= FIRST AND FINEST

~ MAC/65

- MAC/65

: MAC/65

MAC/65
[MAC/65

= Systems Software for
Apple and Atari Computers

Optimized Systems Software, Inc.

a reference manual for

MAC/ 65

a Macro Assembler and Editor program for
use with 65@02-based computers built by
Apple Computer, Inc., and Atari, Inc.

The programs, disks, and manuals comprising
MAC/65 are Copyright (c) 1982, 1983 by
Optimized Systems Software, Inc.
and
Stephen D. Lawrow

This manual is Copyright (c) 1982, 1983 by
Optimized Systems Software, Inc., of
1173-D Saratoga Sunnyvale Rd.

San Jose, California, 95129
Telephone (408) 446-3099

Rev 1.1

All rights reserved. Reproduction or translation of

any part of this work beyond that permitted by sections

187 and 108 of the United States Copyright Act without
the permission of the copyright owner is unlawful.

PREFACE

MAC/65 1is a logical upgrade from the 0SS product EASMD
(Edit/ASseMble/Debug) which was itself an outgrowth of
the Atari Assembler/Editor cartridge. Users of either of
these latter two products will find that MAC/65 has a
very familiar "feel". Those who have never experienced
previous 0SS products in this line should nevertheless
find MAC/65 to be an easy-to-use, powerful, and adaptable
programming environment. While speed was not necessarily
the primary goal in the production of this product, we
nevertheless feel that the user will be hard pressed to
find a faster assembler system in any home computer
market. MAC/65 1is an excellent match for the size and
features of the machines it is intended for.

MAC/65 was conceived by and completely executed by
Stephen D. Lawrow, of Chiselhurst, New Jersey. The
current version of MAC/65 is only the latest in a series
of increasingly more complex and faster assemblers
written by Mr. Lawrow following the lead and style of
EASMD. As a measure of our confidence in this assembler,
it 1is entrusted with assembling itself, probably a more
difficult task than that to which most users will put it.

TRADEMARKS

The following trademarked names are used in various
places within this manual, and credit is hereby given:

OS/A+, BASIC A+, MAC/65, and C/65 are trademarks of
Optimized Systems Software, Inc.

Apple, Apple II, and Apple Computer(s) are trademarks
of Apple Computer, Inc., Cupertino, CA

Atari, Atari 400, Atari 800, Atari Home Computers, and
Atari 850 Interface Module are trademarks of
Atari, Inc., Sunnyvale, CA.

TABLE OF CONTENTS

Introduction

Chapter

Chapter

CHAPTER

Start Up
Warm Start
Back Up Copy
Syntax

-- The Editor
General Editor Usage
TEXT Mode

1
1.
1
1 EDIT Mode

wnN -

- Editor Commands

1 ASM

2 BLOAD

3 BSAVE

4 BYE

5 c (Change Memory)

.6 D (Display Memory)

7 DEL

8 DOS

9 ENTER

19 FIND

11 LIST

2.12 LOAD

2.13 LOMEM

2.14 NEW

2.15 NUM

2.16 PRINT

2.17 REN

2.18 REP

2.19 SAVE

2.20 SIZE

2.21 TEXT
? (hex/dec convert)

The Macro Assembler
Assembler Input
Instruction Format
Labels
Operands
Operators
Assembler Expressions
Operator Precedence
Numeric Constants
Strings

Voo dWNH |

P

WWWWwwWwwwwww

WD+

SN :o

Chapter 4 -- Directives

4.1 *=

4.2 =

4.3 .=

4.4 .BYTE (and .SBYTE)

4.5 .CBYTE

4.6 .DBYTE

4.7 .ELSE

4.8 . END

4.9 .ENDIF

4.10 . ERROR

4.11 . FLOAT

4.12 .IF

4.13 . INCLUDE

4.14 .LOCAL

4.15 .OPT

4.16 .PAGE

4.17 .SBYTE (see also .BYTE)

4.18 .SET

4.19 . TAB

4.20 .TITLE

4.21 .WORD
Chapter 5 -- Macro Facility

5.1 . ENDM

5.2 +MACRO

5.3 Macro Expansion, part 1

5.4 Macro Parameters

5.5 Macro Expansion, part 2

5.6 Macro Strings

5.7 Some Macro Hints

5.8 A Complex Macro Example
Chapter 6 -- Compatibility

6.1 Atari's Cartridge

Chapter 7 -- Error Descriptions

INTRODUCTION

This manual assumes the user is familiar with assembly
language. It 1is not intended to teach assembly
language. This manual is a reference for commands,
statements, functions, and syntax conventions of MAC65
It 1is also assumed that the user is familiar with the
screen editor of the Atari or Apple 1II computer, as
appropriate. Consult Atari's or Apple's Reference
Manuals if you are not familiar with the screen editor.

If you need a tutorial level manual, we would recommend
that you ask your 1local dealer or bookstore for
suggestions. Two books that have worked well for many
of our customers are "Machine Language for Beginners"
by Richard Mansfield from COMPUTE! books and
"Programming the 6502" by Rodney Zaks.

