION PERTAINING TO
5636 ; THE ENTIRE DISKETTE VOLUME.
5637 ;
5638 ; THE LABELS BELOW, MAP THE VOLUME
5639 ; DIRECTORY SECTOR.
5640 ;
0000 5641 DVDTCD = %) ; VOLUME DIRECTORY TYEP CODE)1)
5642 ;
5643 ; USED TO DELINATE MAJOR (1)
5644 ; FMS SYSTEM FORMAT CHANGES
5645 ;
2991 5646 DVDMSN = 1 ;sMAX SECTOR NUMBER (1)
2803 5647 DVDNSA = 3 ;NO SECTORS AVAIL
5648 ;
0095 5649 DVDWRQ = 5 ;WRITE REQUIRED
214123 5658 DVDSMP = 19 ; SECTOR MAP START
5651 ;
5652 ; EACH BIT REPRESENTS A SECTOR
5653 ; IF THE BIT IS ON THEN THE SECTOR
5654 ; IS FREE AND AVAILABLE. IF THE
5655 ; BIT IS OFF, THE SECTOR IS IN
5656 ; USE OR BAD. THE MOST SIGNIFICANT
5657 ; BIT OF THE FIRST BYTE IS SECTOR ZERO.
END OF FMS
1501 5658 .PAGE "END OF FMS"
5659 ;
15081 5660 ENDFMS = L
1501 60 .END

98

ATARI DOS 2.0S

END OF FMS

=01700
=0300
=01020
=0@DF
6340
€344
1349
€34D
L
]
=01809
=088D
=000
=@g81
=01885
=(1928
20022
€301
#3206
=0@50
=0i@81
=£887
6049
@704
¢70A
¢70E
£17CB
0753
#77C
@7A2
#BAB
¢BO1
¢7F2
1329
£1823
1319
=§187E
6898
=(i002
=(1004
=(18DD
(IBE9
12F0
=000
1106
1.2B7
1382
1303
=005
=0901
Le71
=(1080
lL.20A
:.387
308
1386
BALF
#A28
IA3E
=(JA9D
1388
12FE
{3ADF
12D3
(FAB

FMSORG
DCBORG
ZICB
OSBTM
ICHID
ICBAL
ICBLH
ICAUX4
ICOIN
ICGTR
ICPTR
ICSTAT
ICSOK
ICSDNR
ICSNOP
ICBLL2Z
ICCoMZ
DCBDRV
DCBTO

DCBCWS
DCBDNR
DCBWPR
ERRNO
BINTADR
DRVBYT
DFSFLG
DFMSDH
BGOOD
DSIO1
DSIO4
DFMOPN
DFMSTA
DIA
DBUFAL
DI256
SECTBL
CLRFCB
ADI2
OPDIR
OPIN
DFOUPD
OPNER1
GREAT

DFDFL1
GETSECTOR
ERAPO
DHOLES
DHOLED
DFDPFN
DFDCNT
WRTDIR
FCBFAS
WRTDOS
FCBDLN
SVDBYT
FCBMLN
WTBUR
TBURST
NXTBUR
BUREOF
sSvVD3
DRVTYP
GET2
RETURN
WRTLSEC

=0043
=E453
=0@2E7
=0246
2341
@345
@34A
@34E
=0002
=0006
=000A
=000E
=0002
=0082
=0086
=0929
=0026
2302
2308

=0053
=0082
2043
27090
2746
270B
@70F
A74F
2757
2786
27C4
@B15
@BA7
130D
1331
2879
085E
2882
1164
08BE
=@8D8
=9001
=@8E3
12BB
=00802
138D
=@91D
2992
1304
=0003
2966
=@995
1385
12BD
138F
1309
OAQ6
=0040
BA26
GA4AC
12F8
1388
@AB9
=@ADC
2B12
=0B80

FMSZPG
DHADR
LMADR
DSKTIM
ICDNO
ICBAH
ICAUX]
ICAUXS5
ICOOUT
ICGBC
ICPBC
ICDDC
ICSTR
ICSNED
ICSIVN
ICBLHZ
ICPUTZ
DCBCMD
DCBCNT

