

From The Editor's of COMPUTE! Magazine and
Optimized Systems Software, Inc.

INSIDE
ATARIR DOS

Compiled by Bill Wilkinson,
Optimized Systems Software, Inc.

Published by COMPUTE! Books,
A Division of Small System SeNices, Inc.,
Greensboro, North Carolina
ATMI is a registered trademark of Atari, Inc.

Preface

This book contains the only complete and official listings for the disk
Filt: Manager System (FMS) commonly known as "Atari DOS 2.0S."
You will note that we have clearly stated that the purchase of this
book does not entitle you to make, sell, give, or otherwise distribute
copies of either the original Atari DOS 2. OS or any modified version
you may produce as a result of using this book.

By way of information, should you desire to produce and distribute
a modified version of this product (e .g., to support a new disk drive),
you must sign a contract and licensing agreement with the party who
owns the rights to grant such licenses for non-exclusive uses. Currently,
Optimized Systems Software is the only entity able to grant such
licenses.

Some of you may find it strange that the publishers of COMPUTE!
mal~azine are publishing this book. You might wonder why Atari,
Inc., hasn't released this information before. Why can you only obtain
distribution rights from Optimized Systems Software? For the answers
to these and other questions we present the following Introduction,
an historical perspective on the development of the systems software
for the Atari Home Computers.

All reasonable care has been taken in the writing, testing, and correcting of the text and of the
software within this book. There is, however. no expressed or implied warranty of any kind from
the authors or publishers with respect to the text or software herein contained. In the event of
any damages resulting from the use of the text or the software in this book, the authors or
publ:shers shall be in no sense liable. Please review the important cautions noted in Appendix A
regarding the use of this book.

Cop~'right © 1982 text, Small System Services, Inc.
COP1'right © 1978, 1979, 1980, 1982 program listings, Optimized Systems Software, Inc.

All rights reserved. Reproduction or translation of any part of this work beyond that permitte~
by sections 107 and 108 of the United States Copyright Act without the permission of the
copyright owner is unlawful.

Printed in the Uni ted States of America

ISBN 0-942386-02-7

10 9 8 7 6 5 4 3 2

ii

Table of Contents

Preface Page i i
Introduction: Being a History of Two Births: "Coleen" and "Candy"
Chapter One: Atari DOS Overview
Chapter Two: Disk Organization
Chapter Three: FMS File Control Blocks (FCB)
Chapter Four: FMS Initialization
Chapter Five: FMS En try
Chapter Six: FMS Exit
Chapter Seven: Device Dependent Commands
Chapter Eight: FMS Open Routines ..
Chapter Nine: FMS Close Routines
Chapter Ten: The GET BYTE Routine
Chapter Eleven: The PUT BYTE Routine
Chapter Twelve: Burst I/O
Chapter Thirteen: Reading the Directory as a File
Chapter Fourteen: Sector I/O Routines
Chapter Fifteen: File Name Decode Routine
Chapter Sixteen: Directory Searching
Chapter Seventeen: Write Next Sector
Chapter Eighteen: Read Next Sector ..
Chapter Nineteen: Get and Free Sector Routines
Chapter Twenty: The Boot Process
Chapter Twenty-One: Maintaining the Boot Record
Atari DOS 2.0S

Page iv
Page
Page 10
Page 15
Page 17
Page 22
Page 23
Page 25
Page 31
Page 34
Page 36
Page 37
Page 38
Page 40
Page 42
Page 46
Page 48
Page 50
Page 51
Page 53
Page 55
Page 57
Page 59

Appendix A:. An Intermediate User's Guide To This Book Page 102

COMPUlI! Books is a division of Small System Services. Inc ..
Publishers of COMPUlI! Magazine
Editorial Offices are located at:
625 Fulton Street. Greensboro. NC 27403 USA. (919)275.9809

Optimized Systems Software. Inc.. is located at:
10379 Lansdale Avenue. Cupertino. CA 95014 USA. (408)446.3099.

iii

Introduction

BEINGA
HISTORY OF
lWO BIRTHS
"COLEEN"

AND
"CANDY"

I don't know exactly when the concept of the Atari Computer was
developed within the corporate mind of Atari, Inc., nor do I know all
of the people responsible for nursing that concept into reality. The
following history covers the relationship with Atari, Inc., during the
evolution of the system software.

Sometime in early 1978, when the Atari 800 and 400 were still
called "Coleen" and "Candy" and were still in the breadboard stages,
Atari bought a copy of the source for Microsoft 8K BASIC. This
ver:;ion of BASIC was fundamentally the same product that was
implemented by Commodore in the early PETs, was used by OSI, and
was a close ancestor of Applesoft. Six months and many, many Atari
man-hours later, that 8K BASIC was almost functioning properly on
the Atari prototypes. But buying source for a program buys you just
that: source. Generally, you also receive little documentation,
sometimes obscure code, no guide to modification, and no real support.
What to do? The products were due to be shown in early January,
1979, at the Consumer Electronics Show (CES) in Las Vegas,
Nevada.

Enter Shepardson Microsystems, Inc. (SMl), my employer at
that time. Though little known by the microcomputer public, SMI
had already produced some very successful, private labeled
microcomputer software. Among our better-known efforts were the
original Apple DOS, Cromemco 16K Extended BASIC, and

iv

Cromemco 32K Structured BASIC (just being completed at that
time). Also, we had done some work for Atari on a custom game
processor. (Which used a 12-bit ROM and 5-bit RAM configuration
and was well received at Atari, but never produced.)

Coincidentally, about that same time SMI had also purchased
source for Microsoft 6502 BASIC. After producing Apple's OOS, we
had the bright idea of mating the Apple II peripheral bus with the
KIM/SYM/AIM system bus (and it still seems like a good idea to us,
but ...). The idea was to provide a disk system (Apple's) to the Single
Board Computer market. Needing a BASIC to sell with the system,
we plunked down a few grand and purchased Microsoft's. Though it
looked to us like it would be difficult to modify, we were intending to
resell it with a minimum of changes, so it seemed appropriate.

A New BASIC?
Re-enter Atari, some time in the late summer of 1978, asking if SMI
could help them. With Microsoft BASIC? Well ... we really didn't
want to, but ... Could we propose a new BASIC? We talked. And
had meetings, and a study contract, and more meetings, and finally
we wrote a specification for a 10K, ROM-based BASIC. (I still have a
copy of that spec, and it's amazing how little the final version deviated
from that original.)

Of course, in the middle of all these discussions, Atari naturally
divulged how their (truly superb) ROM-based Operating System
would interface both with BASIC and with various devices.
Somewhere in here, my memory of the sequence of events and
discussions becomes a little unclear, but suffice it to say that we found
ourselves making a bid on producing not only a BASIC for Atari, but
also the File Manager (disk device driver) which would change Atari
OS to Atari OOS.

Sometime in late September, 1978, the final proposal was made
to Atari, and it was accepted by them shortly thereafter. In mid
October, 1978, we received the go-ahead. The project leader was Paul
Laughton, author of Apple OOS. The bulk of the work ended up
being done by Paul and Kathleen O'Brien. Though I was still involved
in the finishing touches on Cromemco BASiC, I take-credit for
designing the floating point scheme used in Atari BASIC. Paul Krasno
implemented the math library routines followiI)g guidelines supplied
to us by Fred Ruckdeschel (author of the acclaimed text, BASIC
Scientific Subroutines). And, of course, much credit must go to Mike
Peters, our combination keypuncher/computer operator/junior
programmer/troubleshooter.

v

Since we obviously couldn't have the Atari machines to work on
(they hadn't been built yet), the first step was to bring up an emulator
for Atari's CIO ("Central Input-Output," the true heart of Atari's
OS) on our Apple II systems. With Paul Laughton leading the way
(and doing a lion's share of the work), the pieces fell together quickly.
"Little" things had to be overcome: the cross-assembler was modified
to handle the syntax table pseudo-ops, the 256-byte Apple disk sectors
had to be made to look like 128-byte Atari sectors, the BASIC
interpreter seemed to function, but was waiting for the floating point
routines. And there are funny things to tell of, also. Like our cross
assembler, running on an IMP-16P (a 1973 vintage, 16-bit, bit-sliced
PMOS microprocessor) that used keypunched cards for input, a floppy
disk (with no OOS) as temporary storage, and a paper tape punch as
output.

Somehow, Kathleen and Paul guided the two programs unerringly
toward completion. On December 28, 1978, Atari's purchasing
department at last delivered a signed copy of the final purchase order.
It called for delivery of both products by April 6, 1979. There was a
clause which provided for a $1,000 per week incentive (if we finished
early) and penalty (if we finished late). What is especially humorous
about that December 28th date is that the first working versions of
both BASIC and FMS had already been delivered to Atari over a week
belore! That is fast work.

Fortunately, then, Atari took their new Atari BASIC to CES.
Unfortunately, there was a limit on the amount of incentive money
collectible. Oh, well.

In the months that followed, SM I fixed bugs, proofread manuals,
and worked on other projects (including the Atari Assembler/Editor,
which was mostly Kathleen's effort). The nastiest bugs in BASIC were
fixed by December, 1979, but it was too late: Atari had already
ordered tens of thousands of BASIC ROMs. The FMS bugs were
easier to get fixed, since OOS is distributed on disk.

In mid-1980, Paul Laughton once again tore into FMS. This
titT.e, he modified it to handle the ill-fated 815 double-density disk
drive and added "burst 110" (and there will be much more about both
these subjects in the technical discussion that follows).

In late 1980, and early 1981, Bob Shepardson, owner of
Shepardson Microsystems, Inc., decided that the pain and trouble of
having employees wasn't justified by the amount of extra income (if
any) that he derived. Though we still occasionally function in a loose,
cooperative arrangement, the halcyon days of SMI seem to be over.

vi

A New Beginning
I negotiated with Bob Shepardson for his rights to the Atari products
(FMS, BASIC, and the Assembler/Editor) and their Apple II
counterparts. Thankfully, Atari had purchased from SMI only a non
exdusive right to distribute these products. SMI had retained the
rights to license other users on a similar non-exclusive basis (and,
indeed, SMI sold a version for the Apple II during most of 1980).

So now it was frantic time again: this was February 25, 1981, and
the West Coast Computer Faire was April3rd. But our brand new
co:npany, Optimized Systems Software, arrived on time, bringing
wi th it BASIC A + , OS/ A + and EASMD. All three were enhanced,
di~k-based versions of the original Atari programs (and, in fact, derived
some of their enhancements from the previous OSS Apple II
products).

The products have been well received by the Atari user
community, in part due to the fact that they are truly compatible, yet
enhanced, versions of standard Atari software.

Why this Book?
The decision to publish these listings was not an easy one to make;
and it is, in its own way, an historic occasion. After all, have you ever
seen anyone offering source or listings of CP/M, the most popular of
all computer operating systems? Since Atari, to their credit, has
honored the original agreement with SMI and not released either
SOJrce or listings without permission, the responsibility for doing so
se.!med to rest with OSS.

But Atari has set a powerful precedent by publishing the listings
of DUP (their portion of DOS 2.0S) and the OS ROMs. The clamor
from Atari users for the source for FMS finally even reached us, so we
h2ve bowed to the inevitable, and honored the same commitment
that Atari has made: to release as much information and aid as possible
to the user community.

We hope that the users will appreciate these efforts and, in turn,
re;pect our rights and Copyrights. As long as there is a mutual respect
and benefit, you, the user, can expect continued support.

About this Book
With the release of this book, the dedicated Atari enthusiast can
examine all the inner workings of Atari DOS and modify his (or her)
system to his heart's delight. Rather than simply publish listings, we
have chosen also to provide a complete guide to the workings of FMS.

Although the listing itself is relatively clear and commented, all

vii

but the most expert would have trouble plowing through some of the
tortuous logic necessary in such a program. The guide included here
describes all aspects of the FMS, including the external view, the
chaLrts and tables, the various interfaces, and (in copious detail) the
functions of the individual subroutines (including complete entry and
exit parameters).

There is much of value here even for the person who'hever
intends to modify Atari DOS. We feel that FMS is a fairly well.
structured, relatively sophisticated, system level assembly language
program. We hope that most users will gain by the insights presented
here.

We would welcome any notes you would care to send pointing
out errors either in the DOS or in this book.

Bill Wilkinson
Optimized Systems Software
Cupertino, California
February, 1982

viii

Chapter One

ATARI
DOS

OVERVIEW
The standard Atari Disk Operating System, DOS 2.0S, consists of
four separate elements, ranked as follows in order of their "visibility"
to the average DOS user.

1. DUP - Disk Utility Package
2. CIO - Central Input/Output
3. FMS - File Management System
4. SIO - Serial Input/Output

It is helpful to understand the entire Input/Output (I/O) process.
While this book is intended to give detailed information on the
workings of FMS, this overview will attempt to at least show how the
four elemen ts of DOS are connected. To this end, we would first call
your attention to Figure 1. This figure is, itself, an overview of the
entire Atari I/O system, including indications as to how and where
data and control flows between the various elements thereof. Figures
1-1 through 1-4 show" close-ups" of portions of this diagram as they
re'.ate to the four elements of DOS.

In these figures, the rectangular boxes represent system elements,
and are appropriately labeled. The wide, lettered arrows represent the
flow of data (via buffers, control blocks, or even registers) between
the various elements. The narrow, numbered arrows show how and
where control, and control information, is transferred.

1-1. Disk Utility Package
DUP (which shows as "DUP.SYS" in a disk directory listing) is the
most obvious and visible element of Atari DOS. DUP's function is to
prcwide the user with keyboard access to the various file management
functions in FMS. It does so via the menu which is displayed when,
for example, the user keys "DOS" from BASIC. Actually, the menu
of'ers several options which are not directly a part of the FMS (e.g.,
copy and duplicate files). Refer to the Atari Disk Operating System II

CHAPTER ONE

Reference Manual (part number C016347) for more information.
DUP is not an integral part of FMS. DUP may be relatively easily

replaced with a program of the user's choice. In fact, our own OS/A +
does exactly that: instead of a menu, the user is given a command
driven keyboard interface to the other elements of DOS.

DUP is not even a privileged portion of DOS (excepting, perhaps,
for reeding to know a little of the internals of FMS when it performs a
Duplicate Disk function). Any user application program (and that
includes Atari BASIC, BASIC A +, EASMD, and many, many
more) interacts the same way DUP does. Figure 1-1 shows the "proper"
flow of control in DOS. Note that DUP transfers control only to
CIO, whic~, in turn, transfers control to FMS and thence to SIO. An
application program which maintains this protocol should be able to
perform correctly in any Atari system, regardless of the revision of the
OS ROMs and/or FMS.

Of course, control is not the only thing which DUP must transfer.
It must also tell CIO where its data is and what to do with it. Refer to
Figure 1-2 for a diagram of the complete application/CIO interface
(again, it is labeled in this way because DUP is just another application
program as far as the rest of DOS is concerned). CIO always expects
an Input/Output Control Block (lOCB) and usually (i.e., for all but
the >implest operations) needs a buffer into or out of which it may
perform its operations.

1-2. Centrallnput/Output
CIO is actually the heart of the entire Atari Computer. It is less than
800 bytes long and yet serves to handle virtually all the input and
output which takes place in the computer. CIO is a part of the Atari
"OS ROMs," the 10K byte package which also houses the floating
point routines, the default character set, the interrupt handlers, and
several device drivers.

The entire set of operations summarized in Figure 1-2 is covered
in detail in the Atari OS Manual (C01655) and will be covered only
briefly here. Readers of COMPUTE! will also find some helpful material
on this subject in issues #18 through #21 (November, 1981, through
February, 1982) in the "INSIGHT: ATARI" columns.

In order to allow easy control and data flow, CIO is written to
expect and provide for eight Input/Output Control Blocks (lOCBs)
which are used to pass the information needed to process the various
kind, of 110 requests. An application places the necessary command
and control information in an 10CB which it selects (data path A). If
a buifer is required, the application must provide one (data path C)

z

CHAPTER ONE

and place its address into the IOCB. When ready to execute the I/O
command, the application places the IOCB number (times 16) in the
6502's X-register (data path C) and executes a JSR call to CIO (control
path I). Note that a few command variations may pass data via the
6502's A-register, but we may consider that simply a special case
location of the user's buffer.

When CIO receives control, it examines the information in the
ICeB (and, for some operations, in the user buffer) to determine
what actions it is to perform. Generally, this action requires the
execution of a device handler routine.

A device handler (interchangeably known as a device driver) is a
system routine that performs I/O operations for a specific device (or
class of devices). Examples of device handlers include the "P:" driver
(the printer) and the "E:" driver (the screen/keyboard editor). Figure
1-3 illustrates the interface between CIO and the various device
handlers. Note that FMS is simply another device handler as far as
CIO is concerned, having been given the name "0:".

All device drivers are required to contain a table of address pointers
(known as the Device Vector Table) to various specific routines
within themselves, including a device OPEN routine, GET
CHARACTER routine, etc. The name of a device and the address of
this table is placed in CIO's Device Handler Table. When an
application program makes an I/O request to CIO for a specific device,
CIO searches the Device Handler Table for the given name and
corresponding Device Vector Table address. With the thus-located
vector table, CIO can then call the appropriate device handler routine
(v ia a J SR, along control path two of Figure 1-3).

1-3. File Management System
As stated above, FMS is actually simply another device driver as far as
CIO is concerned. The control and data flows shown in Figure 1-3 are
equally valid for all device drivers in the Atari system. Note that
many of the drivers in the default ("as-shipped") system reside entirely
within the so-called OS ROMs. Although it resides in RAM, what is
somewhat unique about FMS is that the Atari system initialization
code contains a segment of "boot" code which loads FMS into memory
upon power-on.

FMS is the system device handler for all 110 operations that
specify the device name "0" {including "01:", "02:", etc.}. In order
to perform its functions, FMS examines the data in the specified
IOCB (data path F). It may also examine, read, or write data to or
from the user-supplied buffer (data path I). Data path H is used to pass

3

CHAPTER ONE

the IOCB-designator (again, via the X-register) and single-byte transfer
data (via the A-register).

FMS is called upon to perform a variety of tasks, including all
disk I/O, file renaming, protecting, deleting, etc. Since the rest of
this book consists of a listing of FMS along with detailed explanations
of all sections thereof, we will not now dwell on the inner workings of
FMS.

However, we do need to note that, in order to perform its work,
FMS must transfer data to and from the disk. FMS accesses the disk
drive via SIO, the fourth element of OOS.

1-4. Serial Input/Output
SIO is the name given to the component of DOS which drives and
controls the Atari serial I/O bus and the various peripherals (disk,
printer, modem, etc.) which are placed on that bus. Figure 1-4
illustrates the interface between FMS and SIO, but it could just as
well serve to show (for example) how the printer driver talks to the
various Atari printers.

The SIO is primarily driven by a request placed in SIO's Device
Control Block (DCB) by the device handler (data path K) followed
by a transfer of control (control path three) via a]SR. SIO uses the
information in the DCB (data path M) to determine what it needs to
do. If the DCB specifies a serial bus data transfer (as opposed to, for
example, a status request), then the address of the data buffer must
also be passed (via a field in the DCB). For example, the FMS buffer
shown is accessed via data paths J (from FMS) and L (from SIO).

Although SIO only understands the single system DCB, the
buffer specified may be located anywhere in memory. FMS takes
advantage of this to implement "burst I/O" (discussed in section 12),
which has SIO transferring data directly to or from the user's buffer
(data path E).

Since the actual disk data transfer occurs in fact within the 810
disk drive and, since SIO communicates to the drive via data path N,
one might reasonably argue that the disk drive constitutes a fifth
component of DOS. However, because the disk drive functions are
preprogrammed in ROM, and because SIO implements the only
method of accessing the disk (as well as most other peripherals), then,
for all practical purposes, even machine language software may treat
SIO as the last link in the I/O chain on the Atari Computers.

Once again, we remind you to study Figure 1. In the following
dissertation and dissection of FMS, we shall refer to this chart often.

4

A

F

A
p

p
lic

a
ti

o
n

P

ro
g

ra
m

-o

r
D

U
P.

5Y
S

FM
S

(D
O

S,
SY

S)

Fi
gu

re
 1

 (e
nt

ire
)

D
O

S
D

at
a

A
nd

 C
on

tr
ol

 F
lo

w

S
er

ia
l
In

p
u

t/
O

u
tp

u
t

S
IO

3

B

U

81
0

D
is

k
D

ri
ve

<=
z=

> M
SF

~
~
-
-
-
.
-
r
-
-
-
-
-
-
-
-
-
-
~

E

R

K

I o C
 B

F

A

A
p

p
lic

a
tio

n

P
ro

gr
am

-o

r
-

DU
P.

SY
S

FM
S

(D
O

S.
SY

S)

Fi
gu

re
 1

-1

D
O

S
C

on
tr

ol
 F

lo
w

S
er

ia
lln

pu
t/

O
ut

pu
t

SI
O

 B

0
=

>
F

U

J
M

F

'_
_

_
-,

--
. _

_
_

_
_

 .-J

s
r E

R

K

81
0

D
is

k
D

riv
e

I o C
 B

F

A

A
p

p
lic

a
ti

o
n

P

ro
g

ra
m

-
o

r

D
U

P.
SY

S

FM
S

(D
O

S
S

Y
S

)

F
ig

ur
e

1-
2

A
p

p
lic

at
io

n
/C

IO
 I

n
te

rf
ac

e

S
er

ia
l

In
p

u
t/

O
u

tp
u

t
S

IO
 B

<=
r>

 F
U

J

M
 F

'-

-
_

-
-
y

-
.
 _

_
_

_
_

 ..J

S

F

E

R

K

81
0

D
is

k
D

ri
ve

0
0

A

F

A
p

p
lic

a
ti

o
n

Pr

o
g

ra
m

-
o

r
D

U
P

.S
VS

FM
S

D
is

k
D

e
v
ic

e
 H

an
d

le
r

(D
O

S
.S

VS
)

Fi
gu

re
 1

-3

C
lO

-D
ev

ic
e

H
an

d
le

r
In

te
rf

ac
e

S
er

ia
ll
n

p
u

t/
O

u
tp

u
t

S
IO

3

B

U

81
0

D
is

k
D

ri
ve

<=
Z=
>~
 ~

L
-_

_
_

_
 ~
~
-
-
-
-
-
-
-
-
-
-
~

E

R

K

A

F

A
p

p
lic

a
ti

o
n

P

ro
g

ra
m

-

o
r

D

U
P

.S
YS

FM
S

(D
O

S.
SY

S)

F
ig

u
re

 1
-4

FM

S
-S

IO
 I

n
te

rf
ac

e

S
e

ri
a

lln
p

u
t/

O
u

tp
u

t
S

IO
 B

~
F
U

J
'M

F

'"
--

_
--

,.
.,

. _
_

_
_

_

J
S

F

E

R

K

81
0

D
is

k
D

ri
ve

Chapter Two

DISK
ORGANIZATION

The purpose of FMS is to organize the 720 data sectors available on an
810 diskette into a system of named data files. FMS has three primary
data structures that it uses to organize the disk: the Volume Table of
Con'cents, the Directory, and Data Sectors. The Volume Table of
Coments is a single disk sector which keeps track of which disk sectors
are available for use in data files. The Directory consists of directory
sectors. It is used to associate file names with the location of the files'
sectors on the disk. Each Directory entry contains a file name, a
pointer to the first data sector in the file, and some miscellaneous
information. The Data sectors contain the actual data and some
control information that link one data sector to the next data sector
in the file. Figure 2-1 illustrates the relation between the Directory
and the Data files.

Dis., Directory
The Directory starts at disk sector $169 and continues for eight
contiguous sectors, ending with sector $170. These sectors were
chosen for the directory because they are in the center of the disk and
therefore have the minimum average seek time from any place else on
the disk. Each directory sector has space for eight file entries. Thus, it
is possible to have up to 64 files on one disk.

A Directory entry is 16 bytes in size, as illustrated by Figure 2-2.
The directory entry flag field gives specific status information about
the current entry. The directory count field is used to store the number
of sectors currently used by the file. The last eleven bytes of the entry
are the actual file name. The primary name is left justified in the
primary name field. The name extension is left justified in the extension
field. Unused filename characters are blanks ($20). The Start Sector
Number field points to the first sector of the data file.

Dat·a Sectors
A Data Sector is used to contain the file's data bytes. Each 128 byte
data "ector is organized to hold 125 bytes of data and three bytes of

10

CHAPTER TWO

control infonnation as shown in Figure 2-3. The data bytes start with
the first byte (byte O) in the sector and run contiguously up to, and
including, byte 124. The control infonnation starts at byte 125.

The sector byte count is contained in byte 125. This value is the
actual number of data bytes in this particular sector. The value may
ran:;e from zero (no data) to 125 (a full sector). Any data sector in a
file may be a short sector (contain less than 125 data bytes).

The left six bits of byte 126 contain the file number of the file.
This number corresponds to the location of the file's entry in the
Dir'~ctory. Directory entry zero in Directory sector $169 has the file
number of zero. Entry one in Directory sector $169 has the file number
one - and so forth. The file number value may range from zero to 63
($3F). The file number is used to insure that the sectors of one file do
not get mixed up with the sectors of another file.

The right two bits of byte 126 (and all eight bits of byte 127) are
used to point to the next data sector in the file. The ten bit number
contains the actual disk sector number of the next sector. Its value
ranges from zero to 719 ($2CF). If the value is zero, then there are no
more sectors in the file sector chain. The last sector in the file sector
chain is the End-Of-File sector. The End-Of-File sector mayor may
not contain data, depending upon the value of the sector byte count
field.

Volume Table Of Contents (VTOC)
The VTOC sector is used to keep track of which disk sectors are
available for data file usage. The VTOC sector is located at sector
$168. Figure 2-4 illustrates the organization of the VTOC sector. The
mO:it important part of the VTOC is the sector bit map.

The sector bit map is a contiguous string of 90 bytes, each of
wh1.ch contains eight bits. There are a total of 720 (90 x 8) bits in the
bit map - one for each possible sector on an 810 diskette. The 90
byt,~s of bit map start at VTOC byte ten ($OA). The leftmost bit ($80
bit) of byte $OA represents sector zero. The bit just to the right of the
leftmost bit ($40 bit) represents sector one. The rightmost bit (bit
$01) of byte $63 represents sector 719.

The fact that FMS interprets the bit map as representing sectors
zero through 719 is a bug. The Atari 810 disk drive will not accept
commands for sector zero. It will accept commands for sector 720. In
other words, the bit map is skewed by one. The problem cannot be
fixed now because there are already tens of thousands of diskettes
whose bit maps are to be interpreted as representing sectors zero through
719, and because some savvy applications writers have taken advantage

11

CHAPTER TWO

of this feature. (A bug which generates useful side effects is known in
the programming profession as a feature.) Sector 720 can never be
used by FMS and is therefore available for miscellaneous purposes.

Directory Sectors

Sector $169 File A

File B

FileC

Secor $170 FileD

1

Figure 2-1

12

Sectors File A

Sectors File B

CHAPTER TWO

Typical Directory Sector

Entry 0

Entry 1

Entry 2

Entry 3

Entry 4

Entry 5

Entry 6

Entry 7

-

Typical Directory Entry

Primary Name

Start Sector Number (Low, High)
The Sector Number of the First
Sector in the File Sector Chain

----~. Count (low, High)
The Number of Sectors in the File

\~~---------i". Flag
$00 - Entry Has Never Been Used
$80 - Entry Has Been Deleted
$40 - Entry In Use
$20 - Entry locked
$02 - File Created By DOS 2
$01 - File Opened For Output

Figure 2-2

I

13

Extension

13

CHIAPTER TWO

I

Typical Data Sector

Data
125 Bytes

I Control

BytE,125
I c:::=======:tl Nunber Bytes Used In Sector (0-125)

Byte 126 t :+: Next Sector Number (High Two Bits)

'--------....-....... File Number (0-63)

L __=.===:r--.. Next Sector Nunber (Low Eight Bits)

Figure 2-3

VTOC Sector ($168)

0-9
'I--_M_is_C_I_n_fo_. ____ --I

$OA-$63

Sector Usage
BitMap

$64-$7F
Unused

1
0 ~ Type Code (= 0 in DOS 2.0)

Nunber Sectors Total ($2C3)
Nunber Unused Sectors
RElserved

1 I
3 I
5 I
6 Unused

t
Each bit represents a specific sector

I - The left most bit ($80) of byte $OA is sector nunber 0 (does not exist)
- The next bit ($40) of byte $OA is sector nunber 1.

'--. - The right most bit ($01) of byte $63 IS sector nunber $719.
- If the bit is one. the sector is unused and available
- If the bit is off (zero). the sector is used

Figure 2-4

14

I

Chapter Three

FMS
FILE CONTROL

BLOCKS
(FCB)

The FMS File Control Blocks are used to store information about files
that are currently being processed. Each file that is being processed
concurrently by FMS requires one FCB. Since the Atari system has
eight loeB's, FMS must be prepared to handle up to eight files
concurrently, thus there are eight FCBs. The FCBs were designed to
have a one-to-one correspondence with the loeBs. When a file is to
be processed with loeB number three, FMS will use FCB number
three for that file. When a file is to be processed with loeB number
five, FMS will use FCB number five for that file. Each FCB is the
same size as an IOCB (16 bytes). The FCBs are located in a contiguous
RAM area just like the IOCBs. When CIO calls FMS, the X register
contains the displacement (loeB number times 16) to the loeB
making the request. The FMS uses this displacement value to access
both the loeB information and the FCB information. Please refer to
the listing at location $1381 for the following discussion about the
FeBs.

FCBFNO
The file number of the file currently being processed. The value {zero
to 63} is shifted left two bits. When a file has been opened for reading,
this value will be used to check for a file number mismatch in the data
sectors. When a file is opened for write, this value will be placed in
the file number field of the data sectors.

FCBOTC
Open Type Code. This value is used as a flag to indicate which mode
the file has been opened for:

Input is $04.

15

CH,lPTER THREE

Output is $08.
Update is $OC.
Append is $01.
Directory read is $02.

FCISSLT
Thi~ is a flag used to indicate that the file being processed was created
by DOS 1 rather than DOS 2. The Data Sector length byte has a
different interpretation under DOS 1.

FCISFLG
Thi~ field is a working flag. If the value is $80, then the file is eligible
to acquire new data sectors. Files that are opened for Output or Append
are digible to acquire new data sectors. If the value is $40, then the
sector currently is in a memory buffer, has been modified, and needs
to bl! written back to the disk.

FCISMNL
If the file is opened for Output or Append, this value will be either
125 or 253 depending upon the drive type. The 253 value is meant for
the Atari 815 dual density drive. If the file is opened for Read or
Update, then this value represents the number of data bytes that are
in the data sector currently in a buffer. This value is obtained from the
Data Sector data length field (byte US of the data sector.)