This manual is divided into two major sections; the
first two chapters cover the Editor commands and
syntax, source line entry, and executing source program
assembly. The next three chapters then cover
instruction format, assembler directives, functions and
expressions, Macros, and conditional assembly.

MAC65 is a fast and powerful machine language
development tool. Programs larger than memory can be
assembled. MAC65 also contains directives specifically
designed for screen format development. With MAC65's
line entry syntax feature, less time is spent
re-assembling programs due to assembly syntax errors,
allowing more time for actual program development.

_—1 -

START UP

Power up the disk drive(s) and monitor, leave the
computer off. Insert MAC65 disk in drive #1 and boot
system by turning the computer on. This will load and
execute OS/A+. Now enter MAC65 (return). This loads
and executes MAC65, the Editor/Macro Assembler. Refer
to the OS/A+ Manua) for other capabilities.

WARM START

The user can exit to OS/A+ by entering the MAC65
command CP (return) or by pressing the System Reset
key . To return to MAC65, the user can use the OS/A+
command RUN (return). This "warm starts" MAC65 and
does not clear out any source lines in memory.

BACK-UP COPY

Please do not work with your master disk! Make a
back-up copy with OS/A+. Consult the OS/A+ reference
manual for specific instructions. Keep your master
copy in a safe place.

——2

SYNTAX

The following conventions are used in the syntax
descriptions in this manual:

1. Capital letters designate commands, instructions,
functions, ect., which must be entered exactly as shown
(eg. ENTER, .INCLUDE, .NOT).

2. Lower case letters specify items which may be used.
The various types are as follows:

1lno - Line number between @-65535, inclusive.

hxnum - A hex number. It can be address or
data. Hex numbers are treated as
unsigned integers.

dcnum - A positive number. Decimal numbers
are rounded to the nearest two byte
unsigned integer; 3.5 to 3.9 is
rounded to 4 and 100.1 to 190@.4 is
rounded to 100.

exp - An assembler expression.

string - A string of ASCII characters
enclosed by double quotes (eg.
"THIS IS A STRING").

strvar - A string representation. Can be a
string, as above, or a string variable
within a Macro call (eg. %$1).

filespec - A string of ASCII characters that

OR refers to a particular device. See

file device reference manual for more spe-
cific explaination.

3. Items in square brackets denote an optional part of
syntax (eg. [,1n0]). When an optional item is
followed by (...) the item(s) may be repeated as many
times as needed.

Example: .WORD exp [,exp ...]

4. Items in parentheses indicate that any one of the
items may be used , eg. (,Q) (,A).

-——3 -

---this page intentionally left blank--

-4

CHAPTER 1: THE EDITOR

The Editor allows the user to enter and edit MAC/65
source code or ordinary ASCII text files.

To the Editor, there is a real distinction between the
two types of files; so much so that there are actually
two modes accessible to the user, EDIT mode and
TEXTMODE. However, for either mode, source code/text
must begin with a 1line number between @ and 65535
inclusive, followed by one space.

Examples: 10 LABEL LDA #$32
3020 This is valid in TEXT MODE

The first example would be valid in either EDIT or
TEXTMODE, while the second example would only be valid
in TEXTMODE.

The user chooses which mode he/she wishes to wuse for
editing by selecting NEW (which chooses the MAC/65 EDIT
mode) or TEXT (which allows general text entry). There
is more discussion of the impact of these two modes
below; but, first, there are several points in common
to the two modes.

1.1 GENERAL EDITOR USAGE

The source file is manipulated by Editor commands.
Since the Editor recognizes a command by the absence of
a line number, a line beginning with a line number is
assumed to be a valid source/text line. As such, it is
merged with, added to, or inserted into the source/text
lines already in memory in accordance with its 1line
number. An entered line which has the same line number
as one already in memory will replace the line in
memory.

-——5-=

Also, as a special case of the above, a source line can
be deleted from memory by entering its 1line number

only. (And also see DEL command for deleting a group
of lines.)

Any line that does not start with a 1line number is
assumed to be command line. The Editor will examine
the line to determine what function is to be performed.
If the line is a valid command, the Editor will execute
the command. The Editor will prompt the user each time
a command has been executed or terminated by printing:

EDIT for syntax (MAC/65 source) mode
TEXTMODE for text mode

The cursor will appear on the following 1line. Since
some commands may take a while to execute, the prompt
signals the user that more input is allowed. The user

can terminate a command before completion by hitting
the break key (escape key on Apple II).

And one last point: If the line is neither a source
line or a valid command. The Editor will print:

WHAT?

1.2 TEXT MODE

The Editor supports a text mode. The text mode is
entered with the command TEXT. This mode will NOT
syntax check lines entered, allowing the user to enter
and edit non-assembly language files. All Editor
commands funtion in text mode.

Remember, though, that all text lines must begin with a
line number; and, even in TEXTMODE, the space following
the line number is necessary.

1.3 EDIT MODE

MAC/65 1is nearly unique among assembler/editor systems
in that it allows the assembly language user to enter
source code and have it IMMEDIATELY checked for syntax
validity. Of course, since assembly language syntax is
fairly flexible (especially when macros are allowable,
as they are with MAC/65), syntax checking will by no
means catch all errors in user source code. For
example, the existence of and validity of labels and/or
zero page locations is not and can not be checked until
assembly time. However, we still feel that this syntax
checking will be a boon to the beginner and experienced
programmer alike.