DCBCST
DCBCNR
ZBUFP
BFLG
BCONT
SAFBFW
DFLINK
BFAIL
INCBA
DSIO02
DSIOS
DFMCLS
DFMDDC
TEMP2
DBUFAH
DINCBP
DISNI
CFCBX
SETUP
OPN1
DFOIN
OPAPND
DFOUI
ERFNF
DFDNLD
FCBSSN
DFOX1
OPNER2
DHFNUM
DFDSSN
OPN2
SETFCB
FCBFLG
ERDFULL
FCBCNT
ENTSTK
PUT1
FCBFSM
RTBUR
WRBUR
DRVMDL
FCBBUF
TBL256
GEOF
SFNF
RRDIR

=0340
=P@9B
=1549
=@00F
9342
#346
934B
934F
=0003
=00667
=009B
=0BCE
=000e3
=ppa3
=0087
=0024
7300
2303
230A
=0821
=p@83
2045
2701
9714
g78C
9711
#72F
9754
12FF
P7BE
=@ABF
=07EQ
9807
983D
9845
1339
1381
PESE
@DAD
=0008
=@8EC
BCAC
1385

@9CE
138B
@c53
1306
1307
=0040
1359
OFE2
129B
@99A
1384
@9ES
OF94
12F4
1310
180F
1309
11D9
@ACC
=0AEA
@B6D
@B50

IOCBORG
EOL
DUPINIT
TIMOUT
ICCOM
ICPUT
ICAUX2
ICAUX6
ICIO
ICGTC
ICPTC
ICMAX
ICSEOF
ICSDER
ICSWPC
ICBALZ
DCB
DCBSTA
DCBSEC
DCBCFD
DCBDER
ZDRVA
BRCNT
XBCONT
SASA
BLDISP
XBC1
XBRTN
RETRY
STRTYP
DFMGET
DINIT
DIHAVE
DIDDEC
DINXTS
SABUFL
FCB
FNDCODE
LISTDIR
OPOUT
DFOAPN
TSTLOCK
CDIRD

APOER
FCBLSN
XDEL®
CDIRS
SFNUM
DFDINU
FNAME
WRTN6
TSTDOS
OPNF1
FCBSLT
FRMCIO
WRTNXS
ERREOF
BURTYP
RDNXTS
SVvDl1
SSBA
GET1
EFLOOK
CLDONE
CLouT

=0003
=031A
=0102
2340
2343
7348
@34cC
=0010
=0004
=0008
=080C
=000F
=0080
=0084
=0021
=00825
2300
2304
=0052
=0001
=0084
2047
2702
2709
=1501
a712
=@76C
2772
@79¢C
1301
@9CC
130C
1311
=0005
284B
1349
288A
1382
OF21
=0911
12BF
@9AE
1401

10BF
=097C
=0948
106E
@93E
=0001
=0979
2982
=0@98F
1381
=1017
PAl19
@AlC
OA4A
=@AAE
OA7B
1308A
GAAC
@DB9
OAFE
=@B75
@B3C

ICBLL
ICAUX3
ICLEN
ICGBR
ICPBR
ICCLOSE
ICFREE
ICSBRK
ICSIVC
ICDNOZ
ICBAHZ
DCBSBI
DCBBUF
DCBCRS
DCBSOK
DCBIVC
ZSBA
BLDADR
SABYTE
ENDFMS
DFLADR
BSIO
BSIOR
DSIO3
CURFCB
DFMPUT
TEMP1
DRVTBL
DVDWRQ
DISETS
SABUFH
ADIl
FCBOTC
SFDIR
DFOOUT
ERDVDC
DFRDSU
FILDIR

OPVTOC
DHFOX2
OPN1A
RDDIR
OPN1B
DFDOUT
OPN2A
OPN3
DHFOX3
FCBFNO
RDNSO
PUTER
PEOF
NOBURST
TBLEN
BBINC
SVD2
BURST
GDCHAR
GET3
CLUPDT
APPl