FCISDLN
Thif value points to the next data byte to be operated on in a data
sector. If the file is opened for Output or Append, this value points to
the next available (unused) data byt(~ in the current data sector. If the
file is opened for Update, then this value points to the next data
sector byte to be either read or modified. If the file is opened for
Input, then this value points to the next byte to be read.

FCISBUF
ThiE value is an index into the sector buffer table. The sector buffer
table is a list of buffer addresses. When a file is being processed, a
sector buffer is required to hold data sectors. This field tells FMS
which FMS buffer has been allocated to the file.

FCISCSN
The sector number of the sector currently in the buffer is stored in this
field.

16

FCBLSN
The sector number of the next sector in the file chain is stored in this
field.

FCBSSN
If the file has been Opened for Append, then this field contains the
sector number of the start of the sectors to be appended to the file
when the append file is closed.

Chapter Four

FMS
INITIALIZATION

DUP gets control whenever the system is booted or the RESET key is
pressed. DUP will call the FMS initialization routine, DINIT at $7EO.

Functions:

1) Determine how many (and what type of) disk drives will be
used.
2) Set up a drive table and allocate a drive buffer for each drive.
3) Allocate sector buffers and build the sector buffer table.
4) Clear the FCBs to zero.
S) Set MEMLO.
6) Enter the D: device into the Device Handler Table.
7) Exit to caller via RTS.

Drive Determination
The DRVBYT byte at $ 70A is used to tell FMS how many disk drives
will be used and what the drive number of the drives will be. The

17

CIHAPTER FOUR

rightmost bit (bit $01) indicates drive 1. The next left bit ($02)
indicated drive 2 - and so forth. If the bit is one, then the drive is to
be used. If the drive is zero then the drive is not to be used. The code
will allocate up the eight drives, even though the 810 hardware only
has switches for drives 1,2,3 and 4.

lfDRVBYT indicates that a drive is to be used, then·FMS issues
a status command to that drive to determine if it is active and what
type (810 or 815) of drive it is.

Drive Allocations
The drive determination process sets up two tables (Figure 4-1). The
first table is the DR VTBL. This table is indexed into by the drive
number (minus one). If the value in the table is zero then the drive is
not to be used. If the value is one, then the drive is an active 810 and
requires one drive buffer. If the value is two, then the drive is an 815
and requires two 128 byte buffers.

The second table is the drive buffer table. The drive buffer table
contains the address of the drive buff6!r to be used for each drive. This
Drive Buffer will be used to hold the VTOC sector on the diskette in
the drive. The table is separated into two sections: DBUFAL contains
the least significant address byte and DBUFAH which contains the
most significant address byte. The drive buffer table is also accessed by
the drive number (minus one).

When a file is being processed, the Drive number is obtained
from the IOCB Device Number field, ICDNO. The obtained value is
decremented by one and is then used as an index into the Drive Tables.
The Drive Type is copied from the DRVTBL entry to DRVTYP
($12FE) for easy access by FMS. The Drive Buffer address is copied
from the DBUFAL and DBUFAH table entries to the zero page drive
buifer pointer, ZDRVA ($45).

Sector Buffer Allocations
The SABYTE at location $709 is used to inform FMS about the
number of 128 areas to be allocated as sector buffers. One 128 buffer is
required for each file which is to be processed concurrently on 810
drives. Two 128 byte buffers are required for each file which is to be
precessed concurrently on 815 drives.

The Sector Buffer Allocation table, SECTBL at $1319, is used to
indicate if a buffer is available for allocation to a file (Figure 4-2). If a
buffer is available, the entry is set to zero. If the buffer is not available,
the entry is a minus value. The table is 16 bytes in size and therefore
can be used to allocate up to sixteen 128 byte buffers. During the

18

CHAPTER FOUR

inicialization process, entries which are to be unused are set to a minus
value.

The Sector Buffer Address Table is a table of addresses which
point to the individual sector buffers. The table is divided into two
parts: SABUFL contains the least significant address byte, SABUFH
contains the most significant address byte.

When a file is being processed, an available buffer number is
found in SECTBL by search for a zero valued entry. The located
buffer is allocated to the file by entering a minus value ($80) into the
table and placing the corresponding buffer number into the OCB
buffer number field, FCBBUF. When the file processing is done, the
buffer is deallocated bv setting the SECTBL entry to zero.

SeHing MEMLO
The Atari MEMLO location ($2E7) is set after the FMS buffers have
bet:n allocated. The address of the last sector buffer allocated is
incremented by 128. This value is then placed into MEMLO.

DE~vice Handler Table Entry
The Device Handler Table ($31A) is searched for a "0" entry or the
first (from the top) empty entry. When an appropriate entry is found,
FMS inserts (or reenters) "0" as a DEVICE NAME and sets the
DEVICE vector entry to point to the FMS Device Vector table at
DFMSDH ($7CB).

19

CHAPTER FOUR

I $70A DRVBYT

Drive Bits

[;1311 DRVTBL '=

Drive No. Index
--1- -0-

2 1
-3 2

4 3
5 4
6 5
7 6
8 7

1 S1329 DBUFAL

01331 DBUFAH

.BYTE $OF

1000011 1

'+9

0 1
0 1
0 2
0 2
o o
o o
o o
o o

Allocates Drive 1.2,3.4

r
1 11

Drive Table

Drive Type From Status
810 Drive
810 Drive
815 Drive
815 Drive
No Drive
No Drive
No Drive
No Drive

• + 8 ; Drive Buffer Address Table (Low)

"+8 ; Drive Buffer Address Table (High)

I

O;70C $.A.SA WORD $1A7C ; Buffer Start Address

20

Drive No.
--1-

2
"3

4
5
6
7
8

Index
-0-

1
2
3
4
5
6
7

DBUFAH DBUFAL
1A 7C
1A FC
1B 7C
1C 7C
00 00
00 00
00 00
00 00

Figure 4-1
Drive Tables

128 Byte Buffer For Drive 1 At $1A7C

256 Byte Buffer For Drive 3 At $1B7C

CHAPTER FOUR

I ~;1319 SECTBl *+16 ; Sector Allocation Table

Buffer Number

0 00 Buffer Is Available
1 00
2 00
3 00
4 00
5 00
6 00 Buffer Is Available
7 FF Buffer NOT Available
8 FE
9 FD
10 FC
11 FB
12 FA
13 F9
14 F8
15 F7
16 F6 Buffer NOT Available

S709 SABVfE .BVTE 7 ; Number Of 128 Byte Sector Buffers

S1339 SABUFL * = *+16 ; Sector Buffer Address (Low) Table

S1349 SABUFH *+16 ; Sector Buffer Address (High) Table

(Last Drive Buffer Address + Drive Type (1 or 2) * 128) LJ
Buffer Number SABUFL SABUFH

o 1C 8C
1
2
3

1D
1D
1E

DC (Previous Entry + 128)
8C
DC

'-----4
5
6
7
8
9

10
11
12
13
14
15

1E 8C Sector Buffer 4 Address = $1E8C
1F DC
1F 8C
20 DC
00 00
00 00
00 00
00 00
00 00
00 00
00 00
00 00

Figure 4-2
Sector Allocation Tables

21

Chapter Five

FMS
ENTRY

The Device Vector Table for FMS is located at DFMSDH ($7CB).
The address of this table is placed in the Device Handler Table by the
FMS Initialization routine. When CIO needs to call an FMS function
(Figure 1, control path 2), it will locate the address of the function via
the table at DFMSDH. This table is the standard Atari Device Handler
Vector Table. The six entries are for:

Open
Close
Get Byte
Put Byte
Status
Device Dependent (XIO) Commands

Each of the six FMS entry points starts with a subroutine call to
the FMS SETUP routine. SETUP ($1164) prepares FMS parameters
to deal with the particular task to be performed.

SETUP
Address - $1164
Entry Registers - A = Possible 'Put Data' data byte.

X = IOCB number times 16.
Y = Don't Care.

Exit Registers - A = Unknown.
X = IOCB number times 16.
Y = Sector Buffer Index.

Functions:

22

1) Initialize ERRNO to $9F. This value will be used in the FMS
exit routines to form a FMS error number in the event of error.
2) Save the X Register in CURFCB. This value will be used as
an index to the proper IOCB and the proper FCB for the current
operation.

3) Save the value of the stack register as it was upon entry to

FMS. This value will be used in the FMS eXlt routine.

4) Set up drive information values from the drive number
contained in the zero page IOCB field ICDNOZ.
5) Allocate a sector buffer to the FCB if one is not already
allocated.

Chapter Six

FMS
EXIT

There are two types ofFMS exits: the normal exit and the error exits.
Both of these exit types end up calling the RETURN routine.

RETURN
Address - $1203
Entry Registers - A = Return Code.

X = Don't Care.
Y = Don't Care.

Exit Registers - A = Possible 'Get Byte' data byte.

Functions:

X = IOCB number times 16.
Y = Return Code.

1) The X register is loaded with the current IOCB number times
16 from CURFCB.
2) The return code is placed in the IOCB status field (lCSTA).
3) The stack register is restored to point to the stack displacement
at FMS entry from the value saved in ENTSTK.
4) The possible "Get Data" data byte is loaded into the A
register.

5) The Y register is loaded with the return code.

23

CHAPnRSIX

6) The caller (CIO) is returned to via the RTS instruction.

GREAT And FGREAT
GREA T and FGREA T are the exit points used by FMS when the
operation has terminated normally. FGREAT is located at $12EA and
is used to free the sector buffer that has been allocated to the FCB.
The FRESBUF routine is used to free the buffer. FGREA T exits
directly to GREAT ($12FO). The GREAT exit point loads the normal
return code ($01) into the A register and goes to RETURN.

Error Exits
The ERREOF exit is called when an end of file condition is found.
ERREOF loads the end-of-file condition code ($88) in the A register
and goes to RETURN.

The ERRIO exit is called if an error occurs during an 110 operation
(Figure 1, control flow 3). The error code from the OCB (control
path K) is loaded into the A register as the FMS return code and
control is passed to RETURN.

AU other errors exits are at the ERxxx labels starting at $12B5.
The error code is developed by means of a series of 6502 INC
instructions which increment the ERRNO (which was initialized to
$9F at FMS entry). The final instruction at the end of the INC chain
loads the final ERRNO value into the A register and control is passed
directly to RETURN.

24

Chapter Seven

DEVICE
DEPENDENT
COMMANDS

A Device Dependent Command is any command which is not Open,
Clo"e, Get Byte, Put Byte, or Status. When the command value in
the IOCB is greaterthan 15 ($OF), CIO will call the Device Handler
Device Dependent Command routine. The Device Handler must
determine if the command is a valid command for that device. The
Device Dependent Commands that for FMS are:

Rename
Delete
Lock
Unlock
Point
Note
Format

The FMS Device Dependent Command routine starts at
DFMDDC.

DFIWIDDC
Address - $BA7
Entry Registers - A = Don't Care.

X = IOCB number times 16.
Y = Don't Care.

Exit Registers - A = Unknown.

Function:

1) Call SETUP

X = IOCB and FCBnumber times 16.
Y = Unknown.

2) If the command is Format (254), then go to the Format routine,
XFORMAT at $018.

3) If the command is not Format, then check that the command

25

CHAPTER SEVEN

value is $20 through $26. If the command value is not in this
range then exit via the ERDVOC (Command Error) routine.
4} If the command is valid, go to the command via the OCOCVT
vector table.

)(fORMAT
The XFORMA T routine executes the FORMAT Device Dependent
Command.

Address - $018

Entry Registers - A = Don't Care.
X = IOCB and FCB number times 16.
Y = Don't Care.

Exit Registers - A = Unknown.
X = Unknown.
Y = Unknown.

Functions:

I) Issue the format I/O command to the drive. This will cause
the drive to perform the physical formating of the disk. If the
command returns with good status and there were no bad sectors
reported, then continue with the logical format operations. In
the event of physical format errors, exit via the ERDBAD error
exit.
2} Clear the drive buffer to zero.
3} Set the sector count values into the DVDMSN (VTOC
displacement one) and the DVDNSA (VTOC displacement
three) fields.
4} Set all 90 sector bit map bits to one (available).
5} Deallocate the first four sectors for the boot sectors.

6} Deallocate the middle nine sectors for the VTOC and the
Directory.
7} Write the VTOC to the Disk.
8} Clear the eight directory sectors to zero.
9} Exit via the FGREAT exit.

XDELm
The XDELETE routine executes the DELETE Device Dependent
Command.

Address - $C32

Entry Registers - A = Don't Care.

26

CHAPTER SEVEN

x = IOCB and FCB number times 16.
Y = Don't Care.

Exit Parameters - A = Unknown.

Functions:

X = Unknown.
Y = Unknown.

1) The filename is decoded via the FNOCODE routine.

2) The first filename is searched for via the SFDIR routine.
3) The file, if found, is deleted via the XDELO routine.

4) If the file just deleted was DOS. SYS then the boot record is
re-written via the DELDOS routine.

5) The directory is searched for the next matching entry. If an
entry is found then the process repeats at step three. If no further
matching directory entries are found, then exit via FGREA T.

)(['ELO
The XDELO routine is used to delete the file whose directory entry is
indicated by the COIRO (current Directory Displacement) byte
($[305).

Address - $CS3
Entry Registers - A = Don't Care.

X = IOCB and FCB number times 16.
Y = Don't Care.

Exit Registers - A = Unknown.

Functions:

X = Unknown.
Y = Unknown.

1) The OPVTOC routine is called to insure that the disk is not
write protected.
2) The TSTLOCK routine is called to insure that the file is not
locked.

3) The file deleted bit is set in the directory entry flag and the
directory sector is written back to the disk.
4) The VTOC sector bit map bits for the sectors in the file are
set to one to make them eligible for reuse. This process is achieved
by reading each sector in the file sector chain and calling the
FRESECT routine to change the VTOC bit map.

5) The VTOC Write Required Bit is set so that the VTOC will
be written back to the disk.

27

CHAPTER SEVEN

XRENAME
The XRENAME routine executes the RENAME Device Dependent
Command.

Address - $BD9

Entry Registers - A = Don't Care.
X = IOCB and FCB number times 16.
Y = Don't Care.

Exit Registers - A = Unknown.
X = Unknown.
Y = Unknown.

Functions:

1) The filename is decoded via the FNOCODE routine.
2) The directory is searched for the first entry to be renamed. If
no entry is found then the ERFNF (File not found) exit is taken.

3) The TSTLOCK routine is called to insure that the file is not
locked.
4) If TSTDOS determines that the old filename is DOS.SYS
then the boot record is rewritten via the DELDOS routine.

S) If new filename is DOS. SYS, then the boot record is rewritten
via the SETDOS routine.

6) The filename in the directory is changed to the new filename.
7) The directory sector is rewritten.
8) The directory is searched for the next filename match. If a
match is found, then the process repeats at step three. If no
further match is found then, exit via FGREA T.

XLOCK And XUNLOCK
The XLOCK routine executes the LOCK Device Dependent
Command. The XUNLOCK routine executes the UNLOCK Device
Dependent Command.

28

Address - $C7C
Entry Registers - A = Don't Care.

X = IOCB and FCB number times 16.
Y = Don't Care.

Exit Registers - A = Unknown.
X = Unknown.
Y = Unknown.

CHAPTER SEVEN

Functions:

1) The XLOCK entry sets the LOCK bit value, DFDLOC ($20),
into TEMP4. The XUNLOCK entry sets a zero value into TEMP4.
Both routines then go to XL COM.
2) The filename is decoded via the FNDCODE routine.

3) The directory is searched for the first file entry match. If no
match is found, the ERFNF (file not found) exit is taken.

4) The files directory flag is modified to either LOCKED or
UNLOCKED by means of the value previously set into TEMP4.
5) The Directory sector is written back to the disk.
6) The CSFDlR routine is called to find the next filename match.
If a match is found, then the process repeats at step four. If no
match is found, then exit via FGREA T.

XPOINT
The XPOINT routine executes the POINT Device Dependent
Command.

Address - $CBA

Entry Registers - A = Don't Care.
X = IOCB and FCB number times 16.
Y = Don't Care.

Exit Registers - A = Unknown.

Functions:

X = Unknown.
Y = Unknown.

1) If the FCBFLG indicates that the file can acquire sectors
(Opened for Output or Append), then exit via the ERRPOT
(point error) exit.

2) If the current sector is not the same as the sector POINTed to
by the IOCB AUX3 and AUX4 fields, then write the current
sector back to the disk (if it has been changed).
3) Read the POINTed to sector into the sector buffer.

4) Set the FCB next byte pointer, FCBDLN, to the value
indicated by the user Point data in the IOCB AUXS field.
5) Exit to FGREA T.

XNIOTE
Th~ XNOTE routine executes the NOTE Device Dependent
Command.

29

CHAPTER SEVEN

Address - $003
Entry Registers - A = Don'tCare.

X = IOCB and FCB number times 16.
Y = Don't Care.

Exit Registers - A = Unknown.
X = Unknown.
Y = Unknown.

Functions:

30

1) The current sector number and data displacement into the
sector is moved to the appropriate IOCB fields, ICAUX3,
ICAUX4, ICAUXS.
2) Exit via GREAT.

Chapter Eight

FMS
OPEN

ROUTINES

Th~ FMS Open routine, DFMOPN, is called directly by CIO via the
FMS Device Vector Table, DFMSDH at $7CB.

DFMOPN
The DFMOPN routine is the FMS file open routine.

Address - $8AB
Entry Registers - A = Don't Care.

X = IOCB number times 16.
Y = Don't Care.

Exit Registers - A = Unknown.

Functions:

X = Unknown.
Y = Unknown.

1) Initialize for this operation by calling SETUP.
2) Decode the filename via FNOCODE.
3) Examine the open code in ICAUXI for the open-for-directory
read command. If this is a directory read command, go to
LlSTDIR.
4) If not a directory read, then search the directory for the first
match on the file name and save the resulting search condition
on the stack.
5) Determine the exact type of Open operation to be performed
by examining the IOCB ACUXI field. If INPUT, go to DFOIN.
If Output, go to DFOUT. If Update, go to DFOUPD. If Append,
go to DFOAPN. If none of the above, exit via the ERDVOC
(device command error) exit.

31

CHAPTER EIGHT

DFOIN
OFOIN ($808) is entered when opening a file for Input. The routine
pops the stack to determine if the directory search for the file name
was successful. If the file name was found in the directory, then go to
OFOUl. If the search was not successful, then exit to ERFNF (file not
found).

DFOUPD
OFOUPO ($800) is entered when opening a file for Update (Input
and Output). The routine pops the stack to determine if the file name
was found in the directory. If the file was not found, then exit to
ERFNF (file not found). If the file was found, insure that the file is
not Locked by calling TSTLOCK. If the file is unlocked, then continue
at OFOUl.

DFOUI
OFOUI ($8E3) is entered to finish opening a file for Input or Update.
The read setup routine, OFROSU, is called. FMS then exits via the
GREAT exit.

DFDRDSU
OFOROSU ($9AE) is entered to set up a data file for reading. It
begins by calling SETFCB to set some standard file information into
the FCB. It continues by setting up the FCB with various other
parameters to read the first data sector in the file. This sector is read
via the RONSO routine. When the sector has been read into the
sector buffer, the code returns to the caller.

DfOAPN
OFOAPN ($BEC) is entered to open a file for Append.

32

1) Pop the stack to determine if the file has been found in the
directory. If the file was not found exit via ERFNF.
2) If the file was created by DOS 1, then exit via ERAPO.
3) Insure the file is not locked by calling TSTLOCK.
4) Insure the diskette is not write protected by calling
OPYTOC.
5) Allocate a new sector for the start of the Append chain by
calling GETSECTOR.
6) Save the sector number of the sector obtained in FCBSSN so
that it will be available when the file is closed.

CHAPTER EIGHT

7) Continue opening the file as if it were being opened for
Output at DHFOX2.

DI:OOUT
The DFOOUT ($911) routine is entered when opening a file for
Output.

1) Pop the stack to determine if the file was found in the
directory.
2) If the file was found, then delete it via the XDELO ($C53)
routine.

3) If the file was not found, then make a new entry in the directory
via the code at DFOX1 ($91 D).
4) Allocate a data sector for the file via the GETSECTOR
routine.

5) Put the necessary information about the file into the directory
and write the directory sector back to the disk.
6) Continue at DHFOX2.

DIHFOX2
DHFOX2 ($97C) is entered to finish the Open process for files that
are being opened for Output or Append.

1) Finish initializing the FCB via SETFCB.
2) If the TSTOOS routine determines that the file name being
opened is OOS.SYS, then write out DOS via the WRTOOS
routine.
3) Exit via GREAT.

SI:TFCB
The SETFCB ($995) routine is used in the various Open file routines
to place certain common data into the FCB.

33

Chapter Nine

FMS
CLOSE

ROUTINES
TIw FMS close routine is called directly by CIO via the FMS Device
Vector Table, DFMSDH at $7CB.

DFMCLS
Address - $B15
Entry Registers - A = Don't Care.

X = IOCB number times 16.
Y = Don't Care.

Exit Registers - A = Unknown.
X = Unknown.
Y = Unknown.

Functions:

34

1) Initialize via call to SETUP.
2) If the file was not opened for some form of output (Output,
Update or Append) then clear the FCB open flag, FCBOTC and
exit via FGREA T.
3) If the FCBFLG indicates that the file has not acquired sectors,
then continue at CLUPDT to close the Update file.
4) Write the last data sector via WR TLSEC.
5) Read the file's directory sector into the directory buffer via the
RRDlR routine.

6) Get the sector count from the directory.
7) If the file was opened for Output (i.e. it is not open for
Append), then continue at CLOUT.
8) Read all the data sector of the file until the end-of-file sector
is found.
9) Place the sector address of the start of the Append chain into
the link sector field of the (old) end-of-file sector.

10) Continue at CLOUT.

CHAPTER NINE

CLOUT
The CLOUT ($B50) routine is entered to finish closing a file that had
been opened for Output or Append.

1) The sector count field of the directory is updated.
2) The open for output flag is turned off.

3) The file in use flag is set.
4) The directory sector is written back to the disk by the DR TDlR
routine.
5) The VTOC sector is written back to the disk by the
WR TVTOC routine.
6) The FCB open code flag, FCBOTC, is cleared to zero.
7) Exit via FGREA T.

CLUPDT
The CLUPDT ($B75) is called to finish the closing of a file that had
been opened for Update.

1) If the current sector in the sector buffer has been modified
then write it back to the disk via the WRCSIO routine.
2) Clear the FCB open flag, FCBOTC, to zero.
3) Exit via FGREA T.

35

Chapter Ten

GET BYTE
ROUTINE

The FMS GET BYTE routine, DFMGET, is called directly by CIO
via the FMS Device Vector Table, DFMSDH at $ 7CB. The GET
BYTE routine's function is to get and return the next sequential data
byte to CIO.

DFNlGET
Address - $ABF
Entry Registers - A = Don't Care.

Y = IOCB number times 16.
X = Don't Care.

Exit Registers - A = Unknown.
Y = Unknown.
X = Unknown.

Functions:

36

1) Initialize via the SETUP routine.
2) If the FCB is opened for Directory read, then go to
GOCHAR.
3) If the current sector is empty, attempt burst I/O (see Burst I/O
.ection), then continue with number four.
4) Read the next sector via the RDNXTS routine. If the read
sector operation did not return an end-of-file condition, then
continue at step three, else exit via ERREOF (end-of-file error).
5) Get the data byte from the sector and place it in SVDBYT for
~he exit routines.
6) If the next byte in the file is the end-of-file byte, exit via
RETURN with the impending end-of-file condition code ($03),
else exit via GREAT.

Chapter Eleven

PUT BYTE
ROUTINE

The FMS PUT BYTE routine, DFMPUT, is called directly by CIO
via the FMS Device Vector Table, DFMSDH at $7CB. The PUT
BYTE routine's function is to place the single data byte transmitted by
CIO into the data sector.

DIFMPUT
Address - $99C
Entry Registers - A = The "put data" data byte.

X = The IOCB number times 16.
Y = Don't Care.

Exit Registers - A = Unknown.

Functions:

X = Unknown.
Y = Unknown.

1) The data byte in the A register is saved in SVDBYT.
2) SETUP is called to initialize for this operation.
3) If the caller was not CIO, then prevent a burst I/O operation
from occurring.
4) If the file was not opened for output, then exit via ERDVDC
(device command error).

5) If the current data sector is full, write the sector via WR TNXS,
then attempt burst I/O (see BURST I/O section). If a burst I/O
operation did take place, then get the next byte after the area
just written by burst I/O and place it into the SVDBYT cell.
6) Increment the sector data byte count.
7) Move the data byte from SVDBYT to the next available data
byte in the sector.

8) Set the sector modified flag in the FCB.
9) Exit via GREAT.

37

Chapter Twelve

BURST 1/0
The CIO is designed to fill or empty a large user buffer with data bytes
sent to or received from a device handler, a byte at a time. To fill a
thousand-byte buffer, CIO would have to call FMS one thousand
times in rapid succession. While the process is simple and easy to
implement by both CIO and the Device Handlers, it can be very
slow. This is particularly true in the case of FMS which has a great
deal of overhead code to go through each time it is called. FMS
circumvents most of the CIO/FMS calls for large data transfers via the
BURST I/O routines.

Burst I/O operates by reading or writing data sectors directly into
the user buffer (Figure 1, data path I). There are a number of tests
that must be passed before a burst 110 operation can take place. If any
of the tests fail, then the CIO/FMS data transfer reverts to the normal
mode of operation.

When the PUT BYTE routine is called, it will call the WTBUR
($AIF) routine when it is ready to start filling a new data sector.
WTBUR will not allow a burst I/O operation to happen if the file has
been opened for Update. If the file has not been opened for Update,
then WTBUR goes to the common read/write burst I/O test routine,
TBURST at $A28. If the file has been opened for Update, then exit
Burs1: I/O indicating that a Burst I/O did not happen. When WTBUR
calls TBURST, it has the A register set to non-zero to indicate that it
is write.

When the GET BYTE routine is called, it will call the RTBUR
($A26) routine w hen it is ready to read a new data sector. R TBUR
indicates that it is read by setting the A register to zero and then
enters TBURST.

YBURSY

38

1) Save the A register in BURTYP. This value will indicate if
the burst operation is a read or a write.

2) If the I/O command in the IOCB is for text I/O (a transfer
that is to end when the Atari end-of-line ($9B) character is
transferred), then TBURST will exit indicating (carry set) that a
burst I/O operation did not occur.

CHAPTER TWELVE

3) If the user buffer length in the IOCB is not at least a full
sector in size, then exit without doing a burst I/O.

4) If all the above tests pass, then perform a burst I/O operation.
The first step in the burst I/O operation is to change the zero
page sector buffer pointer, ZXBA ($47) from the FMS sector
buffer address to the user buffer address.

5) If the operation is read, then read the next sector via RDNXTS.
If the read sector operation produced an end-of-file, then go to
BUREOF, else go to BBINC.
6) If the operation is write, then the area in the user buffer,
where the three bytes of data sector control information is to be
placed, will be saved. The data will be written via the WR TNXS
routine. The saved user data will then be copied back into the
user buffer. The code then continues at BBINC.

IllNe
The BBINC routine is entered after a single burst I/O sector has been
read or written. BBINC updates data counters in the FCB and in the
IOCB and tests for the end of the Burst I/O.

1) The zero page sector buffer pointer is incremented by the
length of data in a sector (125 or 253).
2) The user buffer length is decremented by the length of data in
a sector.
3) The TBLEN routine is called to determine if there is enough
room left in the user buffer to read or write another full sector
(128 or 256 bytes). If another sector can be read or written, then
the process repeats at NXTBUR ($A3E).
4) If there is not enough room in the user buffer to perform
another full sector read or write, then BUREOF is entered.

BUREOF
1) The final address in the zero page sector pointer, ZSBA ($47),
is moved to the IOCB buffer address field.
2) The value in the zero page sector buffer pointer is restored by
the SSBA routine.

3) The caller is returned to with the carry cleared to indicate
that a burst I/O operation has happened.

39

Chapter Thirteen

READING
THE DIRECTORY

ASA FILE
A formatted subset of the data in the Directory can be read as if the
Directory were a disk file. This is accomplished by using the open
directory code ($02) in the IOCB ICAUX1 byte. When FMS
recol~nizes this code in the Open routine (at $8B 1), it will go directly
to the LlSTDlR routine. The LlSTDIR routine prepares the FCB for
reading the directory as a file. The GET BYTE routine will recognize
the read directory condition from information stored in the FCBOTC
field (see $AC2) and go directly to the directory read character I/O
routine GDCHAR.

LlSlDIR
Address - $DAD
Entry Registers - A = Don't Care.

X = IOCB and FCB number times 16.
Y = Don't Care.

Exit Registers - A = Unknown.
X = Unknown.
Y = Unknown.

Functions:

40

1) The TEMP4 byte is used to count the characters that have
been transmitted by GDBYTE from the formatted line buffer.
LlSTDIR sets this value to zero to indicate the start of a new
formatted line.
2) The SFDIR routine is called to start a wild card search for the
file name in the directory.
3) If a match is found then FDENT is called to format the entry
and prepare for the GDBYTE calls. Exit via GREAT.
4) If a match is not found, then LDCNT is called to prepare to
send the xxx FREE SECTORS line.

CHAPTER THIRTEEN

GO CHAR
G1XHAR ($OB9) is entered from GET BYTE to get a single data
byte from a formatted directory line.

1) The TEMP4 flag is tested. If the value is negative, then all
formatted information has been transmitted. Exit is via the
ERREOF (end-of-file error) exit.
2) The value in TEMP4 is used as an index into the formatted
line buffer to get the next character. The character is placed into
SVOBYT for loading into the A register by the RETURN
routine.
3) The character retrieved from the buffer is examined for the
EOL ($9B) character.
4) If the character is not an EOL, then exit is via GREAT.

5) If the character was an EOL, then the line length is examined
to see if the line was a directory entry line 0. e., if the length was
17) or the final xxx FREE SECTORS.
6) If the line was the final line, then TEMP4 is set to a negative
value ($80) to indicate that all formatted lines have been sent.
Exit is via GREAT.

7) If the line was not the final line, then CSFDIR is called to
find the next matching file name.
8) If a file name match is found, then FOENT is called to format
the found entry into the formatted line buffer. Exit is via
GREAT.
9) If a file name match is not found, then go to LDCNT to
format the final line.

LOCNY
LOCNT ($OE9) formats the final line of a directory read.

1) Read the VTOC.

2) Get the free sector count from the VTOC and convert it to
AT ASCII via the CVOX routine.

3) Move the FREE SECTORS message to the formatted line buffer.
4) EXIT is via FGREA T.

FDENY
The FOE NT ($E21) routine formats the current directory entry into
the formatted line buffer for subsequent reading by GOBYTE.

1) The directory flag is checked for the file locked condition. If

41

the file is locked, then the "." is placed in the formatted line.

2) The file name is moved from the directory entry to the
formatted line.

3) The file sector count is converted to ATASCII and placed in
the formatted line.