Again, remember that source lines must begin with a
line number which must, in turn, be followed by one
space. Then, the second space after the line number is
the label column. The label must start in this column.
The third space after the 1line number is the
instruction column. Instructions may either start in
at 1least the third column after the line number or at
least one space after the label. The operand may begin
anywhere after the instruction, and comments may begin
anywhere after the operand or instruction. Refer to
Assembler Section for specific instruction syntax.

As noted, the Editor syntax checks each source line at
entry. If the syntax of a line is in error, the Editor
will 1list the 1line with a cursor turned on (i.e., by
using an inverse or blinking character) at the point of
error.

The source 1lines are tokenized and stored in memory,
starting at an address in 1low memory and building
towards high memory. The resultant tokenized file is
60% to 80% smaller than its ASCII counterpart, thus
allowing larger programs to be entered and edited in
memory .

SPECIAL NOTE: If, upon entry, a source line contains a
syntax error and is so flagged by the Editor, the 1line
is entered into Editor memory anyway. This feature
allows raw ASCII text files (possibly from other
assemblers and possibly containing one or several
syntax errors as far as MAC/65 1is concerned) to be
ENTERed 1into the Editor without losing any lines. The
user can note the lines with errors and then edit them
later.

[

I S

——8—-

CHAPTER 2: EDITOR COMMANDS

This chapter lists all the valid Editor-level commands,
in alphabetical order, along with a short description
of the purpose and function of each.

Again, remember that when the "TEXTMODE" or "EDIT"
prompt is present any input line not preceded by a line
number is presumed to be an Editor command.

If in the process of executing a command any error is
encountered, the Editor will abort execution and return

to the user, displaying the error number and
descriptive message of the error before re-prompting
the user. Refer to Appendix for possible causes of
errors.

——9—-

Section 2.1

edit command: ASM
purpose : ASseMble MAC/65 source files
usage: ASM [#filell,[#file2],[#file3],[#filed]

ASM will assemble the specified source file and
will produce a listing and object code output; the
listing may include a full cross reference of all
non-local 1labels. Filel 1is the source device,
file2 is the list device, file3 1is the object
device, and file4 is a temporary file used to help
generate the cross reference listing.

Any or all of the four filespec's may be omitted,
in which case MAC/65 assumes the following default
filespec(s) are to be used:

filel - user source memory.

file2 - screen editor.

file3 - memory (CAUTION: see below)

file4 - none, therefore no cross reference

A filespec (#filel, #file3, etc.) can be omitted
by substituting a comma in which case the
respective default will be used.

Example: ASM #D2:SOURCE, #D:LIST, #D2:0BJECT

In this example, the source will come from
D2:SOURCE, the assembler will list to D:LIST, and
the object code will be written to D2:O0BJECT.

Example: ASM #D:SOURCE , , #D:OBJECT

In this example, the source will be read from
D:SOURCE and the object will be written to
D:OBJECT. The assembly listing will be written to
the screen.

Example: ASM , #P: , , #D:TEMP

In this example, the source will be read from
memory, the object will be written to memory (but
ONLY if the ".OPT OBJ" directive 1is in the
source), and the assembly listing will be written
to the printer along with the complete label cross
reference. The file TEMP on disk drive 1 will be
created and used as a temporary file for the cross
reference.

—10--

Example: ASM #D:SOURCE , #P:

In this example, the source will be read from
D:SOURCE and the assembly listing will be written
to the printer. If the ".OPT OBJ" directive has
been selected in the source, the object code will
be placed in memory.

Note: If assembling from a "filespec", the source
MUST have been a SAVEd file.

Note: Refer to the .OPT directive for specific
information on assembler 1listing and object
output.

Note: The object code file will have the format of
compound files created by the OS/A+ SAVE command.
See the 0S/A+ manual for a discussion of LOAD and
SAVE file formats.

-—11--

Section 2.2

edit command: BLOAD

purpose: allows user to LOAD Binary (memory image)
files from disk into memory

usage: BLOAD #filespec

The BLOAD command will load a previously BSAVEAd
binary file, an assembled object file, or a binary
file created with 0S/A+ SAVe command.

Example: BLOAD #D:OBJECT

This example will load the binary file "OBJECT" to
memory at the address where it was previously
saved from or assembler for.

A Y
CAUTION: it is suggested that the user only BLOAD
files which were assembled into MAC/65's free area
(as shown by the SIZE command) or which will load
into known safe areas of memory.

Section 2.3

edit command: BSAVE

purpose: SAVE a Binary image of a portion of
memory. Same as OS/A+ SAVE command.

usage: BSAVE #filespec < hxnuml ,hxnum2
The BSAVE command will save the memory addresses
from hxnuml through hxnum2 to the specified
device. The binary file created is compatible
with the 0S/A+ SAVe command.
Example: BSAVE #D:0OBJECT<5000, 5100

This example will save the memory addresses from
$5000 through $5100 to the file "OBJECT".