99

ATARI DOS 2.0S

OFB3
OB9B
=0827
2c32
D23
1219
2C11
=@C3A
=@080
19C5
AC93
1389
=ACF7
@D52
12B5
2D9%4
QE11
198B
@DFD
GE3B
QE76
JER8B
QECA
QEFD
OF15
@F90
GF8A
OFAE
OFF6
195F
12E5
10AB
10AC
=1105
1108
1148
11AE
11C4
1267
1271
129D
1371
=@9aD

100

WRTN2
FNSHFT
MAXDDC
XDELETE
XNOTE
DELDOS
XRN2
XDELX
DFDEDE
FRESECT
XLC1
FCBCSN
XPERR
XF@
ERDBAD
XF3
LDDONE
RDVTOC
MVFSCM
LD2
CVDl
FD@
FD2
FD6
FDSCl
SDRTN
SFDSH1
WRTLS1
WRNRTS
RDIOER
ERRIO
DSYSIO
DSYSIA
FSRTS
GS1
GS4
GSB4
GSB5
wD@
WD1
TDF1
MDRV
DFDXFN

1995
@B9D
@BD3
acic
op18
OEB4
@C1B
aca4s
=@C6C
=0020
aCB7
@CCF
OCFA
OD4F
@D55
@D9F
aDD6
=02a3
QEl4
QE71
GEAA
138C
OF2A
GEF1
=@g1@
OF73
OFA8
12FB
OFF9
1962
196C
1992
19B5
19D1
1161
12CB
11A6
12CF
121B
1273
12a9
=1372
=0000

WRTVTOC
FNSHF1
DVDCER
XLOCK
XFORMAT
FNDCNX
XRN3
XDELY
XDEL2A
DFDLOC
TLF
XP1
XP3
XFERR
XF1
XF4
GDCRTN
DVDNSA
FSCM
CVDIGIT
FDOA
EXTSW
FDSCHAR
FD5
DFDELN
SFDSH
WRTN1
DRVLBT
RWCSIO
RDFNMM
RDDELE
RDVGO
DSIOER
FS1
GSERR
ERRNSA
GSB2
ERRDNO
DD1
WD2
DFN

Z
DFDEUU

12EA
@BOF
@BC5
aca3
@BE7
acac
AF31
@cas
2Cceée7
130F
12C1
@CED
12C3
=0@D3D
=000A
@DE3
oDD9
QE57
QE67
GEBD
OFa7
QEC3
OF923
12C5
@F4D
OF5E
OFAS5
OFDA
11F7
1954
12C7
199C
129BC
16DD
112D
11DB
11AB
=11DE
121E
1294
12a8
138F
=0000

FGREAT
FNSHF2
DVDCVT
XUNLOCK
XRN1
XRNI1B
CSFDIR
XDEL3
XDEL2
TEMP4
ERFLOCK
XP2
ERRPDL
TSTFMT
DVDSMP
LDENT1
LDENT
CVDX
CVDY
STDIGIT
FNDERR
FD1
FDEND
ERRFN
SFD2
SFD3
WRU1
WRTN5
DSIO
RDNS3
ERFNMM
VTIO
DEAD
FS2
GS2
DERRI1
GSB3
FRESBUF
WRTSCO
WD3
TDFR
FCBCRS
DVDTCD

PFF8
@BD6
@BD9
JCBA
OBF2
1253
oCc79
@c56
=0C72
acss
oDgg
=0CDC
12B9
@Dp4c
oD76
@DE9
@E21
=0080D
@E35
130E
OEB3
@ED5
@EE5
OF1B
OF48
OF6A
@FC9
1002
1921
1951
1972
1695
12¢c9
16E5
1134
11a1
12¢cD
11F6
1239
129A
1365
=0010
=002g1

WRCSIO
XFV
XRENAME
XPOINT
XRN1A
SETDSO
DFNF
XDEL1
XDEL4
XLCOM
PERR1
XP1A
ERRPOT
XFBAD
XF2
LDCNT
FDENT
FSCML
LDl
TEMP3
FDOB
FD3
FD4
FDSC2
SFD1
SFD4
WRNERR
MVLSN
RDNS1
RDNS2
DIRIO
WRVTOC
ERRSYS
FS3
GS3
GSB1
ERRNSB
FSBR
WRNBS
wD4
AFNAME
FCBLEN
DVDMSN

Appendix A

AN
INTERMEDIATE

USER’S GUIDE
TO THIS BOOK

If you are familiar with machine language, commented source code,
and hexadecimal numbers, you probably won’t need toread this
appendix. On the other hand, if you don’t know or are new to machine
language — perhaps some of the information here will help.