4) The EOL character is placed in the formatted line.
5) Exit is via the R TS instruction.

Chapter Fourteen

SECTOR
1/0

ROUTINES
The FMS performs sector I/O by calling the SIO routine in the OS
ROM (Figure 1, control path 3). All sector I/O calls in the FMS occur
from the BSIO routine. There are several other routines that are
designed to set up information for BSIO. These routines deal with
reading and writing sectors of a particular type such as data sectors,
directory sectors, and the VTOC sector.

8SI0

42

Address - $ 7 6C
Entry Registers - A = Sector number most significant byte.

Y = Sector number least significant byte.
X = Ifl, then 128byte I/O (810drive).

If 2, then 256 byte I/O (815 drive).

Exit Registers - A = Status byte from OCB.
Y = Unknown.
X = IOCB and FCB number times 16.

CHAPTER FOURTEEN

Functions:

1) The sector number is stored in the OCB from the A, Y register
pair. The OCB is the interface control block for SIO calls.

2) If the carry is clear, then the OCB is set up for read data. If
the carry is set, then the OCB is set up for write data.
3) The serial bus 10 for the disk, and the disk timeout values are
placed into the OCB.

4) The error retry counter, RETRY, is set for four retries.
5) The I/O data length is set to 128 or 256 depending upon the
data in the X register.

6) The serial I/O routine ($E459) is called to execute the I/O.
7) If the I/O operation was good, then the X register is loaded
with the 10CB (and FCB) number times 16 from the CRFCB
cell and the status byte from the OCB is loaded into the A register.
Return is via the R TS instruction.
8) If the I/O operation was bad, then the retry counter is
decremented. If the retry value is positive, then the I/O is retried.
If the value is negative, then the routine is exited in the manner
described in step seven.

OSlO
The OSlO routine is called to perform data sector I/O operations.

Address - $11 F7
Entry Registers - A = Sector number most significant byte.

Y = Sector number least significant byte.
X = 10CB and FCB number times 16.

Exit Registers - A = I/O condition code.
Y = Unknown.
X = 10CB and FCB number times 16.

Functions:

1) The sector buffer address is obtained from the zero page sector
buffer pointer ZSBA ($47) and placed in the OCB buffer address
field, OCBBUF.
2) The drive type byte is loaded into the X register from ORVTYP.
If the drive is an 810, then the value will be one. If the drive is
an 815, then the value will be two.
3) BSIO is called.

4) The OSlO caller is returned to via the R TS instruction.

43

CHAPTER FOURTEEN

RDDIR And WRTDIR
The RDDIR and the WR TDIR routines are used to perform Directory
sector 110 operations. "The RDDIR entry ($106E) sets the carry to
indicate read. The WRTDIR entry ($1071) dears the carry to indicate
write. Both of the routines continue at DIRIO.

DIRIO
1) Save the read/write flag (carry sense) on the stack.
2) Set the address of the directory buffer into the OCB buffer
field, OCBBUF.

3) The CDIRS cell contains the number of the directory sector
to be read or written. This value ranges from zero to seven. The
DIRIO routine creates the actual sector number to read or write
by adding $169 to the CDIRS value. The resulting sector number
is placed in the A, Y register combination.
4) Continue at DSYSIO.

RDVTOC And WRTVTOC
The RDVTOC and WR TVTOC routine are called to initiate 110 to
and from the VTOC sector. The RDVTOC routine ($108B) first
checks the write required byte in the VTOC sector buffer. If the value
of this byte is not zero, then the VTOC is already in the buffer (and
has been changed). If the VTOC is already in the buffer, then the
read does not have to be done; therefore, the RDVTOC routine will
return to the caller. If the write-required byte is zero, then RDVTOC
will clear the carry to indicate that the operation is read. The
WRTVTOC routine ($1095) sets the write required byte to zero, then
sets the carry to indicate a write operation. Both RbvTOC and
WR TVTOC continue at VTIO.

VTIO
1) The read/write flag is pushed onto the stack.
2) The VTOC sector buffer address is moved from the zero page
drive buffer address pointer ZDRVA ($45) to the OCB buffer
pointer, OCBBUF.
3) The A, Y register combination is loaded with the VTOC
sector number ($168).
4) Continue at DSYSIO.

DSYSIO
1) The read/write sense is popped from the stack.

44

CHAPTER FOURTEEN

2) The drive type value is loaded into the X register from
DRVTYP.

3) BSIO is called.

4) If the I/O operation was good, then return to the caller via the
R TS instruction.

S) If the I/O operation was bad, the exit via the ERRSYS exit
(fatal system 110 error).

OPVTOC
The OPVTOC routine ($1 OBF) is used by various FMS routines to
insure that the diskette is not write protected before executing functions
that will write to the disk. This routine will read the VTOC via
RDVTOC and then attempt to write the VTOC via WRTVTOC. If
the diskette is write protected, the WRTVTOC will cause an I/O
error exit (error number 144). If the diskette is not write protected,
then the routine will return to the caller. When OPVTOC does
return to the caller, the current disk VTOC is in the drive buffer.

45

Chapter Fifteen

FILE NAME
DECODE
ROUTINE

The FNDCODE routine is used to transform the user supplied file
name into a form that is usable in FMS for wild card searching of the
directory. The primary and extension parts of the user file name are
padded with blanks and question marks as required. The following
examples show the types of transform performed by FNOCODE:

User File Name

D· * •

D1:GLOP. *
D1:GLOP.BAS
D2:*.ASM
D:GL?P.S*
Dl:G*

Transformed File Name

?? ?? ??? ?? ??
GLOP ???
GLOP BAS
???????? ASM
GL?P S??
G ???????

FNE:.coDE
Address - $E9E
Entry Registers - A = Don't Care.

X = IOCB and FCB number times 16.
Y = Don't Care.

Exit Registers - A = Unknown.
X = IOCB and FCB number times 16.
Y = Unknown.

Functions:

46

1) The user file name buffer is searched for the colon (:) delimiter.
If the delimiter is not found within 256 characters then exit to
ERRFN routine (file name error).
2) The FMS file name buffer, FNAME, is cleared to blanks.
3) The EXTSW byte is set to zero. When EXTSW is zero, the
primary file name field is being processed. When EXTSW is

CtlAPTER FIFTEEN

minus, then the extension file name field is being processed.

4) The next character in the user file name buffer is examined.

S) If the character is an asterisk (.), then the field is padded with
question mark characters to the end of the field.
6) If the character is a period and the extension field is being
processed, then exit via the R TS instruction.
7) If the character is a period and the primary field is being
processed, then switch to the extension field processing.
8) If the character is a question mark, then put it into the FNAME
via FDSCHAR.
9) If the character is alphanumeric (A through Z, or 0 through
9), then put it into FNAME via FDSCHAR.
10) If the character is none of the above, then assume that end
of the filename has been found and exit via the R TS instruction.
11) If a character was stored, then continue at step four.

FDSCHAR
1) If the character counter register, X, indicates that the primary
field is full, then exit without storing the character.
2) If the character counter register, X, indicates that the extension
field name is full, then exit without storing the character.

3) Store the character into FNAME indexed by the X register.
4) Increment the X register.
S) Return to caller via the R TS instruction.

47

Chapter Sixteen

DIRECTORY
SEARCHING

The Directory search routine searches the directory entries for a file
name that matches the name in FNAME. The routine has two entry
points: SFOIR which is used to begin the search at the start of the
directory, and CSFOIR, which is used to continue searching the
directory at the entry just past the previously found matching entry.

The routines have five memory cells that they use for controlling
the search operation: OHOLES, OHOLEO, CDIRS, COIRO and
SFNUM. The COIRS cell contains the current relative directory
sector number (zero through seven). The COIRO cell contains the
dispLacement into the directory sector of the current entry. OHOLES
give:; the relative directory sector number (zero through seven) of the
first hole or available entry in the directory. The OHOLEO cell gives
the displacement to the first available entry that is the hole. The
SFNUM cell is used to contain the current file number of the entry
being examined. The value in SFNUM will be from zero through 63.

If the value of OHOLES is $FF at the end of the search, then the
directory is full.

The directory search routine will exit with the carry clear if a
match was found. It will exit with the carry set if no matching entry
was found.

SFDIIR
The SFOIR- routine ($F21) is called to start searching the directory at
the ~;tart of the directory.

I} Initialize OHOLES, CDIRS, SFNUM to $FF.
2} Initialize COIRO to $70.
3} Continue at CSFOIR.

CSF:DIR
The CSFOIR routine ($F31) is called to continue searching the
directory.

I} Increment the file number, SFNUM.

48

CHAPTER SIXTEEN

2) Increment COIRO by the size of a directory entry (16).

3) If the COIRO is now greater than, or equal to, 128 ($80) then
increment COIRS by one. If the value of COIRO is now eight,
then exit with the carry set to indicate that a match was not
found. If COIRO is less than eight, then read the next directory
sector via ROOIR. Set COIRO to zero.
4) If the directory entry flag field is zero then the end of the used
portion of the directory has been reached. If a hole has not been
found, then mark this entry as a hole. Exit with the carry set to
indicate that the file was not found.
5) If the directory entry flag field indicates that the file is open
for output, then skip this entry.
6) If the directory entry flag field indicates that the file has been
deleted, and a hole has not been found, then mark this entry as a
hole and continue searching the directory.

7) If the file is in use, then check the file name in the directory
entry for a match with the name in FNAME. Wild card characters
in FNAME (question marks) are assumed to match the
corresponding characters in the directory entry file name.
8) If the names match, then exit with the carry clear to indicate
that a match was found.
9) If a match was not found, then continue to search the
directory.

49

Chapter Seventeen

WRITE
NEXT

SECTOR
The write next sector routine, WR TNXS, is used to write a data
sector to disk.

Address - $F94
Entry Registers - A = Don't Care.

X = IOCB and FCB number times 16.
Y = Don't Care.

Exit Registers - A = Unknown.
X = IOCB and FCB number times 16.
Y = Unknown.

Functions:

50

1) If the file has been opened for update, and the sector has not
been modified, then do not write the sector. Read the next data
sector and then return to caller.
2) If the file has been opened for update, and the sector has been
modified, then write the current sector. Read the next data
sector into the sector buffer and return to the caller.
3) If the file is not opened for update, then allocate a new sector
to the file by calling GETS ECTOR.
4) Move the sector byte count from the FCB FCBDLN field to
the data sector byte count field.
5) Move the address of the newly acquired sector from the FCB
FCBLSN field into the link field of the current data sector.
6) Write the current sector to the disk via WRCSIO.
7) If the I/O was bad, mark the FCB by placing a zero value into
FCBOTC as closed and exit via RETURN with the I/O error
number as the return code.
8) If the I/O was good, then increment the FCB sector counter
field, FCBCNT.

9) Call MVLSN to move the sector number of the link sector
number field of the FCB, FCBLSN, to the current sector number
field of the FCB, FCBCSN.

10) Set the current data length field of the FCB, FCBDLN, to
zero.

11) Set the maximum data length field of the FCB, FCBMLN,
to 125 (if 810 drive) or 253 (if 815 drive).

12) Return to user via the RTS instruction.

Chapter Eighteen

READ
NEXT

SECTOR
The read next sector routine, RDNXTS, reads the next sector in the
file sector chain into the sector buffer. If there are no more sectors in
the chain, then the routine returns with the carry set to indicate end
of-file. If the routine returns with the carry clear, then the next sector
has been read.

RDNXfS
Address - $1 OOF
Entry Registers - A = Don't Care.

X = lOCB and FCB number times 16.
Y = Don't Care.

Exit Registers - A = Unknown.

Functions:

X = lOCB and FCB number times 16.
Y = Unknown.

1) If the file has been opened for Update, then WR TNXS is

51

CHAPTER EIGHTEEN

52

called to write the current sector if it has been modified.

2) If the FCB link sector number field, FBCLSN, is zero then
there are no further sectors to read. Return to the caller with the
carry set to indicate that the end-of-file has been reached.
3) Call MVLSN to move the FCB link sector number fie ld,
FCBLSN, the FCB current sector number field, FCBCSN.
4) Call RWCSIO with the carry set to read the next sector.

5) If the I/O operation was bad, exit via the ERRIO exit (I/O
error).
6) Insure that the file number in the sector just read agrees with
the file number in the FCB. If the file numbers are not the same,
exit via the ERFNMM exit (file number mismatch). Note: if the
routine was called by delete, return to delete indicating end-of
file.

7) Move the link sector number from the data sector to the FCB
link sector field in the FCB, FCBLSN.
8) Move the sector data length information from the data sector
to the FCB maximum data length field, FCBMLN.
9) Reset the FCB data length field, FDBDLN, to zero.
10) Return to the caller with the carry clear to indicate that a
sector has been read.

Chapter Nineteen

GET AND
FREE

SECTOR
ROUTINES

The get sector routine, GETSECTOR, is called when a new sector is
needed. The routine searches the bit map in the VTOC for a free
sector. The sector found is deallocated from the bit map and the
sector number is returned to the caller. The free sector routine,
FRESECT, is given a sector number to be freed. FRESECT locates
the required bit map bit in the VTOC and turns it on {sets it to one}.
The sector is now eligible for reuse.

GETSECTOR
Address - $1106
Entry Registers - A = Don't Care.

X = IOCB and FCB number times 16.
Y = Don't Care.

Exit Registers - A = Unknown.

Functions:

X = IOCB and FCB number times 16.
Y = Unknown.

I} The Y register is used as an index into the bit map bytes.
2} The bit bytes are examined sequentially from the first bit map
byte to the last bit map byte until a non-zero byte is found. The
displacement to this byte is saved in TEMPI.
3} If no bits are found in the bit map, then the ERRNSA exit
{no sectors available} is taken.
4} The number-of-sectors-available-field, in the VTOC, is
decremented by one.

S} The VTOC write required byte in the VTOC is set to a non-

53

CHAPTER NINETEEN

zero value to indicate that the VTOC has been changed and
must be written back to the disk.

6) The non-zero bit map byte that was found in the bit map
search is retrieved. The bits in this byte are shifted left until a bit
moves into the carry flag. The carry is then set clear and the bits
shifted back to their original position. The byte with the newly
allocated sector bit turned off is placed back into the bit map.

7) The number of bits shifted and the index to the bit map byte
are used to develop the sector number represented by the bit.
8) The sector number is stored in the FCB link sector field,
FCBLSN.
9) The user then returned to via the R TS instruction.

FRESECT
Address - $1 OCS

Entry Registers - A = Don't Care.
X = lOCB and FCB number times 16.
Y = Don't Care.

Exit Registers - A = Unknown.
X = lOCB and FCB number times 16.
Y = Unknown.

Functions:

54

1) The sector to be freed is in the FCB current sector field,
FCBCSN. If the sector number is zero, then FRESECT exits
back to the user via the R TS instruction.

2) The sector number is divided by eight to determine the bit
map byte which represents the sector. The remainder from this
division represents the bit within the byte.
3) The byte is retrieved from the bit map, the bit is turned on,
and the byte placed back into the bit map.
4) The number of available sectors field in the VTOC is
incremented by one.
S) The VTOC write required byte is set to non-zero to indicate
that the VTOC has been changed and needs to be written back
to the disk.
6) The caller is returned to via the R TS instruction.

Chapter Twenty

THE
BOOT PROCESS

When the Atari computer is turned on, the routines in the OS ROM
will (under certain conditions) read the first sector from the disk in
drive one into memory. It will then examine certain specific locations
in this record to decide how to boot the disk. In the following
di~;cussion, refer to Figure 20-1. The OS ROM code will load BRCNT
consecutive sectors (starting with sector one) onto memory, starting
at the address contained in BLDADR. When the OS ROM code has
finished this task, it will make a]SR call to the code that is seven
bytes into the start of the boot area. In the case of FMS, this is the
]MP XBCONT instruction at $ 706. The XBCONT code will continue
the boot load process.

The XBCONT code examines the DFSFLG to see if a DOS. SYS
file exists. If the file exists, then the sector number of the first sector
in DOS. SYS will be in DFLlNK. The routine will then read all the
sectors in the chain starting at DFLlNK into the memory area pointed
to by DFLADR. When the entire DOS.SYS file is read into memory,
XBCONT returns to the OS ROM code.

The OS ROM code will eventually vector through the BlNT ADR
so that the FMS can initialize itself. In the DOS 2.0S system,
BlNTADR points into the DUP.SYS code. DUP.SYS then receives
control from the OS ROM rather than the FMS. One of the tasks that
DUP.SYS performs during its initialization is to call the FMS
initialization routine.

XBCONT
The XBCONT routine ($714) is entered by the OS ROM code during
the boot process to allow the boot process to continue in the manner
best suited for the code being booted.

Functions:

I} If the DFSFLG indicates that a DOS. SYS file does not exist,
then the OS ROM is returned to with the carry set to indicate
that the boot has failed.

55

CHAPTER TWENTY

56

2) The address contained in DFLADR is moved to the zero page
address pointer, ZBUFP, and to the OCB buffer pointer field,
OCBBUF.

3) The sector number contained in DFUNK is loaded into the
A, Y register pair, the carry is cleared to indicate read, and BS10
is called to read a DOS. SYS sector.

4) The next sector link is obtained from the link field of the data
sector just read.

5) If the sector link value is zero, then the DOS. SYS end-of-file
has been reached. The OS ROM will be returned to with the
carry clear to indicate that the boot read was good.

6) If the sector link value is not zero, then the zero page buffer
pointer and the OCB buffer pointer are incremented by the
amount of data in the sector (125 for 810 drives, 253 for 815
drives).

7) The process continues by reading the next sector into
memory.

$700
$701
$702
$704
$706
$709
$70A
$70B
$70C
$70E
$70F
$711
$712

Sector 1 $700

Sector 2

Sector 3

BFLAG
BRCNT
BLDADR
BIWTARR
JMPXBCONT
SABYTE
DRVBYT

SASA
DFSFLG
DFLINK
BLDISP
DFLADR

$780

$800

D
D
Flag (=0)
Number of Consecutive Sectors to Read
Address to Load Boot Sectors at
Initialization Address
BootContinue Vector
Number of Sector Buffers to Allocate
Drive Bits
Unused
Buffer Start Address
DOS Flag
Sector Pointer to DOS.SYS File
Displacement in Sector to Sector Link
Addressof Start of DOS.syS File

Figure 20-1

Boot Records

Chapter Twenty-One

MAINTAINING
THE

BOOT RECORD
The boot record (sector 1) contains information about the OOS.SYS
file. When OOS.SYS is opened for output, FMS will write all of FMS
out to the disk as part of the open process. It will also modify sector
zero to indicate that a OOS.SYS file exists and to indicate where on
the disk it is. If OOS.SYS is ever Deleted or Renamed (to something
not OOS.SYS), then the boot record must be modified to indicate
that a OOS. SYS file does not exist. If a file is ever renamed to
DOS.SYS, then the boot record is modified to point to the new
DOS. SYS file.

WRTDOS
The WRTOOS routine ($120A) is used to write a new DOS.SYS file
to disk and to update the boot record to indicate that a OOS. SYS file
exists.

Functions:

1) The sector number which is contained in the FCB sector
number link field, FCBLSN, is used as the first sector of the
DOS.SYS file. This sector number is placed in the boot record
area in page seven along with the other necessary information.
2) Sectors one, two, and three are written from the memory area
from $700 through $87F.
3) The FMS is written to the OOS.SYS via the WOO routine.
4) Exit is via GREAT.

WDO
The WOO routine ($1267) is used to write the FMS to the OOS.SYS
file.

Functions:

1) The address contained in DFLADR is moved to the zero page

57

CHAPTER TWENTY-ONE

buffer pointer, ZBUFP.
2) The FMS is copied from its area in memory to the file sector
buffer in 125 byte chunks.
3) The buffers are written to disk by the WR TNXS routine.

4) The process continues until the entire FMS area has been
written.

5) The caller is returned to via the R TS instruction.

DELDOS
The DEUx)S routine ($1219) is used to modify the boot record to
indicate that OOS.SYS does not exist.

Functions:

58

1) 11'e DFSFLG is set to zero to indicate that OOS.SYS does not
exist.
2) The area from $700 to $87F is written to sectors one, two,
and three.
3) The caller is returned to via the R TS instruction.

AlAR I
DOS
2.05

Copyright © 1982 Optimized Systems Software, Inc.

Thi, listing is protected against unauthorized reproduction by the Copyright Law of the United
Stares. Any reproduction utilized for profit or other commercial advantage is precluded without
the specific prior written authorization of Optimized Systems Software, Inc., the owner of the
copyright. Any such reproduction does not constitute fair use and may subject the individual to
both civil and criminal penalties. Federal Law provides for a maximum fine of $10,000 or
imprisonment for not more than one year, or both, for inftingement of this copyright.

Contact the President, Optimized Systems Software, Inc., 10379 Lansdale Avenue, Cupertino,
California, 95014, prior to reproducing or utilizing any portion of this listing. Any attempt to
change the form of publication of this listing, that is, rendering it into machine-readable form or
otherwise, is a precluded reproduction if done for profit or other financial advantage.

59

ATARI DOS 2.0S

PHS - 128/256 BYTE SECTOR (2.9S)
Copyright and Author Notice

I'"~ !l9

''''''''''

"'7"''''
"''''43
"'34'"
"''''03
"'309
E453
""',}B
"'31A

"''''2''' "'2E7
154'"
"'1212
"''''DF

"'246

1991
1992
1993
1994
1995
1996
1997
19"'8
1999
1"'19
1911
1"'12
1913
1914
1915
1916

.PAGE· --- Copyright and Author Notice

:COPYRIGHT (cl 1978,1979,1989,1982
:OPTIMIZED SYSTEMS SOFTWARE,
:CUPERTINO, CA.

:THIS PROGRAM MAY NOT BE REPRODUCED,
:STORED IN A RETRIEVAL SYSTEM, OR
:TRANSMITTED IN WHOLE OR IN PART,
:IN ANY FORM, OR BY ANY MEANS, BE IT
: ELECTRONIC, MECHANICAL, PHOTOCOPYING,
:RECORDING, OR OTHERWISE WITHOUT THE
:PRIOR WRITTEN PERMISSION OF

OPTIMIZED SYSTEMS SOFTWARE, INC.
19379 LANSDALE AVENUE

1917 CUPERTINO, CALIFORNIA 95"'14 (U.S.A.)
1918
1"'19 PHONE: (498) 446-3999
1"'2'"
1921
1022 ;***********************************
1"'23
1924 : PROGRAMMER PAUL LAUGHTON
1"'25 UPDATED: 19-AUG-8'"
1"'26

lB27 ;***********************************
1"'28 :

System Equates

1"'29 .PAGE " System Equates·
1"'3'" ;***********************************
1"'31
1"'32
1"'33
1"'34 FMSORG $7"''''
1"'35 FMSZPG $43
11''136 IOCBORG = $349
1937 LMASK "'3 :LINK MASK
1"'38 DCBORG $3"'9
1939 DHADR $E453
1"'49 EOL $9B
1"'41 DEVTAB $31A
1"'42 ZICB $2'"
1"'43 LMADR $2E7
1"'44 DUPINIT = $154'" : INIT ADDR FOR DUP
1"'45 STAK $1"'2 :STACK LOC FOR PUT BYTE
1"'46 OSBTM $DF :HI BYTE OF ADDR LESS THAN

SPACE
1"'47 DSKTIM $246 :ADDR OF OS WORST CASE DISK

TIME OUT

OS

",,,,,'IF 1"'49 TIMOUT 15 :TIME OUT VALUEE OF 15 SECS.

9"'''9
99"'"

60

IOCB

1"'49
1"'5'"
1"'51
1"'52
1"'53
1954
1"'55
1"'56

. PAGE " IOCB"
*= IOCBORG

IOCB - 10 CONTROL BLOCK
THERE ARE 8 I/O CONTROL BLOCKS
1 IOCB IS REQUIRED FOR EACH
CURRENTLY OPEN DEVICE OR FILE

1113411
111341
11134:1
11134:3
111344
11134';
111341;
11134:3
11134'~

11134.\
11134:3
11134':
11I34D
"34!:
"34~

""1"

"""1 """2 """3 """4 """5 """6 """7 """8 ""e9 ""eA ""eB ""ec
""e'D
""e'E ""eIE
""~IF

""Ill ""112

"",13
""13" ""In
"":32
""33
""94
""95
""96
""87

"021
""28
""29
""24
""25
""22
""26

IOCB

1"57
1"58
1"59
1"6"
1"61
1"62
1"63
1"64
1"65
1066
1"67
1"68
1"69
1"7"
1"71
1"72
1"73
1"74
1"75
1"76
1"77
1"78
1"79
1"8"
1"81
1"82
1"83
1"84
1"85
1"86
1"87
1"88
1"89
1"9"
1"91
1"92
1"93
1"94
1"95
1"96
1"97
1"98
1"99

11""
11"1
11"2
11"3
11"4
11"5
11"6
11"7
11"8
11"9
111"
1111
1112
1113
1114
1115
1116
1117
1118

ATARI DOS 2.0S

IOCB
ICHID *=
ICDNO *=
ICCOM *~

ICSTA *=
ICBAL *=
ICBAH *=
ICPUT *=
ICBLL *=
ICBLH *=
ICAUXI *=
ICAUX2 *=
ICAUX3 *=
ICAUX4 *=
ICAUX5 *=
ICAUX6 *=
ICLEN

*+1
*+1
*+1
*+1
*+1
*+1
*+2
*+1
*+1
*+1
*+1
*+1
*+1
*+1
*+1
*-IOCB

DEVICE NUMBER
DEVICE HANDLER

I/O COMMAND
I/O STATUS

:BUFFER ADR (H,L)
:PUT CHAR DH ADDR

:BUFFER LEN (H,L)
:AUX 1
:AUX 2
:AUX 3
:AUX 4
:AUX 5
:AUX 6

*= *+ICLEN*7 :SPACE FOR 7 MORE IOCB'S

ICCOM VALUE EQUATES

ICOIN
ICooUT
ICIO
ICGBR
ICGTR
ICGBC
ICGTC
ICPBR
ICPTR
ICPBC
ICPTC
ICCLOSE =
ICSTAT
ICDDC
ICMAX
ICFREE

$"1
$"2
$"3
$"4
$"5
$"6
$"7
$"8
$"9
$"A
$"B
$"C
$"D
$"E
$"E
$"F

:OPEN INPUT
:OPEN OUTPUT
:OPEN UN/OUT
:GET BINARY RECORD
: GET TEXT RECORD
:GET BINARY CHAR
:GET TEXT CHAR
:GET BINARY RECORD
:PUT TEXT RECORD
:PUT BINARY CHAR
:PUT TEXT CHAR
:CLOSE FILE
:GET STATUS
:DEVICE DEPENDENT
:MAX VALUE
:IOCB FREE INDICATOR

: ICSTA VALUE EQUATES

ICSOK
ICSTR

ICSEOF
ICSBRK
ICSDNR
ICSNED
ICSDER
ICSIVC
ICSNOP
ICSIVN
ICSWPC

$"1
$"2

$"3
$8"
$81
$82
$83
$84
$85
$86
$87

:STATUS GOOD, NO ERRORS
:TRUNCAIATED RECORD

:END OF FILE
:BREAK KEY ABORT
:DEVICE NOT READY
:NON EXISTENT DEVICE
:DATA ERROR
: INVALID COMMAND
:DEVICE/FILE NOT OPEN
: INVALID IOCB t
:WRITE PROTECT

: ZERO PAGE IOCB LABELS

ICDNOZ
ICBLLZ
ICBLHZ
ICBALZ
ICBAHZ
ICCOMZ
ICPUTZ

ICDNO-IOCB+ZICB
ICBLL-IOCB+ZICB :BUF LEN
ICBLH-IOCB+ZICB
ICBAL-IOCB+ZICB :BUF ADDR
ICBAH-IOCB+ZICB
ICCOM-IOCB+ZICB
ICPUT-IOCB+ZICB :PUT RTN ADDR

61

Al'ARI DOS 2.0S

17M"
17A~

"'31M
"'3"'t
"'3"'2
"'3'" 3
"'3"'4
"'3"";
"'3"':3

"'3"'A

"''''5:2

"''''5" "''''5:3
"''''2.l

"''''''':.
"''''81
"''''8;!
"''''8:1
"''''84
"''''8",'

"'3"'<:
"'3"'<'

"''''4::
"''''4!;
"''''4:'
"''''49

"''''41',
"''''41'.

DCB

1119
112'"
1121
1122
1123
1124
1125
1126
1127
1128
1129
113'"
1131
1132
1133
1134
1135
1136
1137
1138
1139
114'"
1141
1142
1143
1144
1145
1146
1147
1148
1149
115'"
1151
1152
1153
1154
1155
1156
1157
1158
1159
116'"

.PAGE " DCB"
*= DCBORG

DCB - DATA CONTROL BLOCK
THE DCB IS AN IOCB LIKE CONTROL
BLOCK USED TO INTERFACE THE DISK
FILE MANAGEMENT SYSTEM TO THE
DISK HANDLER

DCB
DCBSBI *=
DCBDRV *=
DCBCMD *=
DCBSTA *=
DCBBUF *=
DCBTO *=
DCBCNT *=
DCBSEC *=

*+1
*+1
*+1
*+1
*+2
*+2
*+2
*+2

:SERIAL BUS 10
:DISK DRIVE t
: COMMAND
:1/0 STATUS
:1/0 BUFFER AD DR (H,L)
:TIME OUT CNT
:1/0 BYTE COUNT
:1/0 SECTOR NUMBER

: DCBCMD VALUE EQUATES

DCBCRS
DCBCWS
DCBCST
DCBCFD

'R
'p
'S
'I

;Read sector
;Put sector
:Status request
:FORMAT DISKETTE

($52)
($5"')
($53)
($21)

* * * SPECIAL NOTE:
DCBCWS may be changed to 'w ($57)
if desired to have disk perform
a verifying read after each write"
Disk write ('W) operations will take
longer, but will be more reliable.