-—12--

Section 2.4
edit command: BYE
purpose: exit to system monitor level

usage: BYE

BYE will put the user to the Atari Memo Pad
or Apple II monitor, as appropriate.

Section 2.5

edit command: C

purpose: Change memory contents

usage: C hxnuml < (,)(hxnum) [(,)(,hxnum) ...J]
Although MAC/65 does not include a debug

capability, there are a few machine level commands
included for the convenience of the user who

would, for example, 1like to change system
registers and the 1like (screen color, margins,
etc.). The C command is provided for this
purpose.

C allows the user to modify memory. Hxnuml is the
change start address. The remaining hxnum(s) are
the change bytes. The comma will skip an address.

Example: C 5000<29,00,D8,,5
The example will change the memory addresses as

follows: 5000 to 20, 5801 to @0, 5082 to D8, skip
5003, and change 5004 to 5.

Section 2.6

edit command: D

purpose: Display contents of memory location(s)

usage: D hxnuml [,hxnum2]
D allows the user to examine memory. If hxnum2 is
specified, the memory locations between hxnuml and
hxnum2 will be displayed, else only hxnuml through
hxnuml +8 will be displayed.

——13--

Section 2.7

edit command: DEL

purpose: DELetes a line or group of lines from
the source/text in-memory.

usage: DEL 1nol [,1lno2]
DEL deletes source lines from memory. If only one
lno is entered, only the line will be deleted. If
two 1lnos are entered, all 1lines Dbetween and
including 1lnol and 1lno2 will be deleted.

Note: 1nol must be present in memory for DEL to
execute.

Section 2.8

edit command: DOS I or, equivalently, CP]
purpose: exit from MAC/65 to the CP of OS/A+.
usage: DOS

or

CP

Either DOS or CP returns the user to OS/A+.

—14--

Section 2.9

edit command: ENTER

purpose: allow entry of ASCII (or ATASCII)
text files into MAC/65 editor memory

usage: ENTER #filespec L (,M) (,A)]

ENTER will cause the Editor to get ASCII text from
the specified device. ENTER will clear the text
area before entering from the filespec. That is
any user program is memory at the time the ENTER
command is given will be erased.

The parameter "M" (MERGE) will cause MAC/65 to NOT
clear the text area before entering from the file,
text entered will be merged with the text in
memory. If a line is entered which has the same
line number of a line in memory, the line from the
device will overwrite the line in memory.

The parameter "A" allows the user to enter
un-numbered text from the specified device. The
Editor will number the incoming text starting at
line 10, in increments of 14.

CAUTION: The "A" option will always clear the text
area before entering from the filespec.

—15--

Section 2.10

edit command: FIND

purpose: to FIND a string of characters somewhere
in MAC/65's editor buffer.

usage: FIND /string/ [lnol [,1no2] J [,A]

The FIND command will search all lines in memory or the
specified 1line(s) (lnol through 1lno2) for the "string"
given between the matching delimiter. The delimiter
may be any character except a space. If a match is
found, the line containing the match will be listed to
the screen.

Note: do NOT enclose a string in double quotes.

Example: FIND/LDX/
This example will search for the first occurance
of "LDX".
Example: FIND\Label\25,80

This example will search for the first occurance
of "Label" in lines 25 through 84.

If the option "A" is specified, all matches within
the specified line range will be 1listed to the
screen. Remember, if no line numbers are given,
the range is the entire program.

-—16--

Section 2.11

edit command: LIST

purpose: to LIST the contents of all or part of
MAC/65's editor buffer in ASCII (ATASCII)
form to a disk or device.

usage: LIST [#filespec,] [1nol [,1no02]]

LIST 1lists the source file to the screen, or
device when "#filespec" is specified. If no 1lnos
are specified, 1listing will begin at the first
line in memory and end with the 1last 1line in
memory.

If only 1lnol 1is specified, that 1line will be
listed if it is in memory. If 1lnol and 1lno2 are
specified, all 1lines between and including 1lnol
and 1lno2 will be listed. When 1lnol and 1lno2 are
specified, neither one has to be in memory as LIST
will search for the first line in memory greater
than or equal to 1lnol, and will stop listing when
the line in memory is greater than 1lno2.

EXAMPLE : LIST #P:
will 1list the current contents
of the editor memory to the P:
(printer) device.

EXAMPLE : LIST #D2:TEMP, 1030, 1800
lists only those lines lying
in the line number range from
1930 to 1809, inclusive, to the
disk file named "TEMP" on disk
drive 2.

NOTE: The second example points out a method of
moving or duplicating large portions of text or
source via the use of temporary disk files. By
suitably RENumbering the in-memory text before and
after the LIST, and by then using ENTER with the
Merge option, quite complex movements are
possible.

-—-17--

Section 2.12

edit command: LOAD

purpose: to reLOAD a previously SAVEd MAC/65 token
file from disk to editor memory.

usage: LOAD #filespec [,A]

LOAD will reload a previously SAVEd tokenized file
into memory. LOAD will clear the wuser memory
before 1loading from the specified device unless
the ",A" parameter is appended.