A knowledge of machine language is important to grasping the
sense of the DOS since it is written in machine language. However,
we will briefly cover some of the fundamentals, as they relate to the
book, in the hope that this might be a starting point. One of the
functions of this book is to reveal the inner workings of Atari DOS. A
benefit of knowing how it works is that you are able to change it to
suit yourself, to customize it.

First we’ll examine the meaning of the various fields of information
which are in the source code (page 59 on). Then, after a brief look at
how o deal with hexadecimal numbers, we can make a modification
to DOS step-by-step to show how it’s done.

The book is divided into two sections: roughly the first half is a
series of descriptions of the major subroutines of the disk operating
system. The latter half is a commented source code of the DOS. In order
to berter understand what you can accomplish with all this information,
we can set up a problem and solve it using the book.

What’s “Commented Source Code”?

We'll change the DOS so that we could type in a disk command using
lowercase letters. Unfortunately, the D: must be in uppercase, the
program which makes this decision is in ROM and we can’t get at it
and change it. The rest of the command can be in lowercase, though,
after we make our change to the DOS in RAM. After fixing it, any
routine that uses the disk will accept lowercase as in D: open.

102

APPENDIX A

Before getting into the details of the modification there is some
important preliminary information. What, forexample, is “commented
source code?”

Machine language differs in several respects from BASIC. When
you write a program in BASIC, you never see how it looks to the
computer. Instead you see something like this:

10 FORI=1TO 100
20 NEXT1

This delay loop just creates a brief pause in a program. If you
RIJN the above, the computer handles the problem of translating the
BASIC words into machine language. Anything the computer does
must be translated into machine language (ML). Translating (or
interpreting) a BASIC program takes place during the RUN of the
program — that’s why BASIC is so slow compared to ML.

By contrast, ML is translated before it is RUN. Programming ML
is done in two stages: 1. writing the source code andthen 2. assembling
it into object code. The computer does most of the drudgery of this
because most ML is written by using a program called an assembler
which handles many of the details. Some assemblers are so complex
that using them can seem almost like programming in BASIC.

Here is how you might program the above example delay loop
when using an assembler:

1000 LDY #64 ; SET COUNTERTO 100
1001 LOOP DEY
1002 BNE LOOP

Probably the most peculiar thing about this, to the beginner, is
how 64 stands for 100 (it's hex, we’ll get to it in a minute). The line
numbers could be BASIC, but the instructions are 6502 mnemonics
(memory aids). LDY means to load the Y register with 100 (decimal).
The next line is named (labelled) “loop” because assemblers don’t say
GOTO 1001. Instead, they use convenient names. In any event, the
Y register is decremented by DEY, it's lowered by one. So each time
the program cycles through the LOOP address, it will lower the counter
one. Finally, the instruction at 1002 says, Branch if Not Equal (to
zero). In other words, GOTO LOOP if Y hasn’t yet counted down to
zero. When Y reaches zero, the program will continue on, following
whatever instruction is in line 1003.

After the above program is written, though, it still cannot be
RUN. There is the second step, the creation of object code
(executable), the assembly process.

You tell the assembler to assemble this program. The result of

103

APPENDIX A

that is an additional two “fields” (zones). Above, we have five fields:
line number, label, mnemonic (instruction), operand (the #64), and
a comment field which is the equivalent of BASIC REM statements.
There will soon be a total of seven fields.