DCBSTA VALUE EQUATES

DCBSOK
DCBDNR
DCBCNR
DCBDER
DCBIVC
DCBWPR

$"'1
$81
$82
$83
$84
$87

:STATUS NORMAL
:DEVICE NOT READY
:CONTROLLER NOT READY
:DATA ERROR
: INVALID COMMAND
: WRITE PROTECT

ZERO PAGE

1161
1162
1163

. PAGE " ZERO PAGE"
*= FMSZPG

1164 ZBUFP
1165 ZDRVA
1166 ZSBA
1167 ERRNO
1168
1169
15
2'"

*=
*=
*=
*=

*+2
*+2
*+2
*+1

.INCLUDE tEl

:BUFFER PTR
: ZERO PG DRIVE PTR
:ZERO PG SECTOR BUF PTR
:ERROR NUMBER

.INCLUDE tD:ATFMS1.SRC

B001' RECORD

"''''41.
"''''41',

62

2"'''''''
2"''''1
2"''''2
2"''''3
2"''''4

. PAGE "BOOT RECORD"
*= FMSORG

THE FOLLOWING BYTES ARE STORED
ON DISK SECTOR '" THEY COMPRISE

"7N' "" "7e;1 "3

"7til2 """7
''I7til4 4"15
"7til6 4C14"7

"7119 "3
"711A "1
"711B ""
"711C "1l5

"NF ""
'H1" "" "711 7D
"712 CB"7

ATARI DOS 2.0S

2""5 ; THE BOOT LOAD RECORD
2""6
2""7 BFLG • BYTE " ;BOOT FLAG UNUSED="
2""8 BRCNT .BYTE 3 ;NO CONSECTIVE BOOT RECORDS TO

READ
2""9 BLDADR .WORD FMSORG ;BOOT LOAD ADDR
2"1" BINTADR .WORD DUPINIT ;INIT ADDR
2"11 BCONT JMP XBCONT ;BOOT READ CONT PT
2"12
2"13 THE FOLLOWING BYTES ARE SET BY
2"14 THE CONSOLE PROCESSOR. THEY ARE
2"15 ACTED UPON DURING FMS INIT ONLY.
2"16
2"17
2"18
2"19
2"2"
2"21
2"22
2"23
2"24
2"25
2"26
2"27
2"28
2"29
2"3"
2"31
2"32
2"33
2"34
2"35

THEY ARE PART OF THE BOOT RECORD
THUS DEFINING THE DEFAULT

;INITIALIZATION PARMS

SABYTE
DRVBYT
SAFBFW
SASA

. BYTE

. BYTE

. BYTE

. WORD

3

"1
" ENDFMS

;MAX t CONCURRENT OPEN FILES
;DRlVE BITS
;STORAGE ALLOCATION DIR SW
;STORAGE ALLOCATION START ADDR

THE FOLLOWING CODE READS THE FMS
; AND CONSOLE PROCESSOR (DOS) FROM
; THE DOS.SYS FILE

DFSFLG . BYTE " ;DOS FLAG

; "" NO DOS FILE
; "1 128 BYTE SECTOR DISK
; "2 256 BYTE SECTOR DISK

DFLINK .BYTE "." ;DOS FILE START SECTOR NUMBER

2"36 BLDISP .BYTE 125
2"37 DFLADR .WORD DFMSDH
211138

;DISPL TO SECTOR LINK
;ADDR START OF DOS.SYS FILE

2"39 XBCONT
""714 AC"E"7 2"4"
"71 7 F"36 2"41

LDY
BEQ

DFSFLG
BFAIL

;GET DOS FLAG
;BR IF NO DOS.SYS FILE

"719 ADl2"7
"71C 8543
"71E 8D"4"3
"721 ADl3"7
"724 8544
"726 8D"5"3

BOOT RECORD

"729 ADl""7
"72C AC"F"7
"72F 18
"73" AE"E"7
"733 2"6C"7
"736 3"17

"738 ACll"7
"'l3B B143
A13D 29"3
"i3F 48
"74" C8
"i'41 1143
"743 F"'''E
"745 B143
"747 A8

2"42
2"43
2"44
2"45
2"46
2"47
2"48
2"49

2"5"
2"51
2"52
2"53
2"54
2"55
2"56
2"57
2"58
2"59
2"6"
2"61
2"62
2"63
2"64
2"65
2"66

XBCl

LDA DFL!'.DR ;MOVE LOAD START ADDR
STA ZBUFP ;TO ZERO PAGE PTR
STA DCBBUF ; AND TO DCB
LDA DFLADR+l
STA ZBUFP+l
STA DCBBUF+l

LDA DFLINK+l ;GET 1ST SECTOR t
LDY DFLINK
CLC
LDX DFSFLG ;LOAD DISK TYPE CODE
JSR BSIO ;GO READ BOOT SECTOR
BMI BFAIL

LDY BLDISP ;POINT TO LINK
LDA (ZBUFP). Y ;GET LINK HI
AND tLMASK ;MASK TO LINK BITS
PHA
INY
ORA (ZBUFPl. Y
BEQ BGOOD
LDA (ZBUFP). Y ;GET LINK LOW
TAY

63

ATARI DOS 2.0S

"740 2"57"7 2"67 JSR INCBA ;GO INCREMENT BUF AOR
2"68

"74£1 68 2"69 PLA ; RESTORE LINK HI
"74<: 4C2F"7 2"7" JMP XBC1 ;GO READ NEXT SECTOR

2"71
"741' A9C" 2"72 BFAIL LOA '$C" ;SET FOR CARRY SET
"751 0""1 2"73 BNE XBRTN ;ANY P,Y = $8"

2"74
"753 68 2"75 BGOOO PLA ;SET FOR CARRY CLEAR

2"76
"754 "A 2"77 XBRTN ASL A
"75~; A8 2"78 TAY
"756 6" 2"79 RTS

2"8"
"757 18 2"81 INCBA CLC
"75EI A543 2"82 LOA ZBUFP ; INC BUFFER PTR
"751. 6011"7 2"83 ADC BLOISP ;BY DATA LINK (125)
"75[1 80"4"3 2"84 STA OCBBUF
"76~1 R543 2"85 STA ZBUFP
"76:~ A544 2"86 LOA ZBUFP+1
"76', 69"" 2"87 AOC ." "7M. 80"5"3 2"88 STA DCBBUF+1
"769 8544 2"89 STA ZBUFP+1
"76B 6" 2"9" RTS

2"91

SEC'!'OR I/O

"76C 2"92 .PAGE "SECTOR I/O"
2"93
2"94 BSIO - DO SECTOR I/O
2"95

"76C 2"96 BSIO *
2"97

"76C 80"B"3 2"98 STA OCBSEC+1 SET SECTOR HI
"76F 8C"A"3 2"99 STY OCBSEC ;SECTOR LO

21"" ,
"772 A952 21"1 BSIOR LOA 'OCBCRS ;ASSUME READ SECTOR
"774 A"4" 21"2 LOY 1$4" ;ANO GET DATA
"776 9""4 21"3 BCC OSI01 ;BR IF READ

21"4
"778 A95" 21"5 LOA 'OCBCWS ;ELSE LOAD WRITE SECTOR
"7711 A"8111 21"6 LOY 1$8" ;ANO PUT DATA

21"7
21"8 OSI01

"77C 80"2"3 21"9 STA OCBCMO ; SET COMMAND
"77F 8C"3"3 211" STY OCBSTA ;ANO SIO CMO

2111
"782 A931 2112 LOA #$31 ;OISK SERIAL BUS 10
"784 A""F 2113 LOY 'TIMOUT ;TIMEOUT DEFAULT LOADED

2114
2115 OSI02

"786 80"""3 2116 STA OCBSBI ;SET 10
"789 8C"6"3 2117 STY OCBTO ;SET TIME OUT

2118
"78C A9"3 2119 LOA t3 ;SET RETRY COUNT
"78E 80FF12 212" STA RETRY

2121
"791 A9"" 2122 LOA ." ; ASSUME 128 BYTE
"793 A"8" 2123 LOY #$8" ; SECTOR DISK
"795 CA 2124 OEX
"796 F""4 2125 BEQ OSI03 ISO BR

2126
"798 A9"1 2127 LOA tl ;ELSE IS 256
"79A A""" 2128 LOY ." 2129
"79C 80"9"3 213" OSI03 STA OCBCNT+1 ;SET I/O BYTE CNT

64

',.,9F 8C"8"3

"'7A2 2"59E4
"'7A5 1"10

"7A7 CEFF12
"7M 3"18

"7AC A24"
"7AE A952
"7B" CNl2"3

SgCTOR I/O

"7B3 F""9
"7B5 A921
"7B7 CD"2"3
"7BA F""2
"7BC A28"
"7BE 8E"3"3

"7C1 4CA2"7

"7C4 AE"113
"7C7 AD"3"3
"7CA 6"

2131
2132

STY

2133 DSI04
2134 JSR

BPL 2135
2136
2137
2138
2139
214"
2141
2142

2143
2144
2145
2146
2147
2148
2149
215"
2151
2152
2153
2154
2155

DEC
BMI

LOX
LOA
CMP

BEQ
LOA
CMP
BEQ
LOX

STRTYP STX

JMP

DSI05 LOX
LOA
RTS

DCBCNT

$E459
DSI05

RETRY
DSI05

'$4"
'DCBCRS
OCBCMD

STRTYP
'DCBCFD
OCBCMD
STRTYP
'$8"
DCBSTA

DSI04

CURFCB
DCBSTA

ATARI DOS 2.0S

:CALL SERIAL I/O
:IF GOOD I/O THEN RTS

:TST IF ANOTHER RETRY AVAIL
:NO THEN RTS WITH ERROR

:00 RETRY-RESET TYPE ACTION
:ASSUME READ-CK IF IS
:IF COMMAND GET SECTOR

:YES THEN STORE GETSECTOR
:TEST IF FORMAT CMD
:IT ALSO RECIEVES DATA
:YES THEN SET AS GET DATA
:ELSE STORE PUTS ECTOR

:RETRY THE I/O

:RELOAD CURRENT FCB
:AND I/O STATUS SET FLAGS

IN 0

FILE MANGER ENTRY POINT

"7CB

1'17CB M"8
"7CD 14"B
"7CF BE"A
"701 CB"9
"703 """B
"705 A6"B

"707
1!7El'I

~17E" AD"C"7
117E3 8543
117E5 AD"D"7
EI7E8 8544

2156
2157
2158
2159
216"
2161
2162
2163
2164
2165
2166
2167
2168
2169
217"
2171
2172
2173
2174
2175
2176
2177
2178
2179
218"
2181
2182
2183
2184
2185
2186
2187
2188
2189
219"
2191

.PAGE "FILE MANGER ENTRY POINT"

DFMSDH - DISK FILE MANAGEMENT DISK
HANDLER ENTRY POINT

DFMSDH
.WORD DFMOPN-1 :OPEN FILE
.WORD DFMCLS-1 :CLOSE FILE
.WORD DFMGET-1 :GET FILE
.WORD DFMPUT-1 :PUT BYTE
.WORD DFMSTA-1 :STATUS
.WORD DFMDDC-1 :DEVICE DEPENDENT CMD

INITIALIZATION CODE

GIVE ROOM FOR BOOT EXPANSION 111

*= $7E"
DINIT *

SET UP DRIVE INFO

DRVTBL - 8 BYTES-ONE FOR EACH POSSIBLE DRIVE

l'I NO DRIVE
1 128 BYTE SECTOR DRIVE
2 256 BYTE SECTOR DRIVE

DBUFA(L,H) 8 TWO BYTE ENTRYS THE
DRIVE (VTOC) BUFFER ADR FOR A DRIVE

LOA
STA
LOA
STA

SASA
ZBUFP
SASA+l
ZBUFP+l

:MOVE START OF ALLOC
:AREA TO ZBUFP

65

ATJ~RI DOS 2.0S

'HEll. ADeAlH 2192 LDA DRVBYT :TEMP 1 IS DRIVE
e7ED SDeC13 2193 STA TEMP1 : EXCESS BITS FROM BOOT

2194
e7Fe A2e7 2195 LDX ,7 :TEMP 2 IS

2196
e7F2 SEeD 13 2197 DIA STX TEMP2 :DR • MINUS 1
e7F~ eEeC13 219S ASL TEMP1 :SHIFT DR BIT TO CARRY
e7FE BeeD 2199 BCS DIHAVE :BR IF DR EXISTS

22el/l
e7FJo Agee 22e1 LDA .e DRVTBL,X :SET NO DRIVE
e7FC' 9Dl113 22e2 STA DRVTBL,X
e7FF' 9D2913 22e3 STA DBUFAL,X
ese:; 9D3113 22e4 STA DBUFAH,X
ese~ Fe36 22e5 BEQ DIDDEC : GO DEC DRIVE •

22e6

FILE MANGER ENTRY POINT

22e7 DIHAVE
ese7 Aee5 22eA LDY ,DVDWRQ :SET WRITE READ OFF
ese9 Agee 22e9 LDA ,9
eseB 9143 221e STA (ZBUFP), Y :IN THE DRIVE BUFFER

2211
eseD ES 2212 INX : PUT DR • IN DCB
eseE SEe1e3 2213 STX DCBDRV
eS11 A953 2214 LDA 'DCBCST :GET DRIVE STATUS
eS13 SDe2e3 2215 STA DCBCMD
eS16 2e53E4 2216 JSR DHADR

2217
eS19 Aee2 221S LDY .2 :ASSUME 256 BYTE DRIVE
I/IS1B ADEAe2 2219 LDA $2EA :GET STATUS BYTE
eS1E 292e 222e AND '$29
eS2e Dee1 2221 BNE DI256 :BR IF 256
eS22 SS 2222 pEY

2223
eS23 9S 2224 DI256 TYA
eS24 AEeD13 2225 LDX TEMP2 :SET DR TYPE INTO
eS27 9D1113 2226 STA DRVTBL,X :TBL AT DRIVE DISPL
eS2A A543 2227 LDA ZBUFP :MOVE CURRENT ALLOC
eS2C 9D2913 222S STA DBUFAL,X :ADDR TO DBUFA
eS2F A544 2229 LDA ZBUFP+l :AND INC ALLOC
eS31 9D3113 223e STA DBUFAH,X :BY 12S BYTES
eS34 2e7ees 2231 JSR DINCBP : VIA DINCBP

2232
eS37 SS 2233 DEY :IF DR WAS A
eS3S Fee3 2234 BEQ DIDDEC :12S BYTES THEN DONE

2235
eS3A 2e7ees 2236 JSR DINCBP :ELSE INC PTR BY 12S

2237
eS3D CA 223S DIDDEC DEX :DEC DRIVE
eS3E 1eB2 2239 BPL DIA :BR IF MORE TO TEST

224e
2241 SET UP SECTOR ALLOCATION TABLE
2242
2243 THE SECTOR ALLOCATION TABLE (SECTBL)
2244 WAS 16 ONE BYTE ENTRIES ONE FOR
2245 EACH POSSIBLE 12S BYTE BUFFER SABYTE
2246 IN THE BOOT RECORD DETERMINES THE
2247 NUMBER OF ENTRYS TO ALLOCATE
224S NON-ALLOCATED BYTE ARE MINUS
2249
225e SABUF(L,H) CONTAINS THE ADDR OF THE SECTOR BUFFER
2251

eS4e Acege7 2252 LDY SA BYTE :GET AND SAVE COUNT
IIS43 A2ee 2253 LDX .e

2254
eS45 Agee 2255 DINXTS LDA .e :ASSUME ALLOCATE

66

ATARI DOS 2.0S

0B47 88 2256 DEY DEC COUNT OF ALLOCATED
0B48 1001 2257 BPL DISETS IF PLUS STILL ALLOCATE
0B4A 98 2258 TYA ELSE DE ALLOCATE

FILE MANGER ENTRY POINT

2259
034B 9D1913 2260 DISETS STA SECTBL,X :SET ALLOCATE BYTE
034E 98 2261 TYA : IF NO ALLOCATED
034F 300D 2262 BMI DISNI :THEN DON'T ALLOCATE BUF

2263
0851 A543 2264 LDA ZBUFP :MOVE BUFFER ADDR
0853 9D3913 2265 STA SABUFL,X :TO SECTOR BUF PTR
0856 A544 2266 LDA ZBUFP+l
0858 9D4913 2267 STA SABUFH,X
085B 207008 2268 JSR DINCBP : INC SECTOR ADDR

2269
085E E8 2270 DISNI INX :INC BUF •
085F E010 2271 CPX tl6 :IF NOT ALL 16
0861 D0E2 2272 BNE DINXTS :DO AGAIN

2273
2274 SET LOW MEM
2275

0863 A543 2276 LDA ZBUFP :MOVE FINAL ADDR
0865 8DE702 2277 STA LMADR :TO LOW MEM PTR
0868 A544 2278 LDA ZBUFP+l
086A 8DE802 2279 STA LMADR+l

2280
086D 4C7E08 2281 JMP CLRFCB :CONT IN IT

2282
2283 DINCBP - INC ZBUFP BY 128
2284

e870 18 2285 DINCBP CLC
e871 A543 2286 LDA ZBUFP
e873 6980 2287 ADC tl28
e875 8543 2288 STA ZBUFP
e'877 A544 2289 LDA ZBUFP+l
e879 6900 2290 ADC .0
e87B 8544 2291 STA ZBUFP+l
e87D 60 2292 RTS

2293
2294 CLEAR FCBS TO ZERO
2295

e i87E 2296 CLRFCB *
el87E A07F 2297 LDY .$7F :128 OF FCB
~1880 A900 2298 LDA .0
~1882 998113 2299 CFCBX STA FCB,Y : TO BE CLEARED
~1885 88 2300 DEY
~1886 D0FA 2301 BNE CFCBX

2302

FILE MANGER ENTRY POINT

0888 2303 . PAGE
2304

0888 A000 2305 LDY .0
088A B91A03 2306 ADIl LDA DEVTAB,Y :FIND AH
088D F00C 2307 BEQ ADI2 :UNUSED
088F C944 2308 CMP .'D lOR DISK
0891 F008 2309 BEQ ADI2 :EMPTY
0893 C8 2310 INY
0894 C8 2311 INY
0895 C8 2312 INY
0896 C01E 2313 CPY B0
0898 D0F0 2314 BNE ADIl
089A 00 2315 BRK :ELSE BREAK

2316

67

ATARI DOS 2.0S

"89B 1\944
"890 991AI1I3
"8A" J\9CB
"8A2 991B"3
"8A5 A9"7
"8A7 '~91C"3

OPEN

"8AB

"8AB 2"6411
"8AE 2"9E"E
"8Bl BD4A"3
"8B4 908213
"8B7 29"2
"8B9 F""3
"8BB 4CAD"D

"8BE 2"21"F
"8Cl "8

"8C2 BD8213
"8C5 C9"4
"8C7 F""F
"8C9 C9"8
"8CB F"44
"8CD C9"C
"8CF F""C
"801 C9"9
"803 F"17
"805 4CBF12

"808
"808 28
"809 B""E
"8DB 9"1'16

"800
"800 28
"8DE B""9
"8E" 2"AC"C

"8E3
"8E3 2"AE"9
"8E6 4CF"12

"8E9 4CBB12

OPEN

"8EC

"'8EC
"8EC 28

68

2317 ADI2
231R

LOA
STA
LOA
STA
LOA
STA

t'D ;SET DISK
DEVTAB,Y

2319
232"
2321
2322
2323
2324 RTS

tDFMSDH&255 ;SET FMS ADDR
DEVTAB+l,Y
tDFMSDH/256
DEVTAB+2,Y

. PAGE .. OPEN"

DFMOPN - FILE OPEN EXECUTION ENTRY PT

2325
2326
2327
2328
2329
233"
2331
2332
2333
2334
2335
2336
2337
2338
2339
234"
2341
2342
2343
2344
2345
2346
2347
2348
2349
235"
2351
2352
2353
2354
2355
2356
2357
2358
2359
236"
2361
2362
2363
2364
2365
2366
2367
2368
2369
237"

DFMOPN
JSR
JSR
LOA
STA
AND
BEQ
JMP

SETUP
FNDCODE
ICAUXl,X
FCBOTC,X
tOPDIR
OPNI
LISTDIR

; DO FCB SET UP
;GO DECODE FILE NAME
; GET AUXI (OPEN TYPE CODES)
;PUT INTO FCB
; IS THIS LIST DIRECTORY
;BR IF NOT
;GOTO DIR LIST CODE

OPNI JSR SFDIR
PHP

;GO SEARCH FILE DIR

2371
2372
2373
2374
2375
2376

LOA FCBOTC,X ;GET OPEN TYPE CODE
CMP tOPIN ; INPUT
BEQ DFOIN
CMP tOPOUT ; OUTPUT
BEQ DFOOUT
CMP tOPIN+OPOUT ;UPDATE
BEQ DFOUPD
CMP tOPOUT+OPAPND ;APPEND
BEQ DFOAPN
JMP ERDVDC ; ERROR

DFOIN - OPEN FOR INPUT

DFOIN *
PLP
BCS OPNERI
BCC DFOUI

;GET SEARCH FLAG
;ERROR IF NOT FOUND

DFOUPD - OPEN FOR UPDATA

DFOUPD *
PLP
BCS OPNERI
JSR TSTLOCK

DFOUI *
JSR DFRDSU
JMP GREAT

OPNERI JMP ERFNF

. PAGE

;GET SEARCH FLAG
; BR NOT FOUND
;TEST LOCK

;SET UP FOR READ
; DONE

;FILE NOT FOUND

DFOAPN - OPEN APPEND

DFOAPN *
PLP ;GET READ STATUS

BCS
LDY
LDA
AND
BEQ
JSR
JSR
JSR
STA
LDA
STA
JMP

ATARI DOS 2.0S

OPNERl ;BR NOT FOUND
CDIRD ;IF OLD.
FILDIR+DFDFL1,Y ;FILE TYPE
'DFDNLD ; THEN
APOER ; ERROR
TSTLOCK ;TEST LOCKED
OPVTOC ; READ VTOC
GETSECTOR ;GET A SECTOR
FCBSSN+l,X ;MOVE START SECTOR.
FCBLSN,X ;TO START SECTOR i
FCBSSN,X
DHFOX2 ;CONTINUE AS OPEN

"BED B"FA
"BEF AC"513
"BF2 B9"114
"BF5 29"2
"BF7 F"lS
"BF9 2"AC"C
"BFC 2"BF1"
"BFF 2""611
"9"2 9D8E13
"~'''5 BD8B13
"""8 9D8D13
"""B 4C7C"9
"""E 4CB712

2377
2378
2379
238"
2381
2382
2383
2384
2385
2386
2387
2388
2389
239"
2391
2392
2393
2394
2395
2396
2397
2398
2399
24""
24"1
24"2
24"3
24"4

APOER JMP ERA PO

; DFOOUT - OPEN FOR OUTPUT

"'Ill DFOOUT *
"'Ill 28
"'112 B""9

"'114 2"53"C
"'11 7 AC"513
"'IlA 4C48"9

PLP ;GET SEARCH FLAG
BCS DFOXl

JSR XDEL"
LDY CDIRD
JMP OPNIA

;DELETE THE FILE OR FILES

"'IlD DFOXl *
"'HD AD"213
"'12" 3"7"
"'122 8D"613

"'125 2"6El"
""28 AD" 313
"92B 8D"513
"'l2E AD"413
"'131 8D"713
"'134 2"BF1"
"'137 AC"513
"'lJA A2"A
"93C A92"
"'lJE 99"614

"'141 C8
"'142 CA
"'143 1"F9
"'145 AE"113

24"5
24"6
24"7
24"8
24"9
241"
2411
2412
2413
2414

2415
2416
2417
2418
2419

OPNIB

"948
"948 2""611

242" OPNIA
2421

"~4B AC"513 2422
"~4E 99"514 2423

"'151 BD8B13 2424
"'154 99"414 2425

2426
"'157 A943 2427

""59 99"114
"'I5C A9""
~"5E 99"314
""61 99"214

"~I64 A2""
""66 BD5913
"'169 C93F
"'.16B F""3

2428
2429
243"
2431
2432
2433
2434 OPN2
2435
2436

LDA
BMI
STA

JSR
LDA
STA
LDA
STA
JSR
LDY
LDX
LDA
STA

INY
DEX
BPL
LDX

JSR

DHOLES
OPNER2
CDIRS

RDDIR
DHOLED
CDIRD
DHFNUM
SFNUM
OPVTOC
CDIRD
tl"
'$2"

;WAS THERE A HOLE
;BR IF NO HOLE
;SAVE HOLE SECTOR AS CURRENT

DIR SEC
;GO READ CURRENT DIR SECTOR
;MOVE HOLE DISPL TO
;CUR l:'IR DISPL
;MOVE HOLE FN
;TO CURRENT

FILDIR+DFDPFN,Y ;BLANK FILL FILE ENTRY

OPNIB
CURFCB

*

FOR FILE NAME

GETSECTOR ;GET A SECTOR

LDY CDIRD ;GET DIR DISPL
STA FILDIR+DFDSSN+l,Y ;PUT SECTOR INTO DIR

REC
LDA FCBLSN,X
STA FILDIR+DFDSSN,Y

LDA 'DFDINU+DFDOUT+DFDNLD ;SET DIR ENTRY IN
USE

STA
LDA
STA
STA

LDX
LDA
CMP
BEQ

FILDIR+DFDFL1,Y
." SET NOT LOCKED
FILDIR+DFDCNT+l,Y ;SET COUNT
FILDIR+DFDCNT,Y

." FNAME,X

"?
OPN2A

MOVE FILE NAME
IF WILD CARD
CHANGE TO BLANK

69

AT~'RI DOS 2.0S

"960 99"614 2437 STA FILOIR+OFOPFN,Y :TO DIRECTORY
"97" 2438 OPN2A *
"97" C8 2439 INY
"971 E8 244" INX
"972 E""B 2441 CPX HI
"974 9"F" 2442 BCC OPN2

2443
"976 AE"113 2444 LOX CURFCB :RESTORE X REG
"979 2"711" 2445 JSR WRTOIR :GO WRITE DIRECTORY
"97C 2446 OHFOX2 *
"97C 2"95"9 2447 JSR SETFCB
"97F 2"E2"F 2448 JSR WRTN6 :FIX UP AS IF WRITE
"982 A98" 2449 OPN3 LOA 'FCBFAS :SET NEW FILE
"984 908513 245" STA FCBFLG,X
"987 2"9B12 2451 JSR TSTDOS :IF NOT DOS
"98A 0""3 2452 BNE OHFOX3 :BR
"98C 4C"A12 2453 JMP WRTDOS :ELSE DO IT
"98F 2454 OHFOX3 *
"98F 4CF"12 2455 JMP GREAT

2456
"992 2"B012 2457 OPNER2 JSR EROFULL :OIRECTORY FULL

2458
2459

"995 246" SETFCB *
"995 A9"" 2461 LOA ." : CLEAR
"997 908513 2462 STA FCBFLG,X : FLAG
"99A AO"713 2463 OPNFI LOA SFNUM :MOVE FILE NUM TO FCB
"990 "A 2464 ASL A
"99E "A 2465 ASL A
"99F 908113 2466 STA FCBFNO, X
"9A2 A9"" 2467 LOA ." "9A4 908713 2468 STA FCBOLN,X :OATA LENGTH
"9A7 908F13 2469 STA FCBCNT,X :SET CNT = "
"9AA 909"13 247" STA FCBCNT+l,X
"9AO 6" 2471 RTS
"9AE 2"95"9 2472 OFROSU JSR SETFCB :SET UP FCB
"9Bl AC"513 2473 LOY COIRO :MOVE START SECTOR TO LINK

OPEN

"9B4 B9"114 2474 LOA OFOFLl+FILOIR,Y :SET NEW
"9B7 29"2 2475 AND 'OFONLO : SECTOR
"9B9 908413 2476 STA FCBSLT,X : FLAG
"9BC B9"414 2477 LOA FILOIR+OFOSSN,Y
"9BF 908B13 2478 STA FCBLSN,X
"9C2 B9"514 2479 LOA FILOIR+OFOSSN+l,Y
"9C5 90BC13 248" STA FCBLSN+l,X
"9C8 2"171" 2481 JSR RONSO :REAO 1ST SECTOR
"9CB 6" 2482 RTS
"9CC 25 .INCLUOE 'E:
"9CC 3" .INCLUOE '0:ATFMS2.SRC

PUT BYTE

"9CC 3""" .PAGE "PUT BYTE"
3""1
3""2 OFMPUT - PUT A FILE BYTE
3""3
3""4 OFMPUT

"9CC 80"813 3""5 STA SVOBYT
"9CF B041"3 3""6 LOA ICONO,X
"902 8521 3""7 STA ICDNO-IOCB+ZICB
"904 2"6411 3""8 JSR SETUP
"907 AC""13 3""9 LOY ENTSTK :CHK TO SEE IF ENTRY WASN'T

FROM CIO
"90A B9"2"1 3"1" LOA STAK,Y :IF HI BYTE RTS IS NOT IN OS

AOOR

70

ATARI DOS 2.0S

09IlD C9DF 3011 CMP tOSBTM SPACE THEN A NON-CIO ENTRY
091lF B004 3012 BCS FRMCIO BR IF FROM CIO
09m A900 3013 LDA to ELSE PREVENT FROM DOING BURST

I/O
09H3 8522 3014 STA ICCOMZ
09U5 BD8213 3015 FRMCIO LDA FCBOTC,X ;IF NOT OPEN
091~8 2908 3~16 AND tOPOUT ; OUTPUT
091~A F02D 3017 BEQ PUTER ;ERROR
091~C BC8713 3018 LDY FCBDLN,X ;GET DATA LENGTH
A91~F 98 3019 TYA
091'0 DD8613 3020 CMP FCBMLN, X ;IF SECTOR NOT FULL
091'3 9011 3021 BCC PUT1 ;THEN BR
091'5 20940F 3022 JSR WRTNXS ;ELSE WRITE FULL SECTOR
091'8 B022 3023 BCS PEOF ;BR IF EOF
091'A 201F0A 3024 JSR WTBUR ;TEST BURST
091'D A000 3025 LDY to
091'F B005 3026 BCS PUT1 ;BR IF NOT BURST
0AIH B124 3027 LDA (ICBALZl,Y ;PUT NEXT BYTE
0AI'3 8D0813 3028 STA SVDBYT ;AFTER BURST AREA

3029
0AI'6 FE8713 3030 PUT1 INC FCBDLN,X ; INC DATA LEN
0AI'9 AD0813 3031 LDA SVOBYT ;GET DATA BYTE
0AI'C 9147 3032 STA (ZSBA l, Y ;AND PUT IN SECTOR BUFFER

3033
0AI~E A940 3034 LDA tFCBFSM ;INDICATE SECTOR MODIFIED
0A10 1D8513 3035 ORA FCBFLG,X
AA13 9D8513 3036 STA FCBFLG,X

3037
0A16 4CF012 3038 JMP GREAT ; DONE

3039
0A19 4CBF12 3040 PUTER JMP ERDVOC
0A1C 4CF412 3041 PEOF JMP ERREOF

BURST I/O

0A1F 3042 . PAGE "BURST I/O"
3043
3044 TEST BURST I/O AND DO IF POSSIBLE
3045

0A1F BD8513 3046 WTBUR LDA FCBFLG,X ;IF NOT AQUIRING SECTORS
0A22 1026 3047 BPL NOBURST ;THEN UPDATE AND
0A24 3002 3048 BMI TBURST ;NO BURST

3049
0A26 A900 3050 RTBUR LDA to ;SET READ TYPE

3051
0}l.28 8D1013 3052 TBURST STA BURTYP ;SET BURST TYPE
'''.2B A522 3053 LDA ICCOMZ ;IF CMD
01'.2D 2902 3054 AND t2 ; I S TEXT MODE
01'.2F F019 3055 BEQ NOBURST ;THEN NO BURST