The parameter "A" (for APPEND) causes the Editor
to NOT clear the text area before loading from the
file. Instead, the 1load file will be appended
with the current file in memory.

Note: The Append option will NOT renumber the file
after loading. It is possible to have DUPLICATE
LINE NUMBERS. Use the REN command if there are
duplicate line numbers.

Section 2.13

edit command: LOMEM

purpose: change the lower bound of editor memory
usable by MAC/65.

usage: LOMEM hxnum
LOMEM allows the user to select the address where
the source program begins. Executing LOMEM clears

out any source currently in memory; as if the user
had typed "NEW".

--18--

Section 2.14

edit command: NEW

purpose: clears out all editor memory, sets syntax
checking mode.

usage: NEW

NEW will clear all user source code from memory
and reset the Editor to syntax mode. The "EDIT"
prompt appears, reminding the wuser that syntax
checking 1is now active. If the user needs to
defeat the syntax checking, he/she must use the
TEXT command.

Section 2.15

edit command: NUM

purpose: initiates automatic line NUMbering mode
usage: NUM [denuml [,dcnum2]]
NUM will cause the Editor to auto-number the
incoming text from the Screen Editor (E:). A
space is automatically printed after the 1line
number . If no dcnums are specified, NUM will

start at the last line number plus 18. NUM dcnuml
will start at the last line number plus "dcnuml"
in increments of "dcnuml". NUM dcnuml, dcnum2
will start at "dcnuml" in increments of "dcnum2".

EXAMPLE: NUM 1009, 20
will cause the Editor to prompt the user with
the number "100@" followed by a space. When
the user has entered a line, the next prompt
will be "1020", etc.

The NUM mode will terminate if the line number
which would be next in sequence 1is present in
memory .

The user may terminate NUM mode on the Atari by
pressing the BREAK key or by typing a CONTROL-3.
On the Apple, the user may terminate the NUM mode
by pressing CONTROL-C followed by RETURN.

-—-19--

Section 2.16

edit command: PRINT

purpose: to PRINT all or part of the Editor text
or source to a disk file or a device.

usage: PRINT [#filespec,] [lnol [,1lno2]]

Print is exactly like LIST except that the 1line
numbers are not listed. If a file is PRINTed to a
disk, it may be reENTERed into the MAC/65 memory
using the ENTER command with the Append 1line
number option.

Section 2.17

edit command: REN

purpose: RENumber all lines in Editor memory.
usage: REN [dcnuml [,dcnum2] 1]
REN renumbers the source lines in memory. If no
dcnums are specified, REN will renumber the

program starting at line 10 in increments of 14@.
REN dcnuml will renumber the lines starting at
line 10 in increments of dcnuml. REN dcnuml,
dcnum2 will renumber starting at dcnuml in
increments of dcnum2.

——20--

Section 2.18

edit command: REP

purpose: REPlaces occurrence(s) of a given string
with another given string.

usage:
REP /old string/new string/ [1lnol [,1n02]] [(,A)(,Q)]

The REP command will search the specified lines
(all or 1lnol through 1lno2) for the "old string".

The "A" option will cause all occurrences of "old
string" to be replaced with "new string". The "Q"
option will list the line containing the match and
prompt the user for the change (Y followed by

RETURN for change, RETURN for skip this
occurrance.) If neither "A" or "Q" is specified,
only the first occurrence of "o0ld string” will be
replaced with "new string". Each time a change is

made, the line is listed.
Example: REP/LDY/LDA/2080,258,Q

This example will search for the string "LDY"
between the lines 20@ and 250, inclusive, and
prompt the wuser at each occurrence to change or
skip.

Note: Hitting BREAK (ESCape on Apple II) will
terminate the REP mode and return to the Editor.

Note: If a change causes a syntax error in the
line, the REP mode will be terminated and control
will return to the Editor. Of course, if TEXTMODE
is selected, there can be no syntax errors.

-—21--

Section 2.19

edit command: SAVE

purpose: SAVEs the internal (tokenized) form of
the user's in-memory text/source to a
disk file.

usage: SAVE #filespec

SAVE will save the tokenized user source file to
the specified device. The format of a tokenized
file is as follows:

File Header
Two byte number (LSB,MSB) specifies the
size of the file in bytes.

For each line in the file:
Two byte line number (LSB,MSB)
followed by
One byte length of line (actually offset
to next line)
followed by
The tokenized 1line

Section 2.20

edit command: SIZE

purpose: determines and displays the SIZE of
various portions of memory used by
the MAC/65 Editor.

usage: SIZE
SIZE will print the user LOMEM address, the
highest wused memory address, and the highest

usable memory address, 1in that order, using
hexadecimal notation for the addresses.

-——22--

Section 2.21

edit command: TEXT

purpose: allow entry of arbitrary ASCII (ATASCII)
text without syntax checking.

usage: TEXT

TEXT will clear all user source code from memory
and put the Editor in the text mode. After this
command is used, the Editor will prompt the user
for new commands and text with the word "TEXTMODE"
(instead of "EDIT"), indicating that no syntax
checking is taking place.