After assembly, the two new fields are the addresses and the
object code (expressed as hex bytes). By the way, BASIC always
assigns its programs a starting address in memory, but, in ML, the
programmer must make this known to the assembler. It’s not the
computer’s decision. Assume the computer were told to assemble the
above example at address $2000 (this would be 8192, in decimal).
The dollar sign means that a number is a hex number. The labels,
mnemonics, and operands would be translated into object code and
put into the computer’s memory. As you'll see in the second half of
this book, a printout of completed assembly looks like this:

200C AQ00 1000 LDY #64 ;SETCOUNTERTOI100
2002 88 1001 LOOP DEY

2003 DOFF 1002 BNE LOOP

Hex

Before concluding this brief overview of some fundamentals of machine
language, we should explain how to read the numbers in the source
code listings.

199 DIM HS$(23),NS$S(9):OPEN#1,4,0,"K:"

130 GRAPHICS @

149 PRINT "PLEASE CHOOSE:

15¢ PRINT "1 - Input HEX & get decimal back

160 PRINT "2 - Input DECIMAL to get hex bac
k."

17@ PRINT:PRINT "==>"; :GET#1,K

180 IF K<49 OR K>50 THEN 170

198 PRINT CHRS$ (K):ON K-48 GOTO 300,404

3009 HS="@ABCDEFGHI!!!!!!!JKLMNO"

319 PRINT "HEX"; :INPUT N$:N=¢

320 FOR I=1 TO LEN(NS)

330 N=N*16+ASC(HS (ASC(NS(I))—-47))-64:NEXT I

350 PRINT "S$";NS$S;"=";N:PRINT:PRINT:GOTO 1449

400 HS$="0123456789ABCDEF"

419 PRINT "DECIMAL"; : INPUT N:M=4096

420 PRINT N;"=$";

104

APPENDIX A

439 FOR I=1 TO 4:J=INT(N/M)
449 PRINT HS$(J+1,J+1); :N=N-M*J:M=M/16
450 NEXT I:PRINT:PRINT:GOTO 149

This program will turn a decimal number into hex or vice versa.
Hexadecimal is a base 16 number system, where decimal is base ten.
This means that you count from zero to fifteen before going to the
next column. For example, you count up zero one two...until you
reach nine in decimal. Then you go to the next column and have a
one-zero (10) to show that there is one in the “ten’s column” and zero
in the “one’s column.”

In hex, what was a “ten’s column” becomes a “sixteen’s column.”
Ir. other words, the symbol “10” means that there is one sixteen and
zero “‘ones.” So, the decimal number 17 would be written in hex, as
$11 (one sixteen plus one one). The decimal number 15 would, in
hex, be $OF. After nine, we run out of digits, so the first few letters of
the alphabet are used: A=10, B=11,C=12,D=13, E=14, and
F=15.

This explains how to “read” hex numbers if you don’t want the
program above to do it for you. The number $64 is decimal 100 because
there are six 16’s and four one's. 6 X 16 +4=100.

Addresses can be larger than two digits, up to a maximum of
four. You might see an address such as $11F7 in the listings. The third
column is the 256’s and the fourth column is the 4096’. So to find
out what this address is in decimal, you can multiply 7 X 1, 15 X 16,

1 X 256, and 1 X 4096. And add them all together.

A quicker way is to find out the first two, (15 x 16 +7=247) and
then multiply the second two by 256. It comes out the same. The
second two would be $11 (17 in decimal) so 17 x 256 + 247 =4599. It
might be easier to just use the BASIC program to make the translations
until hex becomes more familiar.

Making A Modification

Now that you have the entire source listing of DOS 2.0S, you can
customize it to fit your needs.

You may have felt restricted by the limitations on file names. A
file name can consist of eleven characters: up to eight characters plus
an optional three-character extension. The first character must be
from A-Z; subsequent characters can be from A-Z or 0-9. That’s it.

No punctuation. No imbedded spaces. No lowercase.

By changing only two locations in the file name decode section

of DOS, many meore characters are permitted. We will modify DOS to

105

APPENDIX A

accept any ASCII characters in a file name except character graphics
and inverse video. Additionally, the filename can start with a number
(e.g. “D:3-D”). Unfortunately, there is no foolproof way to allow
imbedded spaces such as “D: TIME OUT”.