3056
01'.31 20AE0A 3057 JSR TBLEN ;IF USER BUFFER LESS
01'.34 B014 3058 BCS NOBURST ;THEN SECTOR, NO BURST

3059
01.36 A524 3060 LDA ICBALZ ;MOVE USER BUFFER
01.38 8547 3061 STA ZSBA ;ADDR TO SECTPOR
01.3A A525 3062 LDA ICBAHZ ;BUFFER PTR
01.3C 8548 3063 STA ZSBA+l

3064
01.3E AD1013 3065 NXTBUR LDA BURTYP ;GET I/O TYPE
01.41 3009 3066 BMI WRBUR ;BR IF WRITE

3067
0}143 200F10 3068 JSR RDNXTS ;DO SECTOR READ
01146 9033 3069 BCC BBINC ;BR IF EOF
01148 B053 3070 BCS BUREOF ;BR RD EOF

3071
0114A 38 3072 NOBURST SEC ; INDICATE NO BURST
0114B 60 3073 RTS

7I

ATA~RI DOS 2.0S

31n4 :
"A4C AOF812 3"75 WRBUR LOA ORVMOL :WRITE FULL SECTOR
"A4F 908713 3"76 STA FCBOLN,X :OATA COUNT

3"77
"A52 A8 3"78 TAY
"A53 B147 3"79 LOA (ZSBAl. Y :SAVE DATA TO BE
"ASS 80"913 3"8" STA SVDl :TO BE CLOBBERED
"A58 C8 3"81 INY
"A59 B147 3"82 LOA (ZSBAl. Y :BY WRTNXT
"A5B 80"A13 3"83 STA SV02
"A5E C8 3"84 INY
"A5F B147 3"85 LOA (ZSBAl. Y
"A61 80"B13 3"86 STA SV03

3"87
"A64 2"94"F 3"88 JSR WRTNXS :WRITE SECTOR

3"89
"A67 ACFB12 3"9" LOY ORVMOL :RESTORE CLOBBERED DATA
"A6A AD"913 3"91 LOA SVDl
"A60 9147 3"92 STA (ZSBA), Y

BURST I/O

"A6F C8 3"93 INY
"A7" AO"AI3 3"94 LOA SV02
"A73 9147 3"95 STA (ZSBA),Y
"A75 C8 3"96 INY
"A76 AO"B13 3"97 LOA SV03
"A79 9147 3"98 STA (ZSBA), Y

3"99
31""

"A7B 18 31"1 BBINC CLC
ffA7C A547 31"2 LOA ZSBA INC SECTOR
"A7E 708613 31"3 AOC FCBMLN,X BUFFER AOOR BY
"A81 8547 31"4 STA ZSBA ACTUAL DATA LEN
"A83 A548 31"5 LOA ZSBA+l GOT OT PUT
"AB5 69"" 31"6 ADC ." "A87 8548 31"7 STA ZSBA+l

31"8
"A89 38 31"9 SEC
"A8A A52B 311" LOA ICBLLZ :OEC USER
"A8C F08613 3111 SBC FCBMLN,X :BUFFER LEN BY
"A8F 8528 3112 STA ICBLLZ :ACTUAL DATA LEN
"A91 A529 3113 LOA ICBLHZ :GOT OR PUT
"A93 E9"" 3114 SBC ." "A95 EA 3115 NOP
"A96 8529 3116 STA ICBLHZ

3117
"A98 2"AE"A 3118 JSR TBLEN :IF USER BUF LEN
"A9B 9"Al 3119 BCC NXTBUR :NOW)= SECTOR, DO AGAIN

312"
"A90 3121 BUREOF * :ENO OF BURSTING
"A90 A547 3122 LOA ZSBA :MOVE FINAL AOOR BACK
"A9F 8524 3123 STA ICBALZ :TO USER BUF PTR
"AAI A548 3124 LOA ZSBA+l
"AA3 8525 3125 STA ICBAHZ

3126
"AA5 BC8813 3127 LOY FCBBUF,X :RESTORE ZSBA
"AA8 88 3128 DEY
"AA9 2"01'111 3129 JSR SSBA

313"
"AAC 18 3131 BURST CLC
"AAO 6" 3132 RTS

3133
3134 : TEST USER BUF LEN FOR BURST
3135

"AAE 3136 TBLEN *
"AAE AOFE12 3137 LOA ORVTYP : IF DRIVE NOT

72

ATARI DOS 2.0S

I1JAEl C911Jl 3138 CMP U :128 BYTE SECTOR TYPE
I1JAI:3 DI1J11J4 3139 BNE TBL256 :THEN DO 256 BYTE TEST

31411J
I1JAI:5 A528 3141 LDA ICBLLZ
I'IAEl7 311JF3 3142 BMI BURST

3143
I1JAEI9 A529 3144 TBL256 LDA ICBLHZ : IF BUF LEN HI)= 256

BURST I/O

I1JAEB DI1JEF 3145 BNE BURST :THEN CAN BURST
I1JAI:D 38 3146 SEC
I1JAE:E 611J 3147 RTS

GE1' BYTE

I1JAElF 3148 • PAGE "GET BYTE"
3149
31511J
3151 DFMGET - GET A FILE BYTE
3152

I1JAlIF 3153 DFMGET *
I1JAIIF 211J6411 3154 JSR SETUP :GO SET UP
I1JAC2 BD8213 3155 LDA FCBOTC, X :IF OPEN FOR
I1JAC5 2911J2 3156 AND tOPDIR :DIR CNT
I1JAC7 FI1J11J3 3157 BEQ GET 1
I1JAC9 4CB911JD 3158 JMP GDCHAR :THEN GO TO DIR RTN

3159
I1JACC BD8713 31611J GET 1 LDA FCBDLN,X :GET DATA LEN
I1JACF DD8613 3161 CMP FCBMLN, X :TEST EMPTY SECTOR
I1JAD2 911JI1JB 3162 BCC GET2 :BR IF NOT EMPTY
I1JAD4 211J2611JA 3163 JSR RTBUR :DO BURST IF POSSIBLE
I1JAD7 211JI1JFI11J 3164 JSR RDNXTS :GET NEXT SECTOR
I1JADA 911JFI1J 3165 BCC GETI : BR IF NOT EOF
I1JADC 3166 GEOF *
I1JADC 4CF412 3167 JMP ERREOF :ELSE EOF ERROR

3168 .
I1JADF A8 3169 GET2 TAY
I1JAJ~11J B147 31711J LDA (ZSBA), Y :GET DATA BYTE
I1JA:~2 8DI1J813 3171 STA SVOBYT :SAVE THE BYTE
I1JA:~5 C8 3172 INY
I1JA:g6 98 3173 TYA
I1JAg7 9D8713 3174 STA FCBDLN,X :AND SET NEW VALUE
I1JMA 3175 EFLOOK *
I1JMA BC8B13 3176 LDY FCBLSN,X :DO EOF LOOK AHEAD
I1JMD DI1JI1JF 3177 BNE GET3 : IF LSN NOT ZERO
I1JMF BC8C13 3178 LDY FCBLSN+l,X :THEN
I1JA~2 DI1JI1JA 3179 BNE GET3 NOT EOF
I1JAN DD8613 31811J CMP FCBMLN,X IF LSN=11J THEN CHECK FOR
I1JA~7 9 I1JI1J 5 3181 BCC GET3 LAST BYTE
I1JA~9 A911J3 3182 LDA HI1J3 IF LAST BYTE THEN RTS
I1JI1JAFB 4CD312 3183

I1JA~E 4CFI1J12

s'rATUS

I1JBl1Jl

3184
3185 GET3

JMP RETURN

JMP GREAT

.PAGE "STATUS" 3186
3187
3188
3189
31911J
3191
3192
3193
3194

DFMSTA - GET A FILE STATUS

I1JBl1Jl 211J6411
I1JBI1J4 211J9EI1JE
I1JBI1J7 211J2111JF
11JJ3I1JA BI1J11J6

DFMSTA
JSR SETUP
JSR FNDCODE
JSR SFDIR
BCS SFNF

SETUP
DECODE FILE NAME

SEARCH FOR FILE
BR NOT FOUND

73

AT~~RI DOS 2.0S

0B0C 20AC0C 3195 JSR TSTLOCK ;TEST LOCKED
0B0F 4CF012 3196 JMP GREAT ;FILE EXISTS AND UNLOCKED

3197
0B12 4CBB12 3198 SFNF JMP ERFNF

CLOSE:

0B15 3199 . PAGE "CLOSE"
3200
3201 DFMCLOSE - CLOSE A FILE
3202
3203 DFMCLS

0B15 206411 3204 JSR SETUP
0B18 B1)8213 3205 LDA FCBOTC,X ;GET OPEN CODE
0BIB 2908 32~6 AND top OUT ;IF NOT OUTPUT
0BID F04E 3207 BEQ CLDONE ;THEN DONE

3208
0BIF 3E8513 3209 ROL FCBFLG,X ;IF NOT ACQUIRING SECTORS
0B22 9051 3210 BCC CLUPDT ;THEN IS UPDATE

3211
0B24 20AB0F 3212 JSR WRTLSEC ;WRITE LAST SECTOR

3213
0B27 20800B 3214 JSR RRDIR ;GO GET DIRECTORY
0B2A BD9013 3215 LDA FCBCNT+l,X ;GET CNT OF SECTORS
0B2D 48 3216 PHA
0B2E BD8F13 3217 LDA FCBCNT,X
0B31 48 3218 PHA

3219
0B32 BD8213 3220 LDA FCBOTC, X ;GET OPEN CODE
0D35 2901 3221 AND tOPAPND ;IF NOT APPEND
0B37 F017 3222 BEQ CLOUT ;BR

3223
0B39 20AE09 3224 JSR DFRDSU ;ELSE SET UP FOR READ
0B3C 200F10 3225 APPI JSR RDNXTS ; READ TO EOF
0B3F 90FB 3226 BCC APPI

3227
0B41 BD8D13 3228 LDA FCBSSN,X ; MOVE START SECTOR
0B44 9D8B13 3229 STA FCBLSN,X TO EOF LINK SECTOR
0B47 BD8E13 3230 LDA FCBSSN+l,X
0B4A 9D8C13 3231 STA FCBLSN+l,X
0B4D 20B30F 3232 JSR WRTN2 ;THEN WRITE AS NOT EOF

3233
0B50 AC0513 3234 CLOUT LDY CDIRD ;GET DIR DISPL
0B53 18 3235 CLC
0B54 68 3236 PLA
0B55 790214 3237 ADC FILDIR+DFDCNT,Y
0B58 990214 3238 STA FILDIR+DFDCNT,Y
0B5B 68 3239 PLI\
0B5C 790314 3240 ADC FILDIR+DFDCNT+l,Y
0B5F 990314 3241 STA FILDIR+DFDCNT+l,Y

3242
0B62 1\.942 3243 LDA tDFDINU+DFDNLD ;SET ENTRY TO IN USE
0B64 990114 3244 STA FILDIR+DFDFLl,Y
0B67 207110 3245 JSR WRTDIR ;WRITE DIR
0B6A 209510 3246 JSR WRTVTOC ;WRITE VTOC

3247
0B6D 1\900 3248 CLDONE LDA to ; CLEAR OPEN CODE
0B6F 9D8213 3249 STA FCBOTC, X

CLOSE

0B72 4CEA12 3250 JMP FGREAT
3251

0B75 3252 CLUPDT ~ *
0B75 3E8513 3253 ROL FCBFLG,X ;IF SECTOR NOT MODIFIED
0B78 90F3 3254 BCC CLDONE ;THEN DONE

74

"Bi'A 2"F8"F 3255
"B7D 4C6D"B 3256

3257

CLOSE

"BB"
"BB" BD8113
~BB3 4A
"B1I4 4A
"BB5 8DI'I713

"BB8 2A9B"B
"BBB 8D"613
ABBE 2"9B"B
"B'I1 2"9D"B
"B'14 "A
AB'I5 8D"513

"B'I8 4C6E1"
"B'.IB A9""
"B'ID A""3
"B'IF 1E8113
"BA2 2A
"BA3 88
"BA4 D"F9
"BA6 6"

3258
3259
326"
3261
3262
3263
3264
3265
3266
3267
3268
3269
327"
3271
3272
3273
3274
3275
3276
3277
3278
3279
328"
3281
3282
3283

JSR WRCSIO
JMP CLDONE

. PAGE

RE-READ DIR RECORD

RRDIR ..
LDA FCBFNO, X
LSR A
LSR A
STA SFNUM

JSR FNSHFT
STA CDIRS
JSR FNSHFT
JSR FNSHF1
ASL A
STA CDIRD

JMP
FNSHFT LDA
FNSHF1 LDY
FNSHF2 ASL

ROL
DEY
BNE
RTS

RDDIR

." .3
FCBFNO,X
A

FNSHF2

ATARI DOS 2.0S

:ELSE WRITE IT
: THEN DONE

:GET FILE NUMBER

:SET ACU=FILE NO/64
:TO GET DIR SECTOR
:SET ACU TO REM=16

:TO GET DIR DISPL

:SHIFT 3 BITS OF
:FILE NO INTO ACU

DE'IICE DEPENDENT COMMAND

ABA7

"BA7 2"6411
"B.-.A BD42"3
"B."D C9FE
"B."F F"25
"BB1 C927
"BB3 B"lE
"BB5 38
"BB6 E92"
"BB8 9"19
"BBA "A
"BBB A8
"BBC B9C5"B
"BBF 48
"BC" B9C6"B
"BC3 48
"BC4 6"

"BC5 "BD8
"BC7 "C31
"BC9 "BD2
"BCB "C7B
"BCD "C82
"BCF "CB9
"BD1 "D"2

""27

3284
3285
3286
3287
3288
3289
329"
3291
3292
3293
3294
3295
3296
3297
3298
3299
33""
33"1
33"2
33"3
33"4
33"5
33"6
33"7
33"8
33"9
331"
3311
3312
3313
3314
3315

.PAGE "DEVICE DEPENDENT COMMAND"

DFMDDC - DEVICE DEPENDENT CMD EXECUTION

DFMDDC

DVDCVT

MAXDDC

JSR
LDA
CMP
BEQ
CMP
BCS
SEC
SBC
BCC
ASL
TAY
LDA
PHA
LDA
PHA
RTS

SETUP
ICCOM,X
.254
XFV
'MAXI'DC
DVDCER

'$2"
DVDCER
A

DVDCVT,Y

:SET UP FOR EXECUTION
:GET COMMAND
: IS IT FORMAT
:BR IF
:TEST RANGE
:BR OUT OF RANGE

:SUBTRACT BASE OF CMDS
:BR OUT OF RANGE

:PUSH EXECUTION ADDR
DVDCVT+1,Y

.DBYTE XRENAME-1 :2"-RENAME

.DBYTE XDELETE-1 :21-DELETE

.DBYTE DVDCER-1 :INVALID CMD

.DBYTE XLOCK-1 :23-LOCK

.DBYTE XUNLOCK-1 :24-UNLOCK

.DBYTE XPOINT-1 :25-POINT

.DBYTE XNOTE-1 :26-NOTE

$27 :MAX DVDC+l

75

AT~~RI DOS 2.0S

3316
0BD3 4CBF12 3317 DVDCER JMP ERDVDC
0BD6 4C180D 3318 XFV JMP XFORMAT :FORMAT VECTOR

RENAI~E

0BD9 3319 . PAGE "RENAME"
3320
3321 :XRENAME - RENAME A FILE OR FILES
3322
3323 XRENAME

0BD9 209E0E 3324 JSR FNDCODE :DECODE FILE NAME
0BOC 8C0D13 3325 STY TEMP2 :SAVE FNAME INDEX
0BDF 20210F 3326 JSR SFDIR :GO FINE FILE IN DIR
0BE2 9003 3327 BCC XRNI :BR IF FOUND
0BE4 4CBB12 3328 JMP ERFNF

3329
0BE7 20AC0C 3330 XRN1 JSR TSTLOCK :TEST LOCK
0BEA 209B12 3331 JSR TSTDOS : IF NOT DOS
0BED D003 3332 BNE XRNIA : THEN
0BEF 201912 3333 JSR DEL DOS : DON'T CHANGE SO

3334 XRN1A
0BF2 AC0D13 3335 LDY TEMP2 :GET INDEX FOR END FN1
0BF5 20B40E 3336 JSR FNDCNX :GO DECODE NEXT FILE NAME
0BF8 209B12 3337 JSR TSTDOS :IF NOT DOS
0BFB D00F 3338 BNE XRN1B :THEN
0BFD AC0513 3339 LDY CDIRD
0C00 B90514 3340 LDA FILDIR+DFDSSN+1,Y
0C03 48 3341 PHA
0C04 B90414 3342 LDA FILDIR+DFDSSN,Y
0C07 A8 3343 TAY :A,Y NEW DOS
0C08 68 3344 PLA
0C09 205312 3345 JSR SETDSO :GO WRITE SECTOR ZERO

3346
3347 XRN1B

0C0C A200 3348 LDX to
0C0E AC0513 3349 LDY CDIRD

3350
0Cll 8D5913 3351 XRN2 LDA FNAME,X : MOVE FILE NAME
0C14 C93F 3352 CMP t'? :FROM FNAME TO DIR ENT
0C16 F003 3353 BEQ XRN3 :BUT DON'T CHANGE WILD CARD
0C18 990614 3354 STA FILDIR+DFDPFN,Y :CHARS INDICATED IN

FNAME
0C1B C8 3355 XRN3 INY
0C1C E8 3356 INX
0C1D E00B 3357 CPX t11
0C1F 90F0 3358 BCC XRN2
0C21 AE0113 3359 LDX CURFCB :RESTORE X-REG

3360
0C24 207110 3361 JSR WRTDIR :GO WRITE CIR DIR RECORD

3362
0C27 209E0E 3363 JSR FNDCODE :GET OLD FILENAME AGAIN
0C2A 20310F 3364 JSR CSFDIR :CONTINUE SEARCH OF DIR
0C2D 90B8 3365 BCC XRN1 :BR IF FOUND ANOTHER

3366
0C2F 4CEA12 3367 JMP FGREAT :GO TO GOOD ENDING

DELETE

0C32 3368 . PAGE "DELETE"
3369
3370 XDELETE - DELETE ALL FILENAMES THAT MATCH
3371
3372 XDELETE

0C32 209E0E 3373 JSR FNDCODE :GO DECODE FILENAME
0C35 20210F 3374 JSR SFDIR :SEARCH DIR FOR FILENAME

76

ATARI DOS 2.0S

0C38 B03F 3375 BCS DFNF ;BR NOT FOUND
0C3A 3376 XDELX *
0C3A 20530C 3377 JSR XDEL0
0C3D 209B12 3378 JSR TSTDOS
0C40 D003 3379 BNE XDELY
0C42 201912 3380 JSR DEL DOS

3381 XDELY
3382

0C45 207110 3383 XDEL3 JSR WRTDIR ;WRITE DIR ENTRY
0C48 20310F 3384 JSR CSFDIR ;LOOK FOR NEXT MATCH
0C4B 90ED 3385 BCC XDELX ;BR IF FOUND
0C4D 209510 3386 JSR WRTVTOC
0C50 4CEA12 3387 JMP FGREAT

3388
0C53 20BF10 3389 XDEL0 JSR OPVTOC

3390
0C56 AC0513 3391 XDEL1 LDY CDIRD ;GET DIR DISPL
0C59 20AC0C 3392 JSR TSTLOCK ;GO TEST LOCK
OC5C A980 3393 LDA tDFDEDE ;LOAD DELETED FLAG
OC5E 990114 3394 STA FILDIR+DFDFL1,Y ;DELETE FILE

3395
0C61 21ilAE09 3396 JSR DFRDSU
0C64 4C6C0C 3397 JMP XDEL2A

3398
0C67 200F10 3399 XDEL2 JSR RDNXTS ;READ NEXT SECTOR
0C6A B006 3400 BCS XDEL4
0C6C 3401 XDEL2A *
0C6C 20C510 3402 JSR FRESECT ;FREE CURRENT SECTOR
0C6F 4C670C 3403 JMP XDEL2

3404
0C72 3405 XDEL4 *
0(72 A005 3406 LDY tDVDWRO ;TURN ON WRITE REO'D
0(74 A9FF 3407 LDA t$FF
0('76 9145 3408 STA (ZDRVA),Y
0('78 60 3409 RTS

3410
0('79 4CBB12 3411 DFNF JMP ERFNF ;FILE NOT FOUND

LOCK AND UNLOCK

0C7C 3412 .PAGE "LOCK AND UNLOCK"
3413
3414 XLOCK - LOCK A FILE
3415 XUNLOCK - UNLOCK A FILE
3416
3417 XLOCK

0C7C A920 3418 LDA tDFDLOC ; SET LOCK
0C7E 8D0F13 3419 STA TEMP4
0C81 D005 3420 BNE XLCOM ;GO TO COMMON

3421 XUNLOCK
0<:83 A900 3422 LDA to ;SET UNLOCK
0<:85 8D0F13 3423 STA TEMP4

3424
0<:88 209E0E 3425 XLCOM JSR FNDCODE ; DECODE FILE NAME
0C8B 20211ilF 3426 JSR SFDIR ;FIND 1ST MATCH
0C8E 9003 3427 BCC XLC1 ;BR MATCH FOUND
0<:90 4CBB12 3428 JMP ERFNF ;BR NOT FOUND

3429
0<:93 AC0513 3430 XLC1 LDY CDIRD ;GET CURRENT DISPL
0<:96 B90114 3431 LDA FILDIR+DFDFL1,Y ;GET LOCK BYTE
0e99 29DF 3432 AND t$DF ;TURN OFF LOCK
0e9B IilD0F13 3433 ORA TEMP4 lOR IN LOCK/UNLOCK
0e9E 990114 3434 STA FILDIR+DFDFL1,Y ;SET NEW LOCK BYTE
0CA1 207110 3435 JSR WRTDIR ;GO WRITE

3436
0CA4 20310F 3437 JSR CSFDIR ;LOOK FOR NEXT MATCH
0CA7 90EA 3438 BCC XLC1 ;BR FOUND

77

AT~~RI DOS 2.0S

I!JCA9 4CEA12 3439 JMP FGREAT :ELSE DONE
344I!J
3441 TSTLOCK - TEST FILE LOCKED
3442
3443 TSTLOCK

I!JCAC ACI!J513 ·3444 LDY CDIRD :GET DIR DISPL
I!JCAF B9I!J114 3445 LDA FILDIR+DFDFLl,Y :LOAD LOCK BYTE
I!JCB2 292I!J 3446 AND tDFDLOC :MASK LOCK BIT
0CB4 D 1'1 I'll 3447 BNE TLF :BR IF LOCKED
I'ICB6 6I!J 3448 RTS

3449
I!JCB7 4CC1l2 3451'1 TLF JMP ERFLOCK

POIN'r

I'ICBA 3451 .PAGE "POINT"
3452
3453 XPOINT - POINT REQUEST
3454
3455 XPOINT

I!JCBA BD8513 3456 LDA FCBFLG,X :IF ARQ SECTORS
I!JCBD 3I!J41 3457 BMI PERRI : POINT INVALID
0CBF BD4DI'I3 3458 LDA ICAUX4, X :IF REQUEST IS NOT
0CC2 DD8A13 3459 CMP FCBCSN+l,X :SAME AS CURRENT
0CC5 DI'II'I8 3461'1 BNE XPI :THEN BR
I'ICC7 BD4CI'I3 3461 LDA ICAUX3,X
I'ICCA DD8913 3462 CMP FCBCSN,X
I'ICCD FI'IIE 3463 BEQ XP2 :ELSE NO NEED TO CHANGE

3464
I'ICCF BD8513 3465 XPI LDA FCBFLG,X :IF NOT MODIFIED
0CD2 FI'II'I8 3466 BEQ XPIA :BR
I'ICD4 2I!JF81'1F 3467 JSR WRCSIO : ELSE WRITE IT
0CD7 A91'11'1 3468 LDA tl'l
I'ICD9 9D8513 3469 STA FCBFLG,X
I'ICDC 3471'1 XPIA *
I'ICDC BD4DI'I3 3471 LDA ICAUX4,X
I'ICDF 9D8C13 3472 STA FCBLSN+l,X
I'ICE2 BD4CI'I3 3473 LDA ICAUX3,X
I'ICE5 9D8B13 3474 STA FCBLSN,X
I'ICE8 21'11711'1 3475 JSR RDNSO :READ REQ SECTOR
I'ICEB BI'II'IA 3476 BCS XPERR

3477
I'ICED BD4EI'I3 3478 XP2 LDA ICAUX5,X :TEST REQ DATA LEN
I'ICFI'I DD8613 3479 CMP FCBMLN,X :LESS THEN MAX
I'ICF3 91'1I!J5 3481'1 BCC XP3
I'ICF5 FI'I"'3 3481 BEQ XP3
I'ICF7 3482 XPERR *
I'ICF7 4CC312 3483 JMP ERRPDL :IF NOT THEN ERROR

3484
I'ICFA 9D8713 3485 XP3 STA FCBDLN,X :SET NEW DATA LEN
"'CFD 4CFI'I12 3486 JMP GREAT

3487
I'IDI'I'" 4CB912 3488 PERRI JMP ERRPOT

NOTE

I'IDI'I3 3489 .PAGE "NOTE"
349'"
3491 XNOTE - EXECUTE NOTE REQUEST
3492
3493 XNOTE

I'IDI'I3 BD8713 3494 LDA FCBDLN,X DATA LENGHT VALUE
"'DI'I6 9D4E"'3 3495 STA ICAUX5, X TO AUX 2
I'ID"'9 BD8913 3496 LDA FCBCSN,X CUR SEC NO (LO)
"'DOC 9D4C"'3 3497 STA ICAUX3,X TO AUX 3
I'ID"'F BD8A13 3498 LDA FCBCSN+l,X :CUR SEC NO (HI)

78

ATARI DOS 2.0S

00:.2 904003 3499 STA ICAUX4,X ;TO AUX 4
00:.5 4CF012 3500 JMP GREAT

FOHMAT

001B 3501 .PAGE "FORMAT"
3502
3503 XFORMAT - FORMAT A OISKETTE
3504
3505 XFORMAT

001B A54B 3506 LOA ZSBA+l ;MOVE VTOC BUF AOR
001A B00503 3507 STA DCBBUF+l ;TO DCB
00LD A547 350B LOA ZSBA
00LF BOl'l403 3509 STA DCBBUF
00.22 A921 3510 LOA tOCBCFO ; FORMAT
00.24 B00203 3511 STA DCBCMO ;TO DCB
00:27 A940 3512 LOA t$40 ;TELL SIO RECIEVING OATA
00.29 B00303 3513 STA DCBSTA
00.2C AEFE12 3514 LOX ORVTYP ;GET OR TYPE 12B OR 256
00.2F A931 3515 LOA t$31 ;BUS 1.0.
00n AC4602 3516 LOY OSKTIM ;GET FORMAT TIME OUT VALUE
0034 20B607 3517 JSR OSI02 ;GOTO LOCAL OISK HANOLER THEN

SIO
351B

00:17 1019 3519 BPL XF0 ;IF NO ERRORS CONT FORMATING
00:19 C090 3520 CPY t$90 ;ELSE CK FOR OEVICE DONE ERROR
00:lB 0012 3521 BNE XFERR ;NO, THEN ERROR EXIT

3522
00:10 3523 TSTFMT * ;ELSE CK FOR BAO SECTOR INFO
00:10 A000 3524 LOY to ;RETURNEO BY CONTROLLER
00:lF B147 3525 LOA (ZSBA), Y
0041 C9FF 3526 CMP t$FF
0043 0007 3527 BNE XFBAO ;BAO SECTORS RET ERR MSG
0045 CB 352B INY
0046 B147 3529 LOA (ZSBA),Y
I'IO·IB C9FF 3530 CMP t$FF
00·IA F003 3531 BEQ XFERR ;NOT BAO SEC ERR, REQ ERR EXIT
004C 4CB512 3532 XFBAO JMP EROBAO

3533
004F 4C0312 3534 XFERR JMP RETURN ;00 ERROR EXIT

3535
3536 XF0

0052 A900 3537 LOA to
0054 AB 353B TAY
0055 9145 3539 XFl STA (ZORVA),Y
0057 CB 3540 INY
005B 10FB 3541 BPL XFl

3542
005A A000 3543 LOY to ;SET
005C A902 3544 LOA t2 ;TYPE = 2
005E 9145 3545 STA (ZORVA),Y
0060 CB 3546 INY
0061 A9C3 3547 LOA t$C3 ;SET MSN ANO
0063 9145 354B STA (ZORVA) ,Y ;NSA=107=2C3
0065 CB 3549 INY
0066 CB 3550 INY
0067 9145 3551 STA (ZORVA), Y

FORMAT

0£:69 A902 3552 LOA t$02
0£:6B BB 3553 OEY
0£:6C 9145 3554 STA (ZORVA),Y
0£:6E CB 3555 INY
0£:6F CB 3556 INY
0[,70 9145 3557 STA (ZORVA),Y

79

AIARI DOS 2.0S

3558
eDn AeeA 3559 LDY tDVDSMP
eD7<1 A9FF 3561'1 LDA t$FF :SET SECTOR MAP TO
eD7E, 9145 3561 XF2 STA (ZDRVA),Y :ALL ONES
eD7E1 C8 3562 INY
eD79 ce64 3563 CPY tDVDSMP+ge
eD7E1 DeF9 3564 BNE XF2

3565
eD7[. AgeF 3566 LDA t$eF :DEALOCATE 1ST 4 SECTORS
eD7f' AeeA 3567 LDY tDVDSMP :FOR BOOT
eD81 9145 3568 STA (ZDRVA),Y

3569
eD8,: Ae37 3571'1 LDY tDVDSMP+45 : DEALLOCATE MIDDLE 9
eD8~, Agee 3571 LDA tel
eD8;' 9145 3572 STA (ZDRVA),Y : FOR
eD89 C8 3573 INY :VTOC AND FILE DIR
eD81'. A97F 3574 LDA t$7F
eD8C' 9145 3575 STA (ZDRVA), Y

3576
eD8E: 21'19511'9 3577 JSR WRTVTOC :WRITE THE VTOC

3578
eD91 Agel'l 3579 LDA tl'l :1'1 FILLE DIR SECTORS
I'ID9'· A8 3581'1 TAY
eD9~· 991'1114 3581 XF3 STA FILDIR,Y :USE FILE DIR BUFFER
eD9;' C8 3582 INY
eD9f: I1'1FA 3583 BPL XF3

3584
eD9J1. Age7 3585 LDA t7 :WRITE TO ALL 8 DIR SECTORS
eD9(8DI'I613 3586 STA CDIRS
eD9F' 21'17111'1 3587 XF4 JSR WRTDIR
I'IDA:; CEI'I613 3588 DEC CDIRS
eDA5 I1'1F8 3589 BPL XF4