TEXTMODE may be terminated by the NEW command.
CAUTION: there 1is no way to go back and forth
between syntax (EDIT) mode and TEXTMODE without
clearing the Editor's memory each time.

Section 2.22

edit command: ?

purpose: makes hexadecimal/decimal conversions
usage: ? ($hxnum) (dcnum)
? is the resident hex/decimal decimal/hex

converter. Numbers in the range @ - 65535 decimal
(6008 to FFFF hex) may be converted.

Example: ? $1200 will print =4608
? 8199 will print =$1FFE

-=23--

---this page intentionally left blank--

-—24--

CHAPTER 3: THE MACRO ASSEMBLER

Usually, the Assembler is entered from MAC/65 with the
command ASM. For ASM command syntax, refer to section
2.1 (in the Editor commangs). Assembly may be
terminated by hitting the BREAK key (ESCape key on the
Apple II).

However, MAC/65 also offers the OS/A+ command line
level an optional ability to bypass the Editor phase
entirely. This is especially useful when doing
assemblies during the processing of an EXeCution file.
To invoke the assembler directly, simply include one or
more file names on the same OS/A+ command line as the
"MAC65" command. The formal usage is as follows:

MAC65 [filel [file2 [file3 [file4]]] [-A]J[-D]]

where "filel", "file2", "file3" and "file4" are legal
0S/A+ file or device names and "-A" and "-D" are option
specifiers. Thus the arguments are an optional set of
one to four filenames, construed to be the source,
listing, object, and cross-reference files
(respectively) of a MAC/65 assembly.

And the options available are:
-A source file is Ascii
-D assembly must be Disk-to-Disk

Remember, if no filenames are given, MAC/65 will be
invoked in its interactive (Editor) mode. But, if one
or more files are specified, MAC/65 will be invoked in
its "batch" mode. That is, it will perform a single
assembly and then return to OS/A+. Generally, this
command line will perform the assembly in a manner
equivalent to giving the "ASM" command from the MAC/65
Editor. That is, if only one filename is given, it is
assumed to be the source file, implying that the
listing will go to the screen and the object code will
be placed in memory (but only if requested by the .OPT
OBJ directive). If a second filename is given, it is
assumed to be the name of the listing file. Only 1if
three or four filenames are given will the object code
be directed to the file specified. And, finally, 1if
the fourth filename is given it must be a disk filename
and will be used as a temporary file for the cross
reference listing.

(continued on next page)

-—25--

Note: if an assembly needs no listing but does need an

object file, the user may specify "-" as the listing
file.

And some notes on the options:

The -A option is used to specify that the source file
is not a standard MAC/65 SAVEd file but is instead an
Ascii (or Atascii) file. This is equivalent to using
the interactive Editor mode of MAC/65 to wuse the
sequence of commands "ENTER #D..." and "ASM ,...".

The -D option is used to specify that the assembly MUST
proceed from disk to disk. If this option 1is nat
given, the source file is LOADed (or ENTERed) before
the assembly, and then the assembly proceeds with the
source in memory (generally producing improved speed of

assembly) . If, however, the source file is too large
to be assembled in memory, the user may use this option
to allow assembly of even very large programs. (And

remember, even if the source fits, the macro and symbol
tables must reside in memory during assembly also.)

NOTE: the -D option can NOT be used in conjunction with
the -A option. The source file assembled under the =D
option MUST be a properly SAVEd (tokenized) file.

EXAMPLES :

MAC65 JUNK.M65 - JUNK.COM
will assemble JUNK.M65, producing no
listing but sending the object code
to the file JUNK.COM

MAC65 TEST.LIS P: TEST.OBJ TEST.XRF
will assemble TEST.LIS, which is an
ASCII file, sending the listing to
the printer (P:) and the object to
the file TEST.OBJ. A cross reference
of all labels will be appended to the
printer listing, and the file TEST.XRF
will be used by MAC/65 as a temporary
file for this purpose.

-—26--

3.1 ASSEMBLER INPUT

The Assembler will get a 1line at a time from the
specified device or from memory. If assembling from a
device, the file must have been previously SAVEd by the
Editor. All discussions of source lines and syntax
will be at the Editor line entry level. The tokenized
(SAVEd) form is discussed in general terms under the
SAVE command, section 2.19.

Source lines are in the form:

line number + mandatory space + source statement

The source statement may be in one of the following
forms:

[label]l] [(65802 instruction) (directive)] [comment]

The following examples are valid source lines:

109 LABEL

120 ;Comment line

1490 LDA #5 and then any comment at all
159 DEY

169 ASL A double number in accumulator
178 GETNUM LDA (ADDRESS),Y

189 .PAGE "directives are legal, too"

In general, the format 1is as specified in the MOS
Technology 6502 Programing Manual. We recommend that
the user unfamiliar with 6502 assembly language
programming should purchase:

"Machine Language for Beginners" by R. Mansfield
or
"Programing the 6582" by Rodney Zaks
or
any other book which seems compatible with the
users current knowledge of assembly language.