The following fragment of code checks to see that a character of
the file name falls in the range of A-Z. If the character is less than
(carry clear) 65 [ASC(“A")] or greater than or equal to (carry set) 91
[ASC(“Z) + 1], then the test fails. All we do is change the check for
“A” to a check for “!” (its number in the code is one greater than
“space”), and the check for “Z” + 1 to “z” + 1 (lowercase z).

Included in this range of 90 characters are the numbers (48-57)
and all punctuation. Since we start with 33, “space” is excluded. It is
possible to permit imbedded spaces, but the file would then be
inaccessible in certain situations where a space is used as a delimiter.
You can allow it at your discretion, or even permit the entire (almost)
ATASCII character set to be used by changing the limits to 0
and 255.

CMP #A
BCC FD5
CMP #$5B
BCC FDé6
We change this to:
CMP #
BCC FD5
CMP #$7B
BCC FDé6

The changes can be made in BASIC with POKE 3818,33:POKE
3822,123 or change hex locations $0EEA to $21 and $OEEE to $7B.
The section of code we’re modifying is located between source line
numbers 4072 through 4193. Remember to rewrite the modified DOS
to disk with WRITE DOS FILES (Menu selection “H”) if you want
your change to be permanent.

Other equally simple changes are also possible. You could change
the wild-card character (“*”) to any other character by changing
location $OECT to the desired character. A more ambitious task
would be to increase the maximum file name length.

This brings up a final point — software compatibility. For example,
if you changed the wild card character to “@,” you couldn’t run any
previous programs that assume “*” as the wild card character. Our
change is less dangerous — if you allow lowercase file names, the
unmodified DOS won't be able to access it, although it will look fine
on the directory. This change has not been exhaustively tested for

106

APPENDIX A

conflicts, so we can't guarantee its usage. Nevertheless, it seems quite
useful and shows that some customizing can be accomplished with a
few simple changes.

When experimenting, always keep a backup copy of your valuable
disks in case something should go awry.

166 REM CHANGE DOS PROGRAM

114 REM FOR DOS 2.6S ONLY

126 REM CHANGE LOW RANGE CHECK FROM
130 REM 65 TO 33. THIS ALLOWS

146 REM ANY CHARACTER (EXCEPT

156 REM GRAPHICS AND INVERSE VIDEO)
160 REM TO START A FILENAME, INSTEAD
176 REM OF ONLY A THROUGH 2.

184 REM @EE9 C941 CMP #'A

199 REM @EE9 C921 CMP #'!

200 POKE 3818,33

210 REM CHANGE HIGH RANGE TO EXTEND
220 REM UP TO ASCII "z"

230 REM (LOWERCASE 2)

240 REM @GEED C95B CMP #S5B

250 REM @EED C97B CMP #$7B

260 REM POKE 3822,123

2706 REM NO NEED TO CHANGE NUMERIC
280 REM CHECK SINCE IT IS NO

290 REM LONGER EXECUTED, THANKS

366 REM TO THE ABOVE CODE.

Some Cautions

Clare is necessary when making customizations. Only make the changes
to a copy of your DOS — not the original “system master.” (You
shouldn’t be able to do this anyway, since the disk is “write-protected,”
tut better safe than sorry.} Remember that any files SAVEd with your
custom DOS will probably not be compatible with the original,
unchanged DOS. Alternation of the DOS can have unpredictable
effects; we urge caution and cannot accept any liability for software or
hardware damage incurred through the use of this book.

Things To Look Out For

These moditications could make a customized DOS incompatible with

the original, unmodified DOS 2.0S:

1) File name changes (such as allowing lowercase, or increasing

107

APPENDIX A

the length)

2) Changes to DOS file structure (such as using a different
“linking” system)

3) Removing etror-checks. These built-in traps insure disk
integrity and reliability. When you alter one, you could risk
muddling one or more files. For example, if you allow an automatic
“wild-card” feature, where an asterisk is assumed at the end of a
file, it could cause havoc when performing a SCRATCH,
RENAME, or UPDATE operation. Another example is removing
some of the qualifications for “burst-1/0.” Remember that a lot
of thought went into each design consideration.