3591'1
eDAi 21'11912 3591 JSR DEL DOS :SET NO DOS

3592
eDAI' 4CEA12 3593 JMP FGREAT : DONE

LIs'r DIRECTORY

eDAD 3594 . PAGE "LIST DIRECTORY"
3595
3596 LISTDIR - LIST THE DIRECTORY
3597 GDCHAR - GET NEXT DIR CHARACTER
3598 THE DIRECTORY IS LISTED VIA OPEN
3599 LIST DIRECTORY FUNCTION EACH DIR
361'11'1 ENTRY THAT MATCHES THE FILE SPEC
361'11 IS CONVERTED TO A PRINTABLE FORMAT
361'12 INTO A SECTOR BUFFER. THE GET BYTE
361'13 ENTRY IS USED TO GET THE PRINTABLE
361'14 CHARACTERS ONE AT A TIME. THE
361'15 LAST LINE PRINTED IS ALWAYS A
361'16 COUNT OF THE NUMBET OF SECTORS IN USE
361'17 AND THE NUMBER REMAINING AVAILABLE SECTORS
361'18
361'19 LISTDIR

eDAD Agee 3611'1 LDA tl'l
eDAJ~ 8DeF13 3611 STA TEMP4
I'IDB:! 2e21eF 3612 JSR SFDIR :SEARCH FOR A FILE NAME
eDB'; ge2C 3613 BCC LDENTI :BR IF FOUND
eDB'7 Be3e 3614 BCS LDCNT : B R IF NOT FOUND

3615
3616 GDCHAR

eDB'~ 2ceF13 3617 BIT TEMP4 :TEST FLAG
eDBC 31'153 3618 BMI LDDONE :BR IF ALL DONE

3619
eDBJ~ AceF13 3621'1 LDY TEMP4 :GET COUNT OF CHARS SENT
eDCI B147 3621 LDA (ZSBA), Y :GET NEXT CHAR

80

ATARI DOS 2.0S

0DC3 8D0813 3622 STA SVDBYT IN SVDBYT
0DC6 EE0F13 3623 INC TEMP4 INC COUNT
0DC9 C99B 3624 CMP tEOL TEST IF EOL DONE
0DCB D009 3625 BNE GDCRTN BR NOT EOL
0DCD C011 3626 CPY tl7 WAS THIS AN ENTRY
0DCF B008 3627 BCS LDENT BR IF IT WAS
0D))1 A980 3628 LDA t$80 ELSE INDICATE END
0D])3 8D0F13 3629 STA TEMP4 IN TEMP4

3630
0DI)6 4CF012 3631 GDCRTN JMP GREAT : DONE

3632
0D])9 A900 3633 LDENT LDA to : CLEAR CHAR COUNTER
0D))B 8D0F13 3634 STA TEMP4
0D~)E 20310F 3635 JSR CSFDIR :SEARCH FOR NEXT MATCH
0D:~1 B006 3636 BCS LDCNT :BR NO MORE MATCHES

3637 LDENTI
0D:~3 20210E 3638 JSR FDENT :FORMAT ENTRY
0DI~6 4CF012 3639 JMP GREAT : DONE

3640
0D]~9 208B10 3641 LDCNT JSR RDVTOC :READ VTOC
0D:~C A004 3642 LDY tDVDNSA+l :GET t SECTOR AVR
0D:~E B145 3643 LDA (ZDRVA), Y
0D:~0 48 3644 PHA

LIST DIRECTORY

0DFI 88 3645 DEY
0DF2 B145 3646 LDA (ZDRVA), Y
0DF4 AS 3647 TAY
0DF5 68 3648 PLA

3649
0DF6 20570E 3650 JSR CVDX :AND CONVERT

3651
0DF9 A003 3652 LDY t3 :SET EOL
0DFB A20C 3653 LDX tFSCML-l :PUT IN CUTE
0DFD BD140E 3654 MVFSCM LDA FSCM,X : MSG
0E00 9147 3655 STA (ZSBA), Y
0E02 C8 3656 INY
0E03 CA 3657 DEX
0E04 10F7 3658 BPL MVFSCM
0E06 20670E 3659 JSR CVDY

3660
0E09 A900 3661 LDA to SET CHAR CNT
0E0B 8D0F13 3662 STA TEMP4
0EI1IE 4CEA12 3663 JMP FGREAT

3664
3665 LDDONE

01!l1 4CF412 3666 JMP ERREOF :END OF FILE
3667

01!l4 53 3668 FSCM .BYTE "SROTCES EERF "
0El5 52
0El6 4F
0E:17 54
0E:18 43
0E:19 45
0E:IA 53
0E:IB 20
0E:IC 45
01:1D 45
0E:IE 52
0E:IF 46
0E:20 20
0110D 3669 FSCML *-FSCM
0E:21 35 .INCLUDE tEl
0E:21 40 .INCLUDE tD:ATFMS3.SRC

81

Al'ARI DOS 2.0S

LIs'r DIRECTORY

0E2l 4000 . PAGE
4001
4002 FORMAT DIR ENTRY INTO A SECTOR BUFFER
4003
4004 FDENT

0E2L AI'I00 4"'05 LDY to : START AT DISPL ZERO
0E23 A920 4006 LDA '$20 : START WITH A BLANK
0E25 9147 4007 STA (ZSBA). Y
I'IE27 AEI'I513 4008 LDX CDIRD
0E2A BD0114 4009 LDA FILDIR+DFDFL1.X
0E2D 2920 4010 AND .DFDLOC :BUT IF FILE LOCKED
0E21' F004 4011 BEQ LD1
0E31 A92A 4012 LDA .'* : CHANGE TO AST
0E3J 9147 4013 STA (ZSBAI.Y
0E3'; C8 4014 LD1 INY
0E36 A920 4015 LDA '$20 :FOLLOWED BY A BLANK
0E3B 9147 4016 STA (ZSBA).Y
0E3n C8 4017 INY

4018
0E3B BD0614 4019 LD2 LDA FILDIR+DFDPFN.X : MOVE THE 12 CHAR
0E31~ 9147 4020 STA (ZSBAI. Y :FILE NAME
0E41l EA 4021 INX
0E4:. C8 4022 INY
0E4:! C00D 4023 CPY tl3
0E44 90F5 4024 BCC LD2

4025
0E4(; A921'1 4026 LDA '$20 :FOLLOWED BY A BLANK
0E41l 9147 4027 STA (ZSBA). Y
0E4J, C8 4028 INY
0E4B 8C0F13 4029 STY TEMP4 ,SAVE INDEX = 15

4030
0E41: AE0513 4031 LDX CDIRD
0E51 BC0214 4032 LDY FILDIR+DFDCNT.X :SET A.Y
0E5'1 BD0314 4033 LDA FILDIR+DFDCNT+1.X :=SECTOR COUNT

4034
4035 CVDX

0E5~' A264 4036 LDX tl00 :CONVERT AND MOVE
0E59 207l1'IE 4037 JSR CVDIGIT ,100S DIGIT
0E5C A20A 4038 LDX tl0
0E5F: 20710E 4039 JSR CVDIGIT :10S DIGIT
0E6]. 98 4040 TYA
0E6;~ 208D0E 4041 JSR STDIGIT : IS DIGIT

4042
0E6~, A011 4043 LDY tl7 :THEN PUT OUT
0E6;' A99B 4044 CVDY LDA 'EOL :AND EOL
0E6~' 9147 4045 STA (ZSBA). Y
0E6E A000 4046 LDY '0
0E6D 8C0F13 4047 STY TEMP4 :SET CHAR CNT = 0
0E7e' 60 4048 RTS

4049
0E71 8E0E13 4050 CVDIGIT STX TEMP3 :SAVE DIGIT VALUE

LIS'! DIRECTORY

0E74 A2FF 4051 LDX '$FF
4052

0E76 8D0D13 4053 CVD1 STA TEMP2 ,SA VE CURR VALUE HI
0E79 8C0C13 4054 STY TEMPI :AND LOW
0E7C E8 41'155 INX , INC DIGIT COUNTER
0E7C 38 4056 SEC :SUBRTACT DIGIT VALUE
0E7E AOOC13 4057 LDA TEMPI :FROM CUR VALUE
0E81 ED0E13 4058 SBC TEMP3
0E84 A8 4059 TAY
0E85 AD0D13 41'160 LDA TEMP2
0E88 E900 4061 SBC '0

81

ATARI DOS 2.0S

"E8l~ B"EA 4"62 BCS CVD1 ;IF NOT GONE MINUS, DO AGAIN
4"63

"E8e 8A 4"64 TXA ;DIGIT TO ACU
"E81) "93" 4"65 STDIGIT ORA t$3" ;PLUS ASCII ZERO
"E8l' AC"F13 4"66 LDY TEMP4 ;GET OUTPUT INDEX
"E9:! 9147 4"67 STA (ZSBA), Y ;AND SET DIGIT
"E9,' EE"F13 4"68 INC TEMP4 ; INC OUTPUT INDEX
"E9} AD"D13 4"69 LDA TEMP2 ;LOAD VALUE HI
"E9A AC"C13 4"7" LDY TEMPI ;AND VALUE LO
"E9]) 6" 4"71 RTS

FILl!! NAME DECODE

"E91!!

"E9!!! BD44"3
"EA1 8543
"EA3 B['I45"3
"EA6 8544
"EAB A""2
"EAI\. B143
"EA:: 88
0EAD 3"58
"EAP C93A
"EB1 D"F7

"EB3 C8

"EB4 A2"B
"EB6 A92"

"EB8 9D5913
"EBB CA
"EBC l"FA

"EBE A2""
"EC" 8E"C13

"EC3 C8
"EC4 B143

4"72
4"73
4"74
4"75
4"76
4"77
4"78
4"79
4"8"
4"81
4"82
4"83
4"84
4"85
4"86
4"87
4"88
4"89
4"9"
4"91
4"92
4"93
4"94
4"95
4"96

4"97
4"98
4"99
41""
41"1
41"2
41"3
41"4
41"5
41"6
41"7
41"8
41"9
411"
4111
4112

.PAGE "FILE NAME DECODE"

FNDCODE - DECODE A FILE NAME

THE USER FILENAME IS POINTED TO BY
;ZBUFP, IT IS ON THE FORM P.X WHERE P
; IS THE PRIMARY FILE NAME (1 TO 8 CHARS)
; AND X IS THE EXTENDED FILE NAME
;(" TO 4 CHARS). THE PERIOD IS OPTIONAL

(IF NOT PRESENT, THEN NO EXTENSION).
THE DECODED FILENAME WILL BE 12 CHARS
IN LENGTH. THE P FIELD WILL BE
LEFT JUSTIFIED IN THE 1ST 8 BYTES.
THE X FIELD WILL BE LEFT JUSTIFIED IN
THE LAST 4 BYTES. BLANKS ARE USED
TO PAD THE FIELDS TO FULL SIZE.
IF THE USER SPECIFIED P OR X FILEDS
CONTAIN MORE THAN 8 OR 4 CHARS, THEN THE
EXTRA CHARS ARE IGNORED. THE ,*,
WILD CARD CHAR WILL CAUSE THE REST
OF THE FIELDS TO FILLED WITH THE
'?' WILD CARD CHAR. ANY NON-ALPHANUMERIC
CHAR TERMINATES THE FILENAME.

FNDCODE

LDA
STA
LDA
STA
LDY

FD"A LDA

FD"B

FNDCNX

DEY
BMI
CMP
BNE

INY

LDX
LDA

ICBAL,X
ZBUFP
ICBAH,X
ZBUFP+1
t2
(ZBUFP), Y

FNDERR .' , FD"A

tIl
t$2"

;FIND THE 'D'

;BR IF 256 CHARS SEEN

;CLEAR FILENAME TO BLANKS

4113 FD"
4114
4115
4116
4117
4118
4119
412"
4121 FD1
4122

STA
DEX
BPL

LDX
STX

INY
LDA

FNAME,X

FD"

til
EXTSW

;SET FNAME CHAR CNT TO "
;SET NOT IN EXTENSION

; INC ZBUFP INDEX
(ZBUFP),Y ;GET BUF CHAR

83

AT~~RI DOS 2.0S

FILE NAME DECODE

I'IEC6 C92A
I'IEC8 DI'II'IB

I'IECA A93F
I'IECC 21'11'1AI'IF
I'IECF 91'1F9
I'IEDl l1'1FI'I
I'IED3 31'12E

I'IED5 C92E
I'IED7 DI'II'IC
I'IED9 2CI'IC13
I'IEDC 31'125
I'IEDE A21'18
I'IEEI'I 6EI'IC13
I'IEE3 91'1DE

I'IEE5 C93F
I'IEE7 FI'I14

I'IEE9 C941
I'IEEB 91'11'14
I'IEED C95B
I'IEEF 91'11'1C

I'IEFI EI'II'II'I
I'IEF3 FI'I12

I'IEF5 C931'1
I'IEF7 91'11'1A
I'IEF9 C93A
I'IEFB BI'II'I6

I'IEFD 21'11'1AI'IF
I'IFI'II'I 4CC31'1E

I'IFI'I3 AEI'I113
I'IFI'I6 61'1

I'IFI'I7 4CC512

4123
4124
4125
4126
4127
4128
4129
4131'1
4131
4132
4133
4134
4135
4136
4137
4138
4139
4141'1
4141
4142
4143
4144
4145
4146
4147
414fl
4149
4151'1
4151
4152
4153
4154
4155
4156
4157
4158
4159
4161'1
4161
4162
4163

CMP
BNE

FD2 LDA
JSR
BCC
BPL
BMI

FD3 CMP
BNE
BIT
BMI
LDX
ROR
BCC

FD4 CMP
BEQ

CMP
BCC
CMP
BCC

FD5 CPX
BEQ

CMP
BCC
CMP
BCS

FD6 JSR
JMP

FDEND LDX
RTS

FNDERR JMP

t'·
FD3

t'?
FDSCHAR
FD2
FDI
FDEND

t' .
FD4
EXTSW
FDEND
t8
EXTSW
FDI

t'?
FD6

t'A
FD5
t$5B
FD6

tl'l
FNDERR

t$31'1
FDEND
t$3A
FDEND

FDSCHAR
FDI

CURFCB

ERRFN

:TEST FOR WILD CARDS
:BR NOT WILD CARD

:LOAD ? WILD CARD
:GO STORE IT
:BR IF PORX NOT FULL
: BR IF AT START OF X
:BR IF AT X END

:WAS CHAR FIELD SEPERATOR
:BR IF NOT
:WAS THERE ALREADY 1 CHAR
:BR IF WAS END
:ADV FNAME INDEX TO XFIELD
:SET EXTSW - MINUS
:CONT WITH NEXT CHAR

WAS IT WILD CARD
:BR IF WILD CARD

: I S CHAR ALPHA
:BR NOT ALPHA
:TEXT HI ALPHA
: BR IF NOT APLHA

:IF FIRST CHAR NOT
:ALPHA THEN ERROR

: IS CHAR NUMERIC
:BR NOT NUMERIC (END OF NAME)
: TEST NUMERIC HI
: BR NO NUMBER

:STORE THE CHAR
:AND CONTINUE WITH NEXT

:RESTORE X REG

:INDICATE FILENAME ERROR

FMS- 128/256 BYTE SECTOR (2.I'IS)
FILE NAME DECODE

I'IFI'IA EI'II'I8
I'IFI'IC 91'11'1D
I'IFI'IE F"'I'I5

I'IF10 E00C
I'IF12 91'11'17

84

4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4181'1
4181
4182
4183

• PAGE

FDSCHAR - STORE FILENAME CHAR

ON ENTRY
A = CHAR
X = NEXT FN POSITION

ON EXIT
CARRY - SET IF FIELD FULL
MINUS - IF START OF EXECUTION
PLUS - IF END OF EXECUTION

FDSCHAR
CPX
BCC
BEQ

CPX
BCC

t8
FDSC2
FDSCI

tl2
FDSC2

:AT EXECUTION
:BR IF NOT
:BR IF 1ST CHAR OF

:AT END OF EXIT
:BR NOT AT END

0F14 60

0F15 2C0C13
0F18 3001
0F1A 60

0F1B 9D5913
0F1E E8
"F1F 18
"F20 60

4184
4185
4186 FDSC1
4187
4188
4189
4190 FDSC2
4191
4192
4193

RTS

BIT
BMI
RTS

STA
INX
CLC
RTS

EXTSW
FDSC2

FNAME,X

ATARI DOS 2.0S

:DO NOT STORE CHAR UNLESS
: PERIOD WAS SEEN

:SET CHAR INTO NAME
:INC TO NEXT CHAR

DIRECTORY SEARCH

0F21

0F21 A9FF
0F 23 8D0213
0F26 8D0613
0F29 8D0713
0F2C A970
0F2E 8D0513

0F31 EE0713
0F34 18
0F35 AD0513
0F'38 6910
0F'3A 1011

0F3C EE0613
0F3F A908
0F41 CD0613
0F44 90"2
0F46 F048

0F'48 206E10
I'IF'4B A900

0F'4D 8D0513
0F'50 A8

4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218

4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232

4233
4234
4235
4236
4237
4238

.PAGE "DIRECTORY SEARCH"

SFDIR - SEARCH FILE DIRECTORY
CSFDIR - FILE DIRECTORY SEARCH

THE FILE DIRECTORY IS SEARCHED FOR THE
FILENAME IN FNAME. THE SEARCH STARTS
AT THE CENTRAL SECTOR+1 AND WILL CONTINUE
FOR UP TO A TOTAL OF 8 SECTORS. WHEN
TESTING FOR FNAME MATCH, '7' FNAME
CHARS WILL ALWAYS MATCH THE CORESPONDING
DIR FILENAME CHAR. IF A MATCH IS FOUND
CDIRS CONTAINS THE RELATIVE DIRECTORY SECTOR
NUMBER (0-7) AND CDIRD (AND THE Y REG)
CONTAINS THE DISPLACEMENT OF THE ENTRY.
AFTER A MATCH HAS BEEN FOUND, THE DIRECTORY CAN
BE SEARCHED FOR ANOTHER MATCH VIA THE CSFDIR
ENTRY POINT. IF A MATCH HAS NOT BEEN FOUND
THEN DHOLES AND DHOLED WILL POINT TO A
DIRECTORY HOLE THAT CAN BE USED.
IF DHOLED = FF THEN THE DIRECTORY IS FULL.
THE CARRY IS RETURNED CLEAR IF FILE FOUND,
SET IF FILE NOT FOUND.

SFDIR

CSFDIR

LDA t$FF
STA DHOLES
STA CDIRS
STA SFNUM
LDA U70
STA CDIRD

INC SFNUM
CLC
LDA CDIRD
ADC tDFDELN
BPL SFD2

ELSE AT END OF DIR

INC
LDA
CMP
BCC
BEQ

CDIRS
t8
CDIRS
SFD1
SDRTN

:INIT TO -1
:DIR HOLE SECTOR
: CUR DIR SECTOR
:FILE NUMBER
:INIT TO -16 (-ENTRY LENGTH)
:CUR DIR DISPL

:CDIRD=CDIRD+ENTRY LEN

:IF RESULT <128 THEN BR
SECT

:INC TO NEXT DIR SECTOR
:TEST END OF DIR

:BR NOT END

4239 SFD1
4240

JSR
LDA

RDDIR
to

:READ THE NEXT DIR RECORD
:SET DIR DISPL = 0

4241
4242 SFD2
4243
4244

STA
TAY

CDIRD :SET NEW DIR DISPL
:PUT DISPL IN Y AS INDEX

85

A l'ARI DOS 2.0S

DIRHCTORY SEARCH

eF5:. Bge114 4245
eF54 FelD 4246

eF5Ei 31'11B 4247
eF50 291'11 4248
eF5}, DeD5 4249

4251'1
4251

eF5C A2ee 4252
eF51: BD5913 4253
eF61 C93F 4254
eF63 Fees 4255
eF6S Dge614 4256

eF6E: DeC7
eF6}!. E8
eF6E; C8
eF6C' EeeB
I'IF6E: DeEE

eF7~1 18
eF71 ge1D

eF7; ADe213
eF7f. 11'112

eF7E: ADe613
eF7E: 8De213
eF7E: ADe513
eF81 8De313
eF84· ADe713
eF8i 8D"'413

eF8}!. Bge114
eF8ro 3eA2

eF8F 38

4257
4258
4259
4261'1
4261
4262
4263
4264
4265
4266
4267
4268
4269
4271'1
4271
4272
4273
4274
4275
4276
4277
4278
4279
4281'1
4281
4282
4283
4284

LDA
BEQ

BMI
AND
BNE

FILDIR+DFDFL1,Y :GET FLAG 1
SFDSH :BR IF UNUSED (END OF USED

ENTRIES)
SFDSH :BR IF DELETED
tDFDOUT :IF OPEN OUTPUT
CSFDIR :DON'T FIND IT

ENTRY IN USE, TEST FOR MATCH
LDX te :TEST MATCH ON 12 CHARS

SFD3 LDA FNAME,X :FILE NAME CHAR

SFD4

SFDSH

ELSE

CMP t'? : IS FNC WILD CARD
BEQ SFD4 :THEN IT MATCHES
CMP FILDIR+DFDPFN,Y :ELSE IT MUST MATCH FOR

REAC
BNE CSFDIR
INX
INY
CPX tIl
BNE SFD3

CLC
BCC SDRT~I

LDA DHOLES
BPL SFDSH1

LDA CDIRS
STA DHOLES
LDA CDIRD
STA DHOLED
LDA SFNUM
STA DHFNUM

:IF NOT MATCH THEN TRY NEXT
:INC CHAR CNT

:TEST ALL
:AND CONTINUE CHECK

:WE HAVE A MATCH

:IF DHOLES NOT MINUS
:THEN ALREADY HAVE A GOOD HOLE

:MOVE CURR DISPL SECTOR
:AND CURRENT DIR DISPL
:TO HOLE SECTOR AND DISPL

:SAVE HOLE
:FILE NUMBER

SFDSH1 LDA FILDIR+DFDFL1,Y :IF HOLE WAS A DELETED
BMI CSFDIR :ENTRY THEN CONTINUE

ELSE WE ARE AT END OF

SEC :USED ENTRIES THUS FILE NOT
FOUND

eFge AEel13 4285 SDRTN LDX CURFCB :RESTORE X REG
eF93 61'1 4286 RTS

WRITE DATA SECTOR

eF94

eF94 BD8513
eF97 3eeF

eF99 eA
eF9A. 11'11'19

eF9C eA
eF9[9D8513
eFAe 2eF8eF
eFA3 31'124
eFA5 4ceFle

86

4287
4288
4289
4291'1
4291
4292
4293
4294
4295
4296
4297
4298
4299
431'11'1
431'11
431'12
4303

.PAGE "WRITE DATA SECTOR"

WRTNXS - WRITE NEXT SECTOR

WRTNXS

WRU1

LDA FCBFLG,X :IF ACQUIRING SECTORS
BMI WRTN1 :THEN NOT UPDATE

ASL A :IF SECTOR NOT MODIFIED
BPL WRU1 :THEN DON'T IT

ASL
STA
JSR
BMI
JMP

A
FCBFLG,X
WRCSIO
WRNERR
RDNXTS

TURN OFF FLAG BITS
WRITE CURRENT SECTOR
BR IF BAD I/O
ELSE READ NEXT SECTOR

ATARI DOS 2.0S

"FAil 2""611 43"4 WRTN1 JSR GETSECTOR :GET A NEW SECTOR
43"5

"FAil BD8713 43"6 WRTLSEC LDA FCBDLN,X :GET DATA LEN
"FAg ACFB12 43"7 WRTLS1 LDY DRVLBT : INTO LAST BYTE
"FBI 9147 43"8 STA (ZSBA), Y :OF SECTOR

43"9
"FB:! BD8C13 431" WRTN2 LDA FCBLSN+1,X :MOVE LINK SECTOR
"FBt; 1D8113 4311 ORA FCBFNO, X :PLUS FILE NUM
"FB'! ACF812 4312 LDY DRVMDL :TO BYTES 126,127
"FBe 9147 4313 STA (ZSBA), Y :OF SECTOR BUFF
"FBI~ C8 4314 INY
"FBI· BD8B13 4315 LDA FCBLSN,X
"FC:2 9147 4316 STA (ZSBA), Y

4317
"FC4 2"F8"F 4318 JSR WRCSIO :WRITE SECTOR
"FC"? 1"11 4319 BPL WRTN5 :BR NOT ERROR

432"
"FC9 AD"3"3 4321 WRNERR LDA DCBSTA :SAVE ERROR STATUS
"FCC 8D"F13 4322 STA TEMP4
"FCI? A9"" 4323 LDA t" :CLOSE FILE
"FDL 9D8213 4324 STA FCBOTC, X
"FD4 AD"F13 4325 LDA TEMP4 :RECOVER ERROR CODE
"FD"? 4CD312 4326 JMP RETURN

4327
4328 WRTN5

"FDA FE8F13 4329 INC FCBCNT,X :INC SECTOR CNT
"FD:) D""3 433" BNE WRTN6
"FD:? FE91H3 4331 INC FCBCNT+1,X

4332 WRTN6
"FE2 2""21" 4333 JSR MVLSN :LINK TO CUR
"FES A9"" 4334 LDA t"
"FE7 9D8B13 4335 STA FCBLSN,X :LINK = "
"FE 9D8C13 4336 STA FCBLSN+1,X
"FED 9D8713 4337 STA FCBDLN,X :DLN = "

WRI'rE DATA SECTOR

"FFI~ ADF812 4338 LDA DRVMDL
"FF3 9D8613 4339 STA FCBMLN, X

434" WRNRTS
"FF5 18 4341 CLC
"FF7 6" 4342 RTS

4343
"FF9 38 4344 WRCSIO SEC :WRITE CUR SECTOR
"FF9 BD8A13 4345 RWCSIO LDA FCBCSN+1,X
"FF::: BC8913 4346 LDY FCBCSN,X
I'IFFP 4CF711 4347 JMP DSIO

4348
1""2 BDBB13 4349 MVLSN LDA FCBLSN, X : MOVE LINK
11'1"5 9D8913 435" STA FCBCSN,X
1"1'18 BD8C13 4351 LDA FCBLSN+1,X
1""8 9D8A13 4352 STA FCBCSN+1,X
l"I'lE 6" 4353 RTS

4354
l""P 45 . INCLUDE tEl
l""F 5" . INCLUDE tD:ATFMS4.SRC

RE~.D DATA SECTOR

1"21F 5""" .PAGE "READ DATA SECTOR"
5""1
5""2 RDNXTS - READ NEXT SECTOR
5""3 :
5""4 RDNXTS

l"PIF BD8513 5""5 LDA FCBFLG,X :IF NOT UPD MODE
1"12 F""3 5""6 BEO RDNSO :BR

87

11'114 4C941'1F 51'11'17 JMP WRTNXS :ELSE WRITE FIRST
11'117 51'11'18 RDNSO *
11'117 BD8B13 51'11'19 LDA FCBLSN,X :IF LSN NOT
11'11A ID8C13 51'111'1 ORA FCBLSN+l,X :ZERO
11'11D DI'II'I2 51'111 BNE RDNSI :BR
11'11F 38 51'112 SEC :ELSE EOF
11'121'1 61'1 51'113 RTS
11'121 21'11'1211'1 51'114 RDNSI JSR MVLSN :MOVE LINK TO CURRENT
11'124 18 51'115 CLC : READ
11'125 2 I'IF9 I'IF 51'116 JSR RWCSIO :CURRENT SECTOR
11'128 31'135 51'117 BMI RDIOER :BR IF OK READ

5 l.'Il 8
51'119 ELSE GOTO I/O ERROR
51'121'1

11'12A ACF812 51'121 LDY DRVMDL
11'12D B147 51'122 LDA (ZSBA). Y :TEST FOR SAME
Hl2F 29FC 51'123 AND t$FC :FILE NO
11'131 DD8113 51'124 CMP FCBFNO,X
11'134 DI'I2C 51'125 BNE RDFNMM :IF NOT THEN ERROR

51'126
11'136 B147 51'127 LDA (ZSBA). Y :MOVE LINK SECTOR
11'138 291'13 51'128 AND t$I'I3
1 1'1 3A 9D8C13 51'129 STA FCBLSN+l,X
11'13D C8 51'131'1 INY
11'13E B147 51'131 LDA (ZSBA), Y
11'141'1 9D8B13 5932 STA FCBLSN,X

51'133
11'143 C8 51'134 INY :INC TO LEN BYTE
11'144 B147 51'135 LDA (ZSBAl. Y :GET LEN BYTE
11'146 48 51'136 PHA :SAVE IT
11'147 BD8413 51'137 LDA FCBSLT, X :GET SECTOR LEN TYPE
11'14A DI'II'I8 51'138 BNE RDNS3 : BR IF NEW TYPE

51'139
11'14C 68 51'141'1 PLA :GET LEN
11'14D 31'11'12 51'141 BMI RDNS2 :BR IF OLD SHORT SECTOR
11'14F A97D 51'142 LDA tl25 :ELSE SET FULL SECTOR
11'151 297F 51'143 RDNS2 AND t$7F :TURN OFF MSB
11'153 48 51'144 PHA :BALANCE STACK

51'145
11'154 68 51'146 RDNS3 PLA
11'155 9D8613 51'147 STA FCBMLN,X :SET MAX LEN

51'148
11'158 A91'11'1 51'149 LDA tl'l :SET CUR DATA LEN 1'1
11'15A 9D8713 51'151'1 STA FCBDLN,X

READ DATA SECTOR

11'15D 18 51'151 CLC
11'15E 61'1 51'152 RTS
11'15F 21'1E512 51'153 RDIOER JSR ERRIO :1/0 ERROR
11'162 51'154 RDFNMM = * :FlLE NUMBER MISMATCH
11'162 BD42 1'13 51'155 LDA ICCOM,X
11'165 C921 51'156 CMP t$21 :WAS THIS DELETE
11'167 FI'II'I3 51'157 BEQ RDDELE :BR IF DELETE
11'169 21'1C712 51'158 JSR ERFNMM :BR NOT DELETE
11'16C 38 51'159 RDDELE SEC : INDICATE EOF TO DELETE
11'16D 61'1 51'161'1 RTS

51'161

READ/WRITE DIR

11'16E 51'162 .PAGE "READ/WRITE DIR"
51'163
51'164 RDDIR/WRDIR READ/WRITE DIRECTORY
51'165

11'16E 18 51'166 RDDIR CLC :SET READ

88

AlARI DOS 2.05

l1'1f,F 91'11'11 51'167 BCC DIRIO
51'168

11'171 38 51'169 WRTDIR SEC ;SET WRITE
51'171'1

11'1i'2 1'18 51'171 DIRIO PHP ;SAVE READ WRITE
11'1i3 A914 51'172 LDA tFILDIR/256 ;MOVE BUF AD DR
11'175 8DI'I51'13 51'173 STA DCBBUF+l ;TO DCB
11'178 A91'11 51'174 LDA tFILDIR&255
l1'1iA BD~41'13 51'175 STA DCB~UF