Special Note: The assembler of MAC/65 understands only
upper case labels, op codes, etc. HOWEVER, the editor
(see expecially section 1.3) will convert all lower
case to upper case (except 1in comments and quoted
strings), so the user may feel free to type and edit in
whichever case he/she feels most comfortable with.

-—27==

c)

D)

E)

F)

G)
H)
I)

J)

INSTRUCTION FORMAT

Instruction mnemonics are as described in the MOS
Technology Programing Manual.

Immediate operands begin with "#".

"(operand,X)" and "(operand),Y" designate indirect
addressing.

"operand, X" and "operand,Y" designate indexed
addressing.

Zero page operands cannot be forward referenced.
Attempting to do so will wusually result in a
"PHASE ERROR" message.

Forward equates are evaluated within the limits of
a two pass assembler.

"*" Jdesignates the current location counter.
Comment lines may begin with ";" or "*".
Hex constants begin with "§$".

The "A" operand 1is reserved for accumulator
addressing.

Y- -

Labels must begin with an Alpha character, "@", or "?2".
The remaining characters may be as the first or may be
"g" to "9" or ".". The characters must be uppercase
and cannot be broken by a space. The maximum number of
characters in a label is 127, and ALL are significant.

Labels beginning with a question mark ("?2") are
assumed to be "LOCAL" 1labels. Such 1labels are
"visible" only to code encountered within the current
local region. Local regions are delimited by

successive occurrences of the .LOCAL directive, with
the first region assumed to start at the beginning of
the assembly source, whether or not a .LOCAL 1is coded
there or not. There are a maximum of 62 local regions

in any one assembly. Of course, if a .LOCAL is not
encountered anywhere in the assembly, then all 1labels
are accessible at all times. In any case, labels

beginning with a question mark will NOT be 1listed in
the symbol table.

The following are examples of valid labels:

TEST1 @.INC LOCATION LOC22A WHAT?
ADDRESS1.1 EXP.. SINE45TAB.

3.4 OPERANDS

An operand can be a label, a Macro parameter, a numeric
constant, the current program counter (*), "A" for
accumulator addressing, an expression, or an ASCII
character. The following are examples of the various
types of operands:

19 LDA #VALUE + label

15 ROR A ; accumulator addressing
20 .BYTE 123,$45 ; numeric constants

25 .IF £1] s Macro parameter

39 CMP #'A ; ASCII character

35 THISLOC = * ; current PC

49 .WORD PMBASE+[PLNO+4]*256 ; expression

-=20--

3.5 OPERATORS

The following are the operators currently supported by
MAC/65:

[pseudo parentheses
+ addition

- subtraction

/ division

* multiplication

& binary AND

! binary OR

- binary EOR

equality, 1logical

> greater than, logical

< less than, logical

<> inequality, 1logical

>= greater or equal, logical
= less or equal, logical
.OR logical OR

.AND logical AND

- unary minus

.NOT unary logical. Returns true (1) if ex-
pression 1is zero. Returns false (@) if
expression is non-zero.

.DEF unary logical label definition. Returns
true if label is defined.

-REF unary logical label reference. Returns
true if label has been referenced.

> unary. Returns the high byte of the
expression.

< unary. Returns the low byte of the
expression.

Logical operators will always return either TRUE (1) or
FALSE (9). However, any non-zero value is considered
true when making a conditional test.

Some of these operators perhaps need some explanation

as to their usage and purpose. The operators are thus
described in groups in the following subsections.

-=3Q0--

These are the familiar arithmetic operators. Remember,
though, that they perform 16-bit signed arithmetic and
ignore any overflows. Thus, for example, the value of
SFFO@+4096 is $OFPQ, and no error is generated.

3.5.2 Operators: & ! "

These are the binary or "bitwise" operators. They
operate on values as 16 bit words, performing
bit-by-bit ANDs, ORs, or EXCLUSIVE ORs. They are 16
bit equivalents of the 6502 opcodes AND, ORA, and EOR.

EXAMPLES: SFFOQ & S$OOFF is $0000
$23 | $OA is $000B
$PO3F "~ $P11F is $0120
3.5.3 Operators: = > < <> >= <=
These are the familiar comparison operators. They

perform 16 bit unsigned compares on pairs of operands
and return a TRUE (1) or FALSE (@) value.

EXAMPLES: 5 returns 1
5 returns @
<= 5 returns 1

v w
A A

CAUTION: Remember, these operators always work on PAIRS
of operands. The operators ">" and "<" have quite
different meanings when used as unary operators.

3.5.4 Operators: .OR .AND .NOT

These operators also perform 1logical operations and
should not be confused with their bitwise companions.
Remember, these operators always return only TRUE or
FALSE.

EXAMPLES: 3 .OR @ returns 1
3 .AND 2 returns 1
6 .AND @ returns @
.NOT 7 returns @

-—=31--

3.5.5 Operator: - (unary)

The minus sign may be used as a unary operator. Its
effect is the same as if a minus sign had been used in
a binary operation where the first operator is zero.

EXAMPLE: -2 1is SFFFE (same as 0-2)

3.5.6 Operators: < > (unary)

These UNARY operators are extremely useful when it is
desired to extract just the high order or 1low order
byte of an expression or label. Probably their most
common use will be that of supplying the high and 1low
order bytes of an address to be used in a "LDA #" or
similar immediate instruction.