Keeping these suggestions in mind, here are some ideas for
modifications. You may need to type in and re-assemble (with your
insertions) the entire DOS when making certain modifications.

1) Adding a STATUS check before a disk access. Have you ever
noticed how long the drive will grind away when no disk is
inserted? You can query the disk for its status, and even add a
“Drive not ready” error message if the drive door is not closed or
a disk is not inserted. Check your DOS manual for details.
2) Adding Disk Utility commands. These would be additional
functions performed by the FMS, keyed to the “special command.”
Some of the tasks performed by the Disk Utility Package could be
a part of the DOS kernal, such as LOAD and SAVE binary files.
You could even implement new commands such as “relative file"”
support, where you only give the DOS a “record number” to
randomly access a file. The file could be divided into records of
any length.
3) Allocate more sectors for the directory, thereby extending
the maximum amount of directory entries.
4) Add a disk name and/or disk 1.D. number (serial number?) to
the disk (maybe on sector 720). It could even print out with the
directory.
5) Given the extra “unused” bytes in the file name, add a byte
for file type, such as program, data, object code, etc., and have it
printed out with the directory, making it easy to identify files
without having to use the extension. This would be hard to
interface with software, however.
Remember that some of this is risky business. Keep backup disks
for any disk you are “experimenting” with. That way, you should lose
no important files.

The publishers and authors of this book disclaim any responsibility for errors or
problems caused by modification of Atari DOS 2.0S.

108

NOTES

109

NOTES

110

NOTES

111

NOTES

112

NOTES

113

NOTES

114

NOTES

115

NOTES

116

COMPUTE! Books

P.O.Box 5406 Greenstboro, NC 27403

Ask your retailer for these COMPUTE! Books. If he or she
has sold out, order directly from COMPUTE!

For Fastest Service
Call Our TOLL FREE US Order Line

800-334-0868

In NC call 919-275-9809

Quantity Title Price Total

The Beginner’s Guide To

BuyingAPersonal Computer $ 3.95

gAdd $1.00 shipping and handling. Outside US add
4.00 air mail; $2.00surface mail)

COMPUTE"s First Book of Atari $12.95

gAdd $2.00 shipping and handling. Outside US add
4.00 air mail; $2.00 surface mail.)

Inside Atari DOS $19.95
gAdd $2.00 shipping and handling. Outside USadd
4.00 air mail; $2.00 surface mail.)

COMPUTE"s First Book of
PET/CBM $12.95

gAdd $2.00 shipping and handling. Outside US add
4.00 air mail; $2.00 surface mail .}

Programming the PET/CBM $24.95

g\dd $3.00 shipping and handling. Outside USadd
@00 airmail; $3.00 surface mail.)

Every Kid’s First Book of

Robots and Computers $ 495
gAdd $100 shipping and handling. Outside US add
4.00 air mail; $2.00 surface mail.)

COMPUTE"’s Second Book of

Atari $12.95

gAdd $2.00 shipping and handling. Outside US add
4.00 air mail; $2.00 surface mail.)
COMPUTE"s First Book of VIC $12.95

gAdd $2.00 shipping and handling. Outside US add
4.00 airmail; $2.00 surface mail }

All orders must be prepaid {money order, check, or charge). All
payments must be in US funds. NC residents add 4% sales tax.
[] Payment enclosed Please charge my: [1VISA [MasterCard

[]J American Express Acc't. No. Expires /
Name

Address

City State Zip
Country

Allow 4-5 weeks for delivery
02-7

If you've enjoyed the articles in this book, you'll find the
same style and quality in every monthly issue of COMPUTE!
Magazine. Use this form to order your subscription to
COMPUTE!

For Fastest Service,
Call Our Toll-Free US Order Line
800-334-0868

In NC call 919-275-9809

COMPUTE!

PO. Box 5406
Greensboro, NC 27403

My Computer s;

[(JPET [JApple [JAtari [JVIC []Other [)Don'tyethave one..