51'176
11'17D 18 51'177 CLC
l1'1i'E ADI'I613 51'178 LDA CDIRS ;CDIRS+
l1'1Ell 6969 51'179 ADC t$69 ;«41'1*18)/2)+1
11'1E13 A8 51'181'1 TAY ;INTO A.Y
1 1'1 El4 A91'11 51'181 LDA U ; IS DIR SECTOR NUMBER
11'1E16 691'11'1 51'182 ADC tl'l

51'183
11'1E18 4CABl1'1 51'184 JMP DSYSIO ;GO DO SYSTEM I/O

51'185

RElm/WRITE VTOC

1 1'1 liB 51'186 .PAGE "READ/WRITE VTOC"
51'187
51'18S RDVTOC/WRCTOC - READ/WRITE VTOC
51'189
5~91'1 RDVTOC

l1'1I1B A 1'11'1 5 51'191 LDY tDVOWRQ ; IF WRITE REQD
l1'1I1D B145 51'192 LDA (ZDRVA). Y
l1'1I1F Fl'll'll 51'193 BEQ RDVGO
11'1'11 61'1 51'194 RTS
11'1'12 18 51'195 RDVGO CLC ;SET READ
11'1!13 91'11'17 51'196 BCC VTIO

51'197
51'198 WRTVTOC

11'1!15 A 1'1 1'15 51'199 WRVTOC LDY tDVDWRQ ;TURN OFF
11'1'17 A 91'1 1'1 511'11'1 LDA tl'l ;WRITE READ
11'1'19 9145 511'11 STA (ZDRVAI. Y
l1'1'1B 38 511'12 SEC

511'13
511'14

l1'1!IC 1'18 511'15 VTIO PHP ;SAVE R/W
11'19D A546 511'16 LDA ZDRVA+l ;MOVE BUF ADDR
l1'1'1F 8 DI'I 51'1 3 511'17 STA DCBBUF+l ;TO DCB
11'11,2 A545 511'18 LDA ZDRVA
11'11.4 8 DI'I 41'13 511'19 STA DCBBUF

5111'1
11'11,7 A068 5111 LDY '$68 ;READ SECTOR
101.9 A 91'1 1 5112 LDA U ; (41'1*18)/2

5113
5114 DSYSIO

l1'1I,B 28 5115 PLP
5116 DSYSIA

l1'1I,C AEFE12 5117 LDX DRVTYP ;LOAD DRIVE TYPE
l1'1I,F 21'16CI'I7 5118 JSR BSIO ;GO DO I/O
1 1'1 II 2 31'11'11 5119 BMI DSIOER ;BR IF ERROR
1 1'1 II 4 61'1 5121'1 RTS ; RETURN

5121
5122

1 I'IEI 5 C983 5123 DSIOER CMP tDCBDER ;WAS IT DATA ERROR
11'1E17 FI'II'I3 5124 BEQ DEAD ;BR IF WAS
11'1E19 4CE512 5125 JMP ERRIO ;ELSE USER PROBLEM

5126
l1'1E1C 4CC912 5127 DEAD JMP ERRSYS ;FATAL ERROR

5128
5129 OPEN VTOC
5131'1

89

ATARI DOS 2.05

5131 OPVTOC
1eBP 2e8B1e 5132 JSR RDVTOC :READ IT
1eC2 4C951e 5133 JMP WRTVTOC :THEN WRITE IT

5134
5135 INSURES NOT PROTECTED
5136

FRlm SECTOR

1eC!' 5137 .PAGE "FREE SECTOR"
5138 1
5139 FRESECT - FREE CURRENT SECTOR
514e
5141 FRESECT

H!lC!' BD8913 5142 LDA FCBCSN,X
UICtI 1D8A13 5143 ORA FCBCSN+1,X
1eCII Fe38 5144 BEQ FSRTS
lOCI) Agee 5145 LDA .e
lOCI' Aee3 5146 LDY .3 :DIVIDE SECTOR'
1eD:_ 5E8A13 5147 FS1 LSR FCBCSN+1,X :BY 3 TO GET BYTE NO
1eD4 7E8913 5148 ROR FCBCSN,X :WITH REM IN ACU
1eD-.' 6A 5149 ROR A
1eDII 88 515e DEY
1eD!1 DeF6 5151 BNE FS1

5152
1eDH Aee5 5153 LDY .5
1eDn 6A 5154 FS2 ROR A :TO FOR BYT BIT NO
1eDI: 88 5155 DEY
1eDI' DeFC 5156 liNE FS2

5157
leE] A8 5158 TAY :BIT NO (e-7) INTO Y
leE:! Agee 5159 LDA .e
1eE4 ~8 516e SEC :SHIFT IN A BIT
leE!; 6A 5161 FS3 ROR A :TO PROPER LOCATION
1eEEi 88 5162 DEY
leE'.' 1eFC 5163 BPL FS3
1eE9 48 5164 PHA :SAVE MASK
leE]. BD8913 5165 LDA FCBCSN,X :GET BYTE NO
1eED 6geA 5166 ADC .DVDSMP :ADD OFFSET TO SMAP
leE}' A8 5167 TAY :RESULT IS VTOC INDEX

5168
1eF~1 68 5169 PLA :GET BIT MASK
1eF] 1145 517e ORA (ZDRVA l. Y :OF BIT TO BIT MAP
1eF,: 9145 5171 STA (ZDRVA),Y :AND SET RESULTS

5172
1eF~; Aee3 5173 LDY IDVDNSA :INC NO OF SECTORS AVAIL
1eF;' B145 5174 LDA (ZDRVA),Y
1eF9 18 5175 CLC
1eFl, 6ge1 5176 ADC U
1eFC 9145 5177 STA (ZDRVA) ,Y
1eFE C8 5178 INY
1eFP' B145 5179 LDA (ZDRVAl. Y
11e] 6gee 518e ADC Ie
11e:; 9145 5181 STA (ZDRVA) ,Y

5182
11e~ 5183 FSRTS
11e~ 6" 5184 RTS

5185

GET SECTOR

111116 5186 . PAGE "GET SECTOR"
5187
5188 GET SECTOR - GET A FREE SECTOR FOR
5189 USE IN FCB AT X REG. THE SECTOR
51ge NUMBER IS PLACED IN FCBLSN

90

ATARI DOS 2.05

5191
5192 THE SEARCH FOR A FREE SECTOR STARTS
5193 AT THE DVDSMP BYTE. SECTORS ARE
5194 NUMBERED SEQUENTIALLY FROM ZERO TO
5195 MAXSM WITH THE LEFT BIT OF THE DVDSMP
5196 BEING WITH ZERO.
5197
5198 GETSECTOR

110E, A009 5199 LDY tDVDSMP-l ;SET Y TO START MAP-l
5200

110EI C8 5201 GSI INY ;INC SMAP INDEX
110~1 C064 5202 CPY ,90+DVDSMP ;AT END OF MAP?
110B B054 5203 BCS GSERR ;BR IF AT END
110D B145 5204 LDA (ZDRVA).Y ;GET A MAP BYTE
1101' F0F7 5205 BEQ GSI ;BR NO FREE SECTOR IN BYTE

5206
1111 8C0C13 5207 STY TEMPI ;SAVE MAP INDEX
Ill', 48 5208 PHA ;DEC NO OF SECTORS AVAIL
IllS 38 5209 SEC
lll1i A003 5210 LDY IDVDNSA
11111 B145 5211 LDA (ZDRVA l. Y
Ill}, E901 5212 SBC tl
111<: 9145 5213 STA (ZDRVA) .Y
1111: C8 5214 INY
1111' B145 5215 LDA (ZDRVA l. Y
112:. E900 5216 SBC 10
112:1 9145 5217 STA (ZDRVA) .Y

5218
112S C8 5219 INY ;SET READ REQD
1121; A9FF 5220 LDA I$FF
112!! 9145 5221 STA (ZDRVAl. Y

5222
112), 68 5223 PLA
11211 A0FF 5224 LDY t$FF ;SET BIT COUNTER =-1

5225
1121) C8 5226 GS2 INY ;SHIFT MAP BYTE
112H 0A 5227 ASL A ;UNTIL A FREE SECTOR
1121' 90FC 5228 BCC GS2 ; FOUND
1131 8C0D13 5229 STY TEMP2 ;SAVE BIT NUMBER
113·l 4A 5230 GS3 LSR A ;AND SHIFT BYTE
113'; 88 5231 DEY ;BACKS TO ITS ORIGINAL
1136 10FC 5232 BPL GS3 ; POSITION AND PUT IT
113:3 AC0C13 5233 LDY TEMPI ;BACK INTO THE MAP
11313 9145 5234 STA (ZDRVA). Y

5235
5236

GET SECTOR

1131) 38 5237 SEC ;SECTOR NAP BYTE
1131: AD0C13 5238 LDA TEMPI ;=DISPL-DVDSMP
114]. E90A 5239 SBC IDVDSMP

5240
114:1 A000 5241 LDY 10
114!i 8C0C13 5242 STY TEMPI ;CLEAR SECT NO HI

5243
114!l 0A 5244 GS4 ASL A ;MULT REL SECTOR MAP
1149 2E0C13 5245 ROL TEMPI
114<: C8 5246 INY
1141) C003 5247 CPY '3
1141' 90F7 5248 BCC GS4

5249
115:~ 18 5250 CLC
115:! 6D0D13 5251 ADC TEMP2 ADD BIT NO TO
115!; 9D8B13 5252 STA FCBLSN.X SECTOR I
115!! AD0C13 5253 LDA TEMPI AND PUT INTO
115!! 6900 5254 ADC 10 FCBLSN

91

ATARI DOS 2.05

11!;D 9D8C13 5255 STA FCBLSN+l.X
5256

IHi0 60 5257 kTS
5258

llf;l 4CCB12 5259 GSERR JMP ERRNSA ,NO SECTOR AVAIL
5260

SE'ruP ROUTINE

11'54 5261 .PAGE "SETUP ROUTINE"
5262
5263 SETUP - A ROUTINE USED FOR ALL COMMANDS
5264 TO SET UP FMS CONTROLL CELLS
5265 TO ACCESS A PARTICULAR FILE.
5266
5267 SETUP

11'54 A99F 5268 LDA t$9F ,INIT ERROR CODE
11,56 8549 5269 STA ERRNO ,TO ZERO
11<58 8E0113 5270 STX CURFCB ,SAVE FCB

5271
116B BA 5272 TSX
116C E8 5273 INX
116D E8 5274 INX
116E 8E0013 5275 STX ENTSTK

5276
lIn AE0113 5277 LDX CURFCB ,GET CURRENT FCB
1l'14 A421 5278 LDY ICDNOZ ,MOVE DRIVE NO
1l'16 8C0103 5279 STY DCBDRV ,TO DCB
1l'19 88 5280 DEY ,DEC FOR ACCESS TO TABLES
ll'1A B92913 5281 LDA DBUFAL.Y ,MOVE WRITE BUFFER
11'1D 8545 5282 STA ZDRVA ,ADD TO ZERO PAGE PTR
ll'1F B93113 5283 LDA DBUFAH.Y
11132 8546 5284 STA ZDRVA+l

5285
11114 B91113 5286 LDA DRVTBL.Y ,GET DRIVE TYPE
11117 F052 5287 BEQ DERRI ,BR IF NOT EXISTS
11119 8DFE12 5288 STA DRVTYP ,SAVE TYPE

5289
1113C A8 5290 TAY ,MOVE MAX DATA LEN
I1IlD B9FB12 5291 LDA DRVMDL. Y ,AND LAST SECTOR BYTE
11'10 8DF812 5292 STA DRVMDL ,DISPL TO LAST OF
11'l3 B9FB12 5293 LDA DRVLRT.Y ,TABLES
1196 8DFB12 5294 STA DRVLBT

5295
1199 BC8813 5296 LDY FCBBUF.X ,GET SECTOR BUF t
ll'lC 88 5297 DEY ,DEC TO ACCESS TBL
I1'lD 1031 5298 BPL SSBA ,BR IF ONE IS ALLOCATED

5299
11'lF A000 5300 LDY to ,IF NON ALLOCATED
11)\1 B91913 5301 GSBI LDA SECTBL,Y ,TRY TO FIND ONE
11)\4 F008 5302 BEQ GSB4 ,BR ONE FOUND
11)\6 C8 5303 GSB2 INY ,DEC TRY COUNT
I1l\7 C010 5304 CPY U6
I1l\9 90F6 5305 BCC GSBI ,BR MORE TO TRY

5306
I111B 4CCDl2 5307 GSB3 JMP ERRNSB ,NO SECTOR BUFFERS AVAIL

5308
I1l\E ADFE12 5309 GSB4 LDA DRVTYP FOUND ONE IF 256 BYTES
llBl 4A 5310 LSR A DRIVE NEEDED TO CONT
llB2 B010 5311 BCS GSB5 BR NOT 256 BYTES

SE'rup ROUTINE

1134 C8 5312 INY ELSE TRY NEXT CONTIG
11!~5 C010 5313 CPY #16 TEST END OF BUFFERS
llB7 B0F2 5314 BCS GSB3 AND BR IF NO MORE
IlB9 B91913 5315 LDA SECTBL.Y ELSE SEE IF ITS THREE

92

ATARI DOS 2.05

11BC' 0l'lE8 5316 BNE GSB2 :BR NOT FREE
11 BE: 88 5317 DEY

5318
11BE' A981'l 5319 LOA '$81'l :ALLOCATE SECOND OF 2
11C] 991A13 5321'l STA SECTBL+l,Y

5321
11C'~ A981'l 5322 GSB5 LOA '$81'l :ALLOCATE FIRST OR ONLY
11C6 991913 5323 STA SECTBL,Y
11C" 98 5324 TYA
11CII 908813 5325 STA FCBBUF,X :PUT BUF NO INTO FCB
11Cll FE8813 5326 INC FCBBUF,X : INC BUF NO SO NOT ZERO

5327
110n B93913 5328 SSBA LOA SABUFL,Y :MOVE BUFFER AD DR
110:1 8547 5329 STA ZSBA :TO ZERO PAGE PTR
lID'; B94913 5331'l LOA SABUFH,Y
110B 8548 5331 STA ZSBA+l

5332
5333

1l01~ 61'l 5334 RTS
5335

1l0B 4CCF12 5336 OERRI JMP ERRONO : BAD DRIVE NO

SETUP ROUTINE

1101~ 5337 . PAGE
5338
5339 FREE SECTOR BUFFERS
5341'l

1l0E 5341 FRESBUF = *
110E BC8813 5342 LOY FCBBUF,X :GET BUF NO
11El FI'l13 5343 BEQ FSBR :BR IF NONE
11E3 88 5344 DEY :OEC FOR TBL ACCESS
11E4 A91'l1'l 5345 LDA ,I'l :FREE
11E6 90R813 5346 STA FCBBUF,X : IN FCR
11E9 991913 5347 STA SECTBL,Y :ANO TABLE
11Ee AOFE12 5348 LOA ORVTYP :IF 128 BYTES
11EF 4A 5349 LSR A :ORIVE
llFI'l BI'l1'l4 5351'l BCS FSBR :FREE ONLY ONE
11F2 4A 5351 LSR A :ELSE
llF3 991A13 5352 STA SECTBL+l,Y :FREE 2
llF6 61'l 5353 FSBR RTS

5354

DATA SECTOR I/O

11F7 5355 . PAGE "DATA SECTOR I/O"
5356
5357 OSlO - DATA SECTOR I/O
5358
5359 OSlO

11F7 48 5361'l PHA :SAVE ACU DATA
llF8 A547 5361 LOA ZSBA :WRITE SECTOR BUF
11FA 801'l41'l3 5362 STA OCBBUF :AOR MOVED TO
11FO A548 5363 LOA ZSBA+l :OCB
11FF 801'l51'l3 5364 STA OCBBUF+l
121!2 6A 5365 PLA :RESTORE ACU

5366
1223 AEFE12 5367 LOX ORVTYP
1226 21'l6CI'l7 5368 JSR BSIO :00 THE I/O
122;9 61'l 5369 RTS

5371'l

WRITE DOS

121'lA 5371 • PAGE "WRITE DOS"
5372

93

ATARI DOS 2.05

5373 : WRTDOS - WRITE DOS TO DISK
5374
5375 WRTDOS

120A BC8913 5376 LDY FCBCSN,X :MOVE START ADDR
121m BD8A13 5377 LDA FCBCSN+l,X
121" 2"5312 5378 JSR SETDSO :WRITE SECTOR " 1213 2"6712 5379 JSR WD" :WRITE DOS
1216 4CF"12 538" JMP GREAT

5381
5382 DEL DOS

1219 A9"" 5383 LDA ." : SET FILE NOT EXISTS
5384 DD1

121B 8D"E07 5385 STA DFSFLG
5386
5387 WRTSCO

121E A9"7 5388 LDA 'FMSORG/256 :MOVE FMS START
122" 8D"5"3 5389 STA DCBBUF+l :ADDR TO DCB
1223 A9"" 539" LDA .FMSORG&255
1225 8D"4"3 5391 STA DCBBUF

5392
1228 A9"" 5393 LDA ." : CLEAR SECTOR NO TO ZERO
12211. 8D"A"3 5394 STA DCBSEC
122D 8D"B"3 5395 STA DCBSEC+l

5396
123" EE"A"3 5397 WRNBS INC DCBSEC : INC SECTOR NO
1233 A2"1 5398 LDX U :GET DRIVE TYPE
1235 38 5399 SEC
1236 2"72"7 54"" JSR BSIOR : DO THE WRITE

54'H
54"2

1233 18 54"3 CLC
123,.. AD"4"3 54"4 LDA DCBBUF : INC SECT ADDR
12J:) 698" 54"5 ADC U28
123"? 8D"4"3 54"6 STA DCBBUF
1242 AD"5"3 54"7 LDA DCBBUF+l
1245 69"" 54"8 ADC ." 1247 8D"5"3 54"9 STA DCBBUF+1

541"
124A AD"A"3 5411 LDA DCBSEC :TEST FOR WRITE
124:) CD"1"7 5412 CMP BRCNT :OF ALL BOOT SECTORS
125!~ D"DE 5413 BNE WRNBS :BR NOT ALL

5414
1252 6" 5415 RTS

5416
125J 8C"F"7 5417 SETDSO STY DFLINK :SET LINK START
1256 8D1""7 5418 STA DFLINK+l
1259 ADFE12 5419 LDA DRVTYP
125C 8D"E"7 542" STA DFSFLG
1251' ACF812 5421 LDY DRVMDL

WRI'rE DOS

1262 8Cll"7 5422 STY BLDISP
1265 D"B4 5423 BNE DD1 :GO WRITE SECTOR "

5424

WRI'IE DOS

1267 5425 • PAGE
1267 AD12"7 5426 WD" LDA DFUDR :MOVE FILE START ADDR
126A 8543 5427 STA ZBUFP :TO ZBUFP
126C ADl3"7 5428 LDA DFUDR+l
126F 8544 5429 STA ZBUFP+1

543"
1271 A"IIJ" 5431 WD1 LDY t!i1 ;MOVE 125
1273 B143 5432 WD2 LDA (ZBUFP),Y :BYTES OF DOS

94

12"5 9147
12'17 C8
12'18 CCFA12
12'1B 90F6
12'10 98
12'1E 908713

12131 205707
12 :34 CD0D07
12:37 900B
12;39 D00F
12;3B A543
12:30 CDOC07
1H0 9002
12~2 0006

1294 20940F
1297 4C7112

129A 60

5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452

WD3

WD4

STA (ZSBA),Y
INY
CPY DRVMDL
BCC WD2
TYA
STA FCBDLN,X

JSR INCBA
CMP SASA+1
BCC WD3
BNE WD4
LOA ZBUFP
CMP SA SA
BCC WD3
BNE WD4

JSR WRTNXS
JMP WD1

RTS

5453 AND RETURN
5454

ATARI DOS 2.05

;TO SECTOR BUFFER

;SET DATA LEN

;INC ZBUFP BY 125
; IF NOT END OR
;PAST END OF DOS
;THEN WRTNXS
; ELSE
; DONE

;WRITE NEXT SECTOR

; RETURN, CLOSE WILL WRITE
FINAL SECTOR

TEST DOS FILE NAME

129B

129B AIII0B
1290 B95813
12A0 D9A812
1:;A3 0003
12A5 88
12A6 D0F5
12A8 60

1:;A9 44
l:;AA 4F
l:<AB 53
l:<AC 20
U:AD 20
l::AE 20
l::AF 20
1::B0 20
1::B1 53
1::B2 59
1:!B3 53
1:!B4 20

1:!B5 E649
1:!B7 E649

1::B9 E649
l::BB E649
l::BD E649
l:!BF E649
1:!C1 E649
1:!C3 E649
1:!C5 E649
1:!C7 E649
1:!C9 E649

5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468

.PAGE "TEST DOS FILE NAME"

TSTDOS - TEST FOR DOS SYS FILE NAME;

TSTDOS

TDF1
LOY
LOA
CMP
BNE
DEY
BNE

TDFR RTS

tIl
FNAME-1,Y
DFN-1,Y
TDFR

TDF1

DFN .BYTE "DOS

5469
5470 ERROR ROUTINES
5471
5472 ERDBAD INC ERRNO
5473 ERAPO INC ERRNO

5474 ERRPOT INC
5475 ERFNF INC
5476 ERDFULL INC
5477 ERDVDC INC
5478 ERFLOCK INC
5479 ERRPDL INC
5480 ERRFN INC
5481 ERFNMM INC
5482 ERRSYS INC

ERRNO
ERRNO
ERRNO
ERRNO
ERRNO
ERRNO
ERRNO
ERRNO
ERRNO

;LOOK AT 12 CHARS
;TEST DECODE FILENAME CHAR
;WITH DOS FILENAME CHAR
;BR NOT MATCH

;BR IF MORE, ELSE RTN EO

SYS "

;BAD SECTOR AT FORMAT TIME
;ATTEMPT APPEND TO OLD TYPE

FILE
POINT INVALID
FILE NOT FOUND
DIRECTORY FULL
DEVICE COMMAND INVALID
FILE LOCKED
POINT DATA LENGTH
FILE NAME ERROR
FILE NUMBER MISMATCH
FATAL SYS DATA I/O ERROR

95

AlARI DOS 2.05

12CB E649
12CC E649
12CF E649

1201 A549
1203 AEIH13
1206 9043"3
1209 AE""13
12DC 9A
1200 AE"113
l2E" A8
12El AD0813

5483
5484
5485
5486
5487
5488
54R9
549"
5491
5492
5493
5494

ERRNSA INC
ERRNSB INC
ERRDNO INC

LOA
RETURN LOX

STA
LOX
TXS
LOX
TAY
LOA

TEST DOS FILE NAME

12E4 6"

12E5 AD"3"3
12E8 3"E9

12EA AE"113
12ED 2"DE11
12F" A9"1
12F2 D"DF
12F4 A988
12F6 3"DB

5495
5496
5497
5498
5499
55""
55"1
55"2
55"3
55"4
55"5
55"6

MISe: STORAGE

RTS

ERRIO LOA
BMI

FGREAT LOX
JSR

GREAT LOA
BNE

ERREOF LOA
BMI

ERRNO
ERRNO
ERRNO

ERRNO
CURFCB
ICSTA,X
ENTSTK

CURFCB

SVDBYT

DCBSTA
RETURN

CURFCB
FRESBUF
tel
RETURN
'$88
RETURN

NO SECTOR AVAIL
NO SECTOR BUFFERS AVAIL
DRIVE NO ERROR

:GET ERROR NUMBER
:GET CUR FCB NO
:PUT IN FCB
:GET ENTRY STACK PTR
:AND RESTORE

:GET SAVED DATA BYTE

:GET I/O ERROR CODE

:FREE SECTOR BUFFER
:SET ALL OK

:SET EOF CODE

12F!! 55"7
55"8
55"9
551"
5511
5512
5513
5514
5515
5516
5517
5518
5519
552"
5521
5522
5523
5524
5525
5526
5527
5528
5529
553"
5531
5532
5533
5534
5535
5536
5537
5538
5539
554"

.PAGE "MISC STORAGE"

12FfI ""
12F'I 70
12F], FD

12FII ""
12Fe: 7F
12FD FF
12FI:
12FI'
13""
13"1
13";:
13"::
13"',
13"~,

13"E,
13";'
13"E:
13"~'
13"~,

13"E:

13"C
13"11
13"E:
13 liE'
13 Ie'

1311
1319
1329
1331

96

MISC NON ZERO PAGE STORAGE AREA

DRVMDL .BYTE "
.BYTE 125
.BYTE 253

DRVLBT .BYTE "
.BYTE 127
.BYTE 255

DRVTYP *= *+1
RETRY *= *+1
ENTSTK *= *+1
CURFCB *= *+1
DHOLES *= *+1
DHOLED *= *+1
DHFNUM *= *+1
COIRO *= *+1
CDIRS *= *+1
SFNUM *= *+1
SVDBYT *= *+1
SVDl *= *+1
SVD2 *= *+1
SVD3 *= *+1
EXTSW
TEMPI *= *+1
TEMP2 *= *+1
TEMP3 *= *+1
TEMP4 *= *+1
BURTYP *= *+1

DRVTBL *=
SECTBL *=

5541 DBUFAL *=
5542 DBUFAH *=

*+8
*+16
*+8
*+8

:MAX DATA LEN
:128 BYTE SECTOR
:256 BYTE SECTOR

:DISPL TO LAST SECTOR BYTE
:128 BYTE SECTOR
:256 BYTE SECTOR
:DRIVE TYPE
:1/0 RETRY COUNTER
:ENTRY STACK LEVEL
:CURRENT FCB (IOCB ALSO)
:DIR HOLE SECTOR
:DIR HOLE DISPL
DIR HOLE FILE NO
:CURRENT DIR DISPL
:CURRENT DIR SECTOR
: FILE NUMBER
:SAVED OUTPUT DATA BYTE
:SAVE DATA BYTES
:FOR WRITE BURST

TEMPI
TEMP2
TEMP3
TEMP4
BURST I/O TYPE

DRIVE TABLE

VTOC BUFFER
PTR FOR DRIVE N

1339
1349
1359
1365

1371

1372

1::72

FILE

B81

U81
1:182
1:183
1:184
1.385
1.386
1387
1388
1389
138B
138D

138F
0n0

1391

0004
0008
0002
0001

0080
0040

ATARI DOS 2.05

5543 SABUFL *= *+16 SECTOR BUFFER
5544 SABUFH *= *+16 FOR SECTOR N
5545 FNAME *= *+12 FILE NAME
5546 AFNAME *= *+12 AUXILLARY FILE NAME
5547
5548 MDRV *= *+1 :MAX DR NO
5549
5550 Z * : PUT ON SAME BOUNDRY AS

PRODUCTION
5551 *= $1381 :VERSION

CONTROL BLOCKS

5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593

.PAGE "FILE CONTROL BLOCKS"

FILE CONTROL BLOCK
ONE FILE CONTROL BLOCK IS USED FOR EACH
OPEN FILE. THE RELATIVE FCB USED
RELATES DIRECTLY TO THE IOCB •
THAT OPENED THE FILE. THUS THERE ARE
8 FCBS. THE FCB ARE (CONVIENTLY)
THE SAME SIZE AS IOCBS. EACH FCB
CONTAINS ALL THE INFORMATION REQUIRED
TO CONTROL THE PROCESSING ON AN
OPEN FILE

FCB
FCBFNO *= *+1 :FILE • LEFT JUSTIFIED
FCBOTC *= *+1 :OPEN TYPE CODE

*= *+1 :SPARE
FCBSLT *= *+1 :FLAG FOR NEW SECTOR LEN TYPE
FCBFLG *= *+1
FCBMLN *= *+1
FCBDLN *= *+1
FCBBUF *= *+1
FCBCSN *= *+2
FCBLSN *= *+2
FCBSSN *= *+2
FCBCRS
FCBCNT *= *+2
FCBLEN *-FCB

*= FCBLEN*7+*

OPEN CODE BITS
USED IN IOCB AUXI
- AND FCBOTC

OPIN $04
OPOl1T $08
OPDIR $02
OPAPND $01

FCBFAS $80
FCBFSM $40

:WORKING FLAG
:MAX SECTOR DATA LEN
:CUR SECTOR BUF DATA LEN
:SECTOR BUF NO
:CUR SECTOR'
:LINKjALLOCATE SECTOR'
:CUR FILE RELATIVE SECTOR •
:SECTOR COUNT
:FCB LEN

: ALLOCATE 7 MORE FCBS

: INPUT
: OUTPUT
:LIST DIRECTORY
:APPEND

: FCBFLG - ACQ SECTORS
:FCBFLG - SECTOR MODIFIED

F'ILE DIRECTORY

] 401 5594
5595
5596
5597
5598
5599
5600
5601

.PAGE "FILE DIRECTORY"

DISK FILE DIRECTORY
: THE FILE DIRECTORY OCCUPIES 8
:CONSECTUIVE SECTORS STARTING AT THE

CENTRAL SECTOR+l. EACH FILE DIRECTORY
SECTOR CONTAINS 8 ENTRIES. THERE
IS 1 ENTRY FOR EACH NAMED FILE. THE

97

ATARI DOS 2.05

56"2
56"3
56"4
56"5
56"6
56"7
56"8
56"9
561"
5611

"""e' 5612
"""1 5613

"""3 5614

"""~ 5615

"""r- 5616

""H' 5617
5618
5619
562"

"""e' 5621
""8el 5622
""4el 5623
"""1 5624
""2el 5625

""";; 5626

5627
14"1 5628

5629

VOLUI!E DIRECTORY

15"1

THERE ARE A TOTAL OF 64 NAMED FILES
PER VOLUME

THE FILE NUMBER IS USED THROUGH THE
THE SYSTEM IS THE RELATIVE (TO ONE)
FILE DIRECTORY ENTRY NUMBER.

THE EQUATES BELOW ARE FOR A SINCE NAMED
FILE ENTRY

DFDFLI " ;FLAGI (1)
DFDCNT 1 ;SECTOR COUNTER (LOW)
DFDSSN 3 ;START SECTOR NO (2)
DFDPFN 5 ;PRIMARY FILE NAME (8)
DFDXFN 13 ;EXTENDED FILE NAME (4)
DFDELN 16 ;ENTRY LENGTH

; DFDFLI VALUE EQUATES

DFDEUU " ; ENTRY UNUSED
DFDEDE $8" ; ENTRY DELETED
DFDINU $4" ;ENTRY IN USE
DFDOUT $"1 ;FILE OPEN FOR OUTPUT
DFDLOC $2" ;ENTRY LOCKED
DFDNLD $"2 ;FILE HAS NEW TYPE ~ECTOR

BYTE

FILDIR *= *+256 ; RESUME FILE DIR SPACE

.PAGE "VOLUME DIRECTORY"

DISK VOLUME DIRECTORY
THE VOLUME DIRECTORY OCCUPIES THE CENTRAL
VOLUME SECTOR. THE VOLUME DIRECTORY
CONTAINS INFORMATION PERTAINING TO
THE ENTIRE DISKETTE VOLUME.

THE LABELS BELOW, MAP THE VOLUME
DIRECTORY SECTOR.

LEN

""""

563"
5631
5632
5633
5634
5635
5636
5637
5638
5639
564"
5641
5642
5643
5644
5645
5646
5647
5648
5649
565"
5651
5652
5653
5654
5655
5656
5657

DVDTCD = " ;VOLUME DIRECTORY TYEP CODE)1)

END OF FMS

15"1

15"1
15"1

98

; USED TO DELINATE MAJOR (1)
; FMS SYSTEM FORMAT CHANGES

DVDMSN =
DVDNSA =
DVDWRQ
DVDSMP =

1
3

5
1"

;MAX SECTOR NUMBER (1)
;NO SECTORS AVAIL

;WRITE REQUIRED
; SECTOR MAP START

EACH BIT REPRESENTS A SECTOR
IF THE BIT IS ON THEN THE SECTOR
IS FREE AND AVAILABLE. IF THE
BIT IS OFF, THE SECTOR IS IN
USE OR BAD. THE MOST SIGNIFICANT
BIT OF THE FIRST BYTE IS SECTOR ZERO.

5658 • PAGE "END OF FMS"
5659
566" ENDFMS *
6" .END

ATARI DOS 2.05

END OF FMS

-em,,, FMSORG =""43 FMSZPG ="34" IOCBORG ="""3 LMASK
=eI3"" DCBORG =E453 DHADR =""9B EOL ="31A DEVTAB
=el"2" ZICB ="2E7 LMADR =154" DUPINIT ="1"2 STAK
_~I"DF OSBTM ="246 DSKTIM ="""F TIMOUT "34" IOCB
~134" ICHID "341 ICDNO "342 ICCOM "343 ICSTA
~1344 ICBAL "345 ICBAH "'346 ICPUT "348 ICBLL
"349 ICBLH "34A ICAUXI "34B ICAUX2 "34C ICAUX3
~134D ICAUX4 "34E ICAUX5 "34F ICAUX6 =""1" ICLEN

",~1""1 ICOIN ="""2 ICOOUT ="""3 ICIO ="""4 ICGBR
=~1""5 ICGTR ="""6 ICGBC ="""7 ICGTC ="""8 ICPBR
"'~1""9 ICPTR ="""A ICPBC ="""B ICPTC ="""C ICCLOSE
-~I""D ICSTAT ="""E ICDOC ="""E ICMAX ="""F ICFREE
.. el""l ICSOK ="""2 ICSTR ="""3 ICSEOF =""8" ICSBRK
=~1"81 ICSDNR =""82 ICSNEI'I ="11183 ICSDER =""84 ICSIVC
-~1"85 ICSNOP =""86 ICSIVN =""87 ICSWPC =""21 ICDNOZ
.. ~1"28 ICBLLZ =""29 ICBLHZ =""24 ICBALZ =""25 ICBAHZ
",~1"22 ICCOMZ =""26 ICPUTZ "3"1'1 DCB "3"" DCBSBI
~13"1 DCBDRV "3"2 DCBCMD "3"3 DCBSTA "3"4 DCBBUF
m"6 DCBTO "3"8 DCBCNT "3 "A DCBSEC =""52 DCBCRS

=el"5" DCBCWS =""53 DCBCST =""21 DCBCFD ="""1 DCBSOK
=el"81 DCBDNR =""82 DCBCNR =""83 DCBDER ="1'184 DCBIVC
-EI"87 DCBWPR ""43 ZBUFP ""45 ZDRVA ""47 ZSBA
~1"49 ERRNO "7"" BFLG "7"1 BRCNT "7"2 BLDADR
~17"4 BINTADR "71'16 BCONT "714 XBCONT "7"9 SABYTE
m"A DRVBYT "7"B SAFBFW 1'17"C SASA =15"1 ENDFMS
"7"E DFSFLG "7"F DFLINK "711 BLDISP 1'1712 DFLADR
mCB DFMSDH 1'174F BFAIL I'172F XBCl ="76C BSIO
11753 BGOOD "757 INCBA "754 XBRTN "772 BSIOR
"77C DSIOI "786 DSI02 12FF RETRY "79C DSI03
I17A2 DSI04 "7C4 DSI05 "7BE STRTYP 13"1 CURFCB
fl8AB DFMOPN "B15 DFMCLS ="ABF DFMGET "9CC DFMPUT
IIB"l DFMSTA "BA7 DFMDDC ="7E" DINIT 13"C TEMPI
~17F2 DIA 13"D TEMP2 "8"7 DIHAVE 1311 DRVTBL
1329 DBUFAL 1331 DBUFAH "83D DIDDEC ="""5 DVDWRQ
11823 DI256 "87" DINCBP "845 DINXTS "84B DISETS
1319 SECTBL "85E DISNI 1339 SABUFL 1349 SABUFH

-1187E CLRFCB "882 CFCBX 1381 FCB "88A ADIl
"89B ADI2 1164 SETUP "E9E FNDCODE 1382 FCBOTC

-11""2 OPDIR "8BE OPNI "DAD LISTDIR "F21 SFDIR
-"""4 OPIN ="8D8 DFOIN ="""8 OPOUT ="911 DFOOUT
","8DD DFOUPD ="""1 OPAPND =11I8EC DFOAPN 12BF ERDVDC

H8E9 OPNERI ="8E3 DFOUI "CAC TSTLOCK "9AE DFRDSU
l.2F" GREAT 12BB ERFNF 13"5 CDIRD 14"1 FILDIR

="""" DFDFLI ="""2 DFDNLD "geE APOER l"BF OPVTOC
1.l"6 GETS ECTOR 138D FCBSSN 138B FCBLSN ="97C DHFOX2
l.2B7 ERAPO ="91D DFOXI "C53 XDEL" ="948 OPNIA
J.3"2 DHOLES "992 OPNER2 13"6 CDIRS 1"6E RDDIR
:.3"3 DHOLED 13"4 DHFNUM 13"7 SFNUM "93E OPNIB

="""5 DFDPFN ="""3 DFDSSN =""4" DFDINU -"""1 DFDOUT
""""1 DFDCNT "966 OPN2 1359 FNAME ="97" OPN2A

l."71 WRTDIR "'''995 SETFCB "FE2 WRTN6 "982 OPN3
-""8" FCBFAS 1385 FCBFLG 129B TSTDOS ="98F DHFOX3

l.2"A WRTDOS 12BD ERDFULL "99A OPNFI 1381 FCBFNO
:.387 FCBDLN 138F FCBCNT 1384 FCBSLT =1"17 RDNSO
:.3"8 SVDBYT 13"" ENTSTK "9E5 FRMCIO "A19 PUTER
:c386 FCBMLN "A"6 PUTI "F94 WRTNXS "AIC PEOF
"AIF WTBUR =""4" FCBFSM 12F4 ERREOF "A4A NOBURST
"A28 TBURST "A26 RTBUR 131" BURTYP "'''ME TBLEN
"A3E NXTBUR "A4C WRBUR l""F RDNXTS "A7B BBINC

="A9D BUREOF 12F8 DRVMDL 13"9 SVDl 13"A SVD2
B"B SVD3 1388 FCBBUF lID" SSBA "MC BURST
12FE DRVTYP "AB9 TBL256 "ACC GETI "DB9 GDCHAR
"ADF GET2 ="ADC GEOF ="AEA EFLOOK "AFE GET3
12D3 RETURN "B12 SFNF "B6D CLDONE ="B75 CLUPDT
"FAB WRTLSEC ="B8" RRDIR "B5" CLOUT "B3C APPI

99

ATARI DOS 2.05

"FB3 WRTN2 1"95 WRTVTOC 12EA FGREAT "FF8 WRCSIO
"B9B FNSHFT "B90 FNSHF1 "B9F FNSHF2 "B06 XFV

=""27 MAXOOC "B03 OVOCER "BC5 OVOCVT "B09 XRENAME
"C32 XOELETE "C7C XLOCK "C83 XUNLOCK "CBA XPOINT
"0"3 XNOTE "018 XFORMAT "BE7 XRN1 "BF2 XRN1A
1219 OELDOS "EB4 FNOCNX "C"C XRN1B 1253 SETOSO
ec11 XRN2 "C1B XRN3 "F31 CSFOIR "C79 OFNF

="C3!'. XOELX "C45 XOELY "C45 XOEL3 "C56 XOELI
=""8'" OF DE DE ="C6C XOEL2A "C67 XOEL2 -"C72 XOEL4

1"C5 FRESECT =""2" OFOLOC 13"F TEMP4 "C88 XLCOM
"C93 XLC1 "CB7 TLF 12C1 ERFLOCK "0"" PERRI
1389 FCBCSN "CCF XP1 "CEO XP2 ="CDC XP1A

=flCF7 XPERR "CFA XP3 12C3 ERRPOL 12B9 ERRPOT
"052 XF" "04F XFERR ="030 TSTFMT "04C XFBAO
12B5 EROBAO "055 XF1 ="""A OVOSMP "076 XF2
"094 XF3 "09F XF4 "OE3 LOENT1 "OE9 LDCNT
"Ell LODONE "006 GDCRTN "009 LOENT "E21 FOE NT
1"8B ROVTOC ="""3 OVDNSA "E57 CVOX -"""0 FSCML
"OFO MVFSCM "E14 FSCM "E67 CVOY "E35 L01
"E3B L02 "E71 CVOIGIT "E80 STOIGIT 13"E TEMP3
"E76 CV01 "EM FO"A "F"7 FNOERR "EB3 FO"B
"EB8 FO" 13"C EXTSW "EC3 FDl "E05 F03
"ECA F02 "F"A FOSCHAR "F"3 FOENO "EE5 F04
"EFO F06 "EF1 F05 12C5 ERRFN "FIB FOSC2
"F15 FOSC1 =""1" OFOELN "F40 SF02 "F48 SF01
"F9" SORTN "F73 SFOSH "F5E SF03 "F6A SF04
"F8!'. SFOSH1 "FA8 WRTN1 "FA5 WRUl "FC9 WRNERR
"FAE WRTLS1 12FB ORVLBT "FDA WRTN5 1""2 MVLSN
"FF6 WRNRTS "FF9 RWCSIO 11F7 OSlO 1"21 RONS1
1"5F ROIOER =1"62 ROFNMM 1"54 RONS3 1"51 RONS2
12E5 ERRIO 1"6C ROOELE 12C7 ERFNMM 1"72 OIRIO
l"AB OSYSIO 1"92 ROVGO 1"9C VTIO 1"95 WRVTOC
l"AC OSYSIA 1"B5 OSIOER l"BC DEAD 12C9 ERRSYS

=11"5 FSRTS 1"01 FS1 1"00 FS2 1"E5 FS3
11"8 GS1 1161 GSERR 1120 GS2 1134 GS3
1148 GS4 12CB ERRNSA 11 DB OERR1 11A1 GSB1
11AE GSB4 11A6 GSB2 11AB GSB3 12CO ERRNSB
11C4 GSB5 12CF ERRONO =110E FRESBUF 11F6 FSBR
1267 WO" 121B 001 121E WRTSCO 1231'1 WRNBS
1271 W01 1273 W02 1294 W03 129A WD4
1290 TOF1 12A9 OFN 12A8 TOFR 1365 AFNAME
1371 MORV =1372 Z 138F FCBCRS -""1" FCBLEN

="""0 OFOXFN ="""" OFOEUU ="""" OVOTCO z""'''l OVDMSN

100

Appendix A

AN
INTERMEDIATE
USER'S GUIDE
TO THIS BOOK

If YOIl are familiar with machine language, commented source code,
and hexadecimal numbers, you probably won't need to read this
appendix. On the other hand, if you don't know or are new to machine
language - perhaps some of the information here will help.

A knowledge of machine language is important to grasping the
sense of the OOS since it is written in machine language. However,
we will briefly cover some of the fundamentals, as they relate to the
book, in the hope that this might be a starting point. One of the
functions of this book is to reveal the inner workings of Atari OOS. A
benefit of knowing how it works is that you are able to change it to
suit ~ourself, to customize it.

First we'll examine the meaning of the various fields of information
which are in the source code (page 59 on). Then, after a brief look at
how m deal with hexadecimal numbers, we can make a modification
to DOS step-by-step to show how it's done.

The book is divided into two sections: roughly the first half is a
series of descriptions of the major subroutines of the disk operating
system. The latter half is a commented source code of the OOS. In order
to better understand what you can accomplish with aU this information,
we can set up a problem and solve it using the book.

WhClt's "Commented Source Code"?
We'll change the OOS so that we could type in a disk command using
lowercase letters. Unfortunately, the D: must be in uppercase, the
program which makes this decision is in ROM and we can't get at it
and change it. The rest of the command can be in lowercase, though,
after we make our change to the OOS in RAM. After fixing it, any
routine that uses the disk will accept lowercase as in D: open.

102

APPENDIX A

Before getting into the details of the modification there is some
important preliminary information. What, for example, is "commented
source code?"

Machine language differs in several respects from BASIC. When
you write a program in BASIC, you never see how it looks to the
computer. Instead you see something like this:

10 FOR I = 1 TO 100
20 NEXT I

This delay loop just creates a brief pause in a program. If you
RUN the above, the computer handles the problem of translating the
BASIC words into machine language. Anything the computer does
must be translated into machine language (ML). Translating (or
interpreting) a BASIC program takes place during the RUN of the
program - that's why BASIC is so slow compared to ML.

By contrast, ML is translated before it is RUN. Programming ML
is done in two stages: 1. writing the source code and then 2. assembling
it into object code. The computer does most of the drudgery of this
because most ML is written by using a program called an assembler
which handles many of the details. Some assemblers are so complex
that using them can seem almost like programming in BASIC.

Here is how you might program the above example delay loop
when using an assembler:

1000
1001 LOOP
1002

LOY #64 ; SET COUNTER TO 100
DEY
BNELooP

Probably the most peculiar thing about this, to the beginner, is
how 64 stands for 100 (it's hex, we'll get to it in a minute). The line
numbers could be BASIC, but the instructions are 6502 mnemonics
(memory aids). LOY means to load the Y register with 100 (decimal).
The next line is named {labelled} "loop" because assemblers don't say
(JOTO 1001. Instead, they use convenient names. In any event, the
Y register is decremented by DEY, it's lowered by one. So each time
the program cycles through the LOOP address, it will lower the counter
one. Finally, the instruction at 1002 says, Branch if Not Equal (to
zero). In other words, GOTO LOOP ifY hasn't yet counted down to
zero. When Y reaches zero, the program will continue on, following
whatever instruction is in line 1003.

After the above program is written, though, it still cannot be
RUN. There is the second step, the creation of object code
('~xecutable), the assembly process.

You tell the assembler to assemble this program. The result of

103

APPENDIX A

that is an additional two "fields" (zones). Above, we have five fields:
line number, label, mnemonic (instruction), operand (the #64)' and
a comment field which is the equivalent of BASIC REM statements.
There will soon be a total of seven fields.

After assembly, the two new fields are the addresses and the
object code (expressed as hex bytes). By the way, BASIC always
assigns its programs a starting address in memory, but, in ML, the
programmer must make this known to the assembler. It's not the
com:;lUter's decision. Assume the computer were told to assemble the
above example at address $2000 (this would be 8192, in decimal).
The dollar sign means that a number is a hex number. The labels,
mnemonics, and operands would be translated into object code and
put into the computer's memory. As you'll see in the second half of
this book, a printout of completed assembly looks like this:

200e
2002
2003

Hex

AOOO
88
DOFF

1000
1001 LOOP
1002

LOY #64 ; SET COUNTER TO 100
DEY
BNE LOOP

Before concluding this brief overview of some fundamentals of machine
language, we should explain how to read the numbers in the source
code listings.

1121" DIM H$(23) ,N$(9) :OPEN#1,4,","K:"
13" GRAPHICS "
14" PRINT "PLEASE CHOOSE:
IS" PRINT "1 - Input HEX & get decimal back

" •
16" PRINT "2 - Input DECIMAL to get hex bac

k."
17" PRINT:PRINT "==>";:GET#l,K
18" IF K<49 OR K>S" THEN 17"
19" PRINT CHR$(K):ON K-48 GOTO 3"",4""
3"" H$="@ABCDEFGHI!!!!!!!JKLMNO"
31" PRINT "HEX";:INPUT N$:N="
32" FOR 1=1 TO LEN(N$)
33" N=N*16+ASC(H$(ASC(N$(I)-47))-64:NEXT I
35" PRINT "$";N$;"=";N:PRINT:PRINT:GOTO 14"
4"" H$=""123456789ABCDEF"
41" PRINT "DECIMAL"; :INPUT N:M=4-"96
42" PRINT N;"=S";

104

APPENDIX A

43~ FOR 1=1 TO 4:J=INT(N/M)
44~ PRINT H$(J+1,J+1);:N=N-M*J:M=M/16
45~ NEXT I:PRINT:PRINT:GOTO 14~

This program will tum a decimal number into hex or vice versa.
Hexadecimal is a base 16 number system, where decimal is base ten.
This means that you count from zero to fifteen before going to the
next column. For example, you count up zero one two ... until you
reach nine in decimal. Then you go to the next column and have a
one-zero (10) to show that there is one in the "ten's column" and zero
in the "one's column."

In hex, what was a "ten's column" becomes a "sixteen's column."
In other words, the symbol" 1 0" means that there is one sixteen and
zero "ones." So, the decimal number 17 would be written in hex, as
$11 (one sixteen plus one one). The decimal number 15 would, in
hex, be $OF. After nine, we run out of digits, so the first few letters of
the alphabet are used: A = 10, B = 11, C = 12, 0 = 13, E = 14, and
F= 15.

This explains how to "read" hex numbers if you don't want the
program above to do it for you. The number $64 is decimal 1 00 because
there are six 16's and four one's. 6 X 16 + 4 = 100.

Addresses can be larger than two digits, up to a maximum of
four. You might see an address such as $11 F7 in the listings. The third
wlumn is the 256's and the fourth column is the 4096's. So to find
out what this address is in decimal, you can multiply 7 Xl, 15 X 16,
1 X 256, and 1 X 4096. And add them all together.

A quicker way is to find out the first two, (15 x 16 + 7 = 24 7) and
then multiply the second two by 256. It comes out the same. The
second two would be $11 (17 in decimal) so 17 x 256 + 247 = 4599. It
might be easier to just use the BASIC program to make the translations
until hex becomes more familiar.

t"aklng A Modification
Now that you have the entire source listing of DOS 2.0S, you can
customize it to fit your needs.

You may have felt restricted by the limitations on file names. A
flle name can consist of eleven characters: up to eight characters plus
an optional three~character extension. The first character must be
from A-i; subsequent characters can be from A-Z or 0-9. That's it.
No punctuation. No imbedded spaces. No lowercase.

By changing only two locations in the file name decode section
of DOS, many more characters are permitted. We will modify DOS to

105

APPENDIX A

accept any ASCII characters in a file name except character graphics
and inverse video. Additionally, the filename can start with a number
(e.g. "0:3-0"). Unfortunately, there is no foolproof way to allow
imbedded spaces such as "0: TIME OUT".

The following fragment of code checks to see that a character of
the file name falls in the range of A-Z. If the character is less than
(carry clear) 65 [ASC("A")] or greater than or equal to (carry set) 91
[ASC("Z") + 1], then the test fails. All we do is change the check for
"A" to a check for "!" (its number in the code is one greater than
"space"), and the check for "z" + 1 to "z" + 1 (lowercase z).

Included in this range of 90 characters are the numbers (48-57)
and all punctuation. Since we start with 33, "space" is excluded. It is
possible to permit imbedded spaces, but the file would then be
inaccessible in certain situations where a space is used as a delimiter.
You can allow it at your discretion, or even permit the entire (almost)
AT ASCII character set to be used by changing the limits to 0
and 255.

CMP
BCC
CMP
BCC

#'A
F05
#$5B
F06

We change this to:

CMP #'!
BCC F05
CMP #$7B
BCC F06
The changes can be made in BASIC with POKE 3818,33:POKE

3822,123 or change hex locations $OEEA to $21 and $OEEE to $7B.
The section of code we're modifying is located between source line
numbers 4072 through 4193. Remember to rewrite the modified DOS
to disk with WRITE DOS FILES (Menu selection "H") if you want
your change to be permanent.

Other equally simple changes are also possible. You could change
the wild-card character ("''') to any other character by changing
location $OEC7 to the desired character. A more ambitious task
would be to increase the maximum file name length.

This brings up a final point - software compatibility. For example,
if you changed the wild card character to "@," you couldn't run any
previous programs that assume"·" as the wild card character. Our
change is less dangerous - if you allow lowercase file names, the
unmodified DOS won't be able to access it, although it will look fine
on the directory. This change has not been exhaustively tested for

106

APPENDIX A

conflicts, so we can't guarantee its usage. Nevertheless, it seems quite
useful and shows that some customizing can be accomplished with a
few simple changes.

When experimenting, always keep a backup copy of your valuable
disks in case something should go awry.

100 REM CHANGE DOS PROGRAM
110 REM FOR DOS 2.0S ONLY
120 REM CHANGE LOW RANGE CHECK FROM
130 REM 65 TO 33. THIS ALLOWS
140 REM ANY CHARACTER (EXCEPT
150 REM GRAPHICS AND INVERSE VIDEO)
160 REM TO START A FILENAME, INSTEAD
170 REM OF ONLY A THROUGH Z.
180 REM 0EE9 C941 CMP I'A
190 REM 0EE9 C921 CMP ,'!
200 POKE 3818,33
210 REM CHANGE HIGH RANGE TO EXTEND
220 REM UP TO ASCII ·z"
230 REM (LOWERCASE Z)
240 REM 0EED C95B CMP '$5B
250 REM 0EED C97B CMP '$7B
260 REM POKE 3822,123
270 REM NO NEED TO CHANGE NUMERIC
280 REM CHECK SINCE IT IS NO
290 REM LONGER EXECUTED, THANKS
300 REM TO THE ABOVE CODE.

!iome Cautions
Care is necessary when making customizations. Only make the changes
to a copy of your ooS - not the original "system master." (You
shouldn't be able to do this anyway, since the disk is "write-protected,"
but better safe than sorry.) Remember that any files SAVEd with your
custom ooS will probably not be compatible with the original,
unchanged OOS. Alternation of the OOS can have unpredictable
effects; we urge caution and cannot accept any liability for software or
hardware damage incurred through the use of this book.

Things To Look Out For
These modifications could make a customized OOS incompatible with
the original, unmodified OOS 2.0S:

1) File name changes (such as allowing lowercase, or increasing

107

APPENDIX A

the length)
2) Changes to OOS file structure (such as using a different
"linking" system)
3) Removing error-checks. These built-in traps insure disk
integrity and reliability. When you alter one, you could risk
muddling one or more files. For example, if you allow an automatic
"wild-card" feature, where an asterisk is assumed at the end of a
file, it could cause havoc when performing a SCRATCH,
RENAME, or UPDATE operation. Another example is removing
some of the qualifications for "burst-I/O." Remember that a lot
of thought went into each design consideration.

Keeping these suggestions in mind, here are some ideas for
modifications. You may need to type in and re-assemble (with your
insertions) the entire ooS when making certain modifications.

1) Adding a STATUS check before a disk access. Have you ever
noticed how long the drive will grind away when no disk is
inserted? You can query the disk for its status, and even add a
"Drive not ready" error message if the drive door is not closed or
a disk is not inserted. Check your OOS manual for details.
2) Adding Disk Utility commands. These would be additional
functions performed by the FMS, keyed to the "special command."
Some of the tasks performed by the Disk Utility Package could be
a part of the ooS kemal, such as LOAD and SAVE binary files.
You could even implement new commands such as "relative file"
support, where you only give the ooS a "record number" to
randomly access a file. The file could be divided into records of
any length.
3) Allocate more sectors for the directory, thereby extending
the maximum amount of directory entries.
4) Add a disk name and/or disk 1. D. number (serial number?) to
the disk (maybe on sector 720). It could even print out with the
directory.
5) Given the extra "unused" bytes in the file name, add a byte
for file type, such as program, data, object code, etc., and have it
printed out with the directory, making it easy to identify files
without having to use the extension. This would be hard to
interface with software, however.
Remember that some of this is risky business. Keep backup disks

for any disk you are "experimenting" with. That way, you should lose
no important files.
The publishers and authors of this book disclaim an y responsibility for errors or
problems caused by modification of Atari DOS 2. as.

108

NOTES

109

NOTES

110

NOTES

111

NOTES

llZ

NOTES

113

NC)TES

114

NOTES

115

NC)TES

116

COMPUTE! Books
Po. Box 5406 Greensboro, NC 27403

Ask your retailer for these COMPUTE! Books, If he or she
has sold out, order directly from COMPUTE!

For Fastest Service
Call Our TOLL FREE US Order Line

800-334-0868
In He call 919-275-9809

Quantity Title Price Total

____ The Beginner's Guide To
Buying A Personal Computer $ 3.95
{Add $100 shipping ond hondling. Outside US odd
$4.00 oir moil; $200 surfoce mOiL)

___ COMPUTE!'s First Book of Atari $12.95
(Add $200 shipping ond hondling. Outside US odd
$4.00 oir moil; $200 surfoce mOiL)

___ Inside Atari DOS $19.95
(Add $2.00 shipping ond hondling. Outside USodd
$4.00 oir moil; $2.00 surfoce moiL)

___ COMPUTE!'s First Book of
PET/CBM $12.95
(Add $2.00 shipping ond hondling. Outside US odd
$4.00 oir moil: $2.00 surfoce moiL)

___ Programming the PET/CBM $24.95
(Add $3.00 shipping ond hondling. Outside US odd
$9.00 oir moil; $3.00 surfoce moiL)

Every Kid's First Book of
Robots and Computers $ 4.95
(Add $100 shipping ond hondling. Outside US odd
$4.00 oir moil; $2.00 surfoce mOiL)

___ COMPUTE!'s Second Book of
Atari $12.95
(Add $2.00 shipping ond hondling. Outside US odd
$4.00 oir moil: $2.00 surfoce moiL)

___ COMPUTE!'s First Book of VIC $12.95
(Add $2.00 shipping ond hondling. Outside US odd
$4.00 oir moil; $2.00 surfoce mOiL)

All orders must be prepaid (money order, check or charge). All
payments must be in US funds. NC residents add 4% sales tax.
D Payment enclosed Please charge my: D VISA D MasterCard
D American Express Acc't No. Expires I

Name

Address

City

Country
Allow 4-5 weeks for delivery

027

State Zip

If you've enjoyed the articles in this book you'll find the
same style and quality in every monthly issue of COMPUTE!
Magazine. Use this form to order your subscription to
COMPUTE!

For Fastest Service,
Call Our Toll-Free US Order Line

800-334-0868
In NC call 919-275-9809

COMPUTE!
Po. Box 5406
Greensboro, NC 27403

My Computer Is:
D PET DApple D Atari D VIC D Other __ D Don't yet have one ...

D $20.00 One Year US Subscription
D $36.00 Two Year US Subscription
D $54.00 Three Year US Subscription
Subscription rates outside the US:
D $25,00 Canada F = 2

D $38.00 Europe/Air Delivery FI=3

D $48.00 Middle East North Africa, Central America/Air Mail FI=5

D $88.00 South America, South Africa, Australasia/Air Mail FI=7

D $25,00 International Surface Mail (lengthy, unreliable delivery) FI=4,6,[

Name

Address

Cily State Zip

Country

Payment must be in US Funds drawn on a US Bank; International Money
Order, or charge card
D Payment Enclosed
D MasterCard
Acc't. No.

027

DVISA
D American Express

Expires

	INSIDE ATARI DOS
	Preface
	Table of Contents
	Introduction - Being a history of two births "Coleen" and "Candy"
	A New BASIC?
	A New Beginning
	Why this Book?
	About this Book

	Chapter One - Atari DOS Overview
	1-1. Disk Utility Package
	1-2. Centrallnput/Output
	1-3. File Management System
	1-4. Serial Input/Output
	DOS Data And Control Flow
	DOS Control Flow
	Application/CIO Interface
	ClO-Device Handler Interface
	FMS-SIO Interface

	Chapter Two - Disk Organization
	Disk Directory
	Data Sectors
	Volume Table Of Contents (VTOC)
	Directory Sectors
	Typical Directory Sector
	Typical Data Sector

	Chapter Three - FMS File Control Blocks (FCB)
	FCBFNO
	FCBOTC
	FCBSLT
	FCBFLG
	FCBMNL
	FCBDLN
	FCBBUF
	FCBCSN
	FCBLSN
	FCBSSN

	Chapter Four - FMS Initialization
	DINIT
	Drive Determination
	Drive Allocations
	Sector Buffer Allocations
	Setting MEMLO
	Device Handler Table Entry
	Drive Tables
	Sector Allocation Tables

	Chapter Five - FMS Entry
	SETUP

	Chapter Six - FMS Exit
	RETURN
	GREAT And FGREAT
	Error Exits

	Chapter Seven - Device Dependant Commands
	DFMDDC
	XFORMAT
	XDELETE
	XDEL0
	XRENAME
	XLOCK And XUNLOCK
	XPOINT
	XNOTE

	Chapter Eight - FMS Open Routines
	DFMOPN
	DFOIN
	DFOUPD
	DFOUI
	DFDRDSU
	DFOAPN
	DFOOUT
	DHFOX2
	SETFCB

	Chapter Nine - FMS Close Routines
	DFMCLS
	CLOUT
	CLUPDT

	Chapter Ten - Get Byte Routine
	DFMGET

	Chapter Eleven - Put Byte Routine
	DFMPUT

	Chapter Twelve - Burst I/O
	TBURST
	BBINC
	BUREOF

	Chapter Thirteen - Reading the directory as a file
	LISTDIR
	GDCHAR
	LDCNT
	FDENT

	Chapter Fourteen - Sector I/O Routines
	BSIO
	DSIO
	RDDIR And WRTDIR
	DIRIO
	RDVTOC And WRTVTOC
	VTIO
	DSYSIO
	OPVTOC

	Chapter Fifteen - File Name Decode Routine
	FNDCODE
	FDSCHAR

	Chapter Sixteen - Directory Searching
	SFDIR
	CSFDIR

	Chapter Seventeen - Write Next Sector
	Chapter Eighteen - Read Next Sector
	RDNXTS

	Chapter Nineteen - Get And Free Sector Routines
	GETSECTOR
	FRESECT

	Chapter Twenty - The Boot Process
	XBCONT
	Boot Records

	Chapter Twenty-One - Maintaining the Boot Record
	WRTDOS
	WDO
	DELDOS

	ATARI DOS 2.0S - Source Code
	Appendix A - An Intermediate User's Guide To This Book
	What's "Commented Source Code"?
	Hex
	Maklng A Modification
	Some Cautions
	Things To Look Out For

	NOTES