[]$20.00 One Year US Subscription

[] 536,00 Two Year US Subscription

[]554.00 Three Year US Subscription

Subscription rates outside the US:

[]52500 Canada f=2

[15838.00 Europe/Air Delivery ri=3

[]1548.00 Middle East, North Africa, Central America/Air Mail ri=s

[] $88.00 South America, South Africa, Australasia/Air Mail - r=7

[] $25.00 International Surface Mail (lengthy. unreliable delivery) ri=ae6t

Name
Address
City State Zip

Country

Payment must be in US Funds drawn on a US Bank; International Money
Order, or charge card.

(] Payment Enclosed (] VISA
(] MasterCard [] American Express
Acc't. No. Expires /

02-7

0009009 ¢

0000000000000000060000000000 0

	INSIDE ATARI
DOS
	Preface
	Table of Contents
	Introduction - Being a history of two births "Coleen" and "Candy"
	A New BASIC?
	A New Beginning
	Why this Book?
	About this Book

	Chapter One - Atari DOS Overview
	1-1. Disk Utility Package
	1-2. Centrallnput/Output
	1-3. File Management System
	1-4. Serial Input/Output
	DOS Data And Control Flow
	DOS Control Flow
	Application/CIO Interface
	ClO-Device Handler Interface
	FMS-SIO Interface

	Chapter Two - Disk Organization
	Disk Directory
	Data Sectors
	Volume Table Of Contents (VTOC)
	Directory Sectors
	Typical Directory Sector
	Typical Data Sector

	Chapter Three - FMS File Control Blocks (FCB)
	FCBFNO
	FCBOTC
	FCBSLT
	FCBFLG
	FCBMNL
	FCBDLN
	FCBBUF
	FCBCSN
	FCBLSN
	FCBSSN

	Chapter Four - FMS Initialization
	DINIT
	Drive Determination
	Drive Allocations
	Sector Buffer Allocations
	Setting MEMLO
	Device Handler Table Entry
	Drive Tables
	Sector Allocation Tables

	Chapter Five - FMS Entry
	SETUP

	Chapter Six - FMS Exit
	RETURN
	GREAT And FGREAT
	Error Exits

	Chapter Seven - Device Dependant Commands
	DFMDDC
	XFORMAT
	XDELETE
	XDEL0
	XRENAME
	XLOCK And XUNLOCK
	XPOINT
	XNOTE

	Chapter Eight - FMS Open Routines
	DFMOPN
	DFOIN
	DFOUPD
	DFOUI
	DFDRDSU
	DFOAPN
	DFOOUT
	DHFOX2
	SETFCB

	Chapter Nine - FMS Close Routines
	DFMCLS
	CLOUT
	CLUPDT

	Chapter Ten - Get Byte Routine
	DFMGET

	Chapter Eleven - Put Byte Routine
	DFMPUT

	Chapter Twelve - Burst I/O
	TBURST
	BBINC
	BUREOF

	Chapter Thirteen - Reading the directory as a file

	LISTDIR
	GDCHAR
	LDCNT
	FDENT

	Chapter Fourteen - Sector I/O Routines
	BSIO
	DSIO
	RDDIR And WRTDIR
	DIRIO
	RDVTOC And WRTVTOC
	VTIO
	DSYSIO
	OPVTOC

	Chapter Fifteen - File Name Decode Routine
	FNDCODE
	FDSCHAR

	Chapter Sixteen - Directory Searching
	SFDIR
	CSFDIR

	Chapter Seventeen - Write Next Sector
	Chapter Eighteen - Read Next Sector
	RDNXTS

	Chapter Nineteen - Get And Free Sector Routines
	GETSECTOR
	FRESECT

	Chapter Twenty - The Boot Process
	XBCONT
	Boot Records

	Chapter Twenty-One - Maintaining the Boot Record
	WRTDOS
	WDO
	DELDOS

	ATARI DOS 2.0S - Source Code
	Appendix A - An Intermediate User's Guide To This Book
	What's "Commented Source Code"?
	Hex
	Maklng A Modification
	Some Cautions
	Things To Look Out For

	NOTES