EXAMPLE: FLEEP = $3456
LDA #<FLEEP (same as LDA #$56)
LDA #>FLEEP (same as LDA #$34)

This wunary operator tests whether the following label
has been defined yet, returning TRUE or FALSE as
appropriate.

CAUTION: Defining a 1label AFTER the use a .DEF which
references it can be dangerous, particularly if the
.DEF is used in a .IF directive.

EXAMPILE: .IF .DEF ZILK
.BYTE "generate some bytes"
. ENDIF
ZILK = $3000

In this example, the .BYTE string will NOT be generated
in the first pass but WILL be generated in the second
pass. Thus, any following code will almost undoubtedly
generate a PHASE ERROR.

——32--

3.5.8 Operator: .REF

This unary operator tests whether the following 1label
has been referenced by any instruction or directive in
the assembly yet; and, in conjunction with the .IF
directive, produces the effect of returning a TRUE or
FALSE value.

Obviously, the same cautions about .DEF being used
before the label definition apply to .REF also, but
here we can obtain some advantage from the situation.

EXAMPLE: .IF .REF PRINTMSG
PRINTMSG
... (code to implement
the PRINTMSG
routine)
. ENDIF

In this example, the code implementing PRINTMSG will
ONLY be assembled if something preceding this point in
the assembly has referred to the label PRINTMSG! This
is a very powerful way to build an assembly language
library and assemble only the needed routines. Of
course, this implies that the library must be .INCLUDEQ
as the last part of the assembly, but this seems like a
not too onerous restriction. In fact, 0SS has used

this technique in writing the libraries for the C/65
compiler.

CAUTION: note that in the description above it was
implied that .REF only worked properly with a .IF
directive. Not only is this restriction imposed, but
attempts to use .REF in any other way can produce
bizarre results. ALSO, .REF cannot effectively be used
in combination with any other operators. Thus, for
example,

.IF .REF ZAM .OR .REF BLOOP is ILLEGAL!

--33-—-

The only operator which can legally combined with .REF
is .NOT, as in .IF .NOT .REF LABEL.

Note that the illegal line above could be simulated
thus:

EXAMPLE: DOIT .= @

.IF .REF ZAM
DOIT .= 1

. ENDIF

.IF .REF BLOOP
DOIT .=1

. ENDIF

.IF DOIT

3.5.9 Operator: []

MAC/65 supports the use of the square brackets as
"pseudo parentheses". Ordinary round parentheses may
NOT be used for grouping expressions, etc., as they
must retain their special meanings with regards to the
various addressing modes. In general, the square
brackets may be used anywhere in a MAC/65 expression to
clarify or change the order of evaluation of the
expression.

EXAMPLES:

LDA GEORGE+5%*3 ; This is legal, but
it multiplies 3*5
and adds the 15 to
GEORGE. . .probably
not what you wanted.

LDA (GEORGE+5)*3 ; Syntax Error!l!!

ILDA [GEORGE+5]*3 ; OK...the addition
is performed before
the multiplication

LDA ([GEORGE+5]*3),Y ; See the need
for both kinds of
"parentheses"?

REMEMBER: Operators in MAC/65 expressions follow

precedence rules. The square brackets may be used to
override these rules.

——34--

3.6 ASSEMBLER EXPRESSIONS

An expression is any valid combination of operands and
operators which the assembler will evaluate to a 16-bit
unsigned number with any overflow ignored. Expressions
can be arithmetric or 1logical. The following are
examples of valid expressions:

10 «WORD TABLEBASE+LINE*COLUNM

55 .IF .DEF INTEGER .AND [VER=1 .OR VER >=3]
200 .BYTE >EXPLOT-1, >EXDRAW-1, >EXFILL-1
300 LDA # < [< ADDRESS"-1] + 1

3085 CMP # -1

400 CPX # 'A

4490 INC 21+l

3.7 OPERATOR PRECEDENCE

The following are the precedence levels (high to low)
used in evaluating assembler expressions:

[] (pseudo parenthesis)

> (high byte), < (low byte), .DEF, .REF, - (unary)
.NOT

*)

+, -

&’ lI .

=, >, <, <=, >=, < (comparison operators)
.AND

.OR

Operators grouped on the same 1line have equal
precedence and will be executed in left-to-right order
unless higher precedence operator(s) intervene.

—=35--

3.8 NUMERIC CONSTANTS

MAC/65 accepts three types of numeric constants:
decimal, hexadecimal, and characters.

A decimal constant is simply a decimal number in the
range @ through 65535; an attemp to use a decimal
number beyond these bounds may or may not work and will
certainly produce unexpected and undesired results.

EXAMPLES: 1 234 65200 32767
(as used:) .BYTE 2,4,8,16,32,64
LDA #1

A hexadecimal constant consists of a dollar sign
followed by one to four 1legal hexadecimal digits

(,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F). Again, usage of
more than four digits may produce unwanted results.
EXAMPLES : $1 SEA S$FF@O STFFF
(as used:) .WORD $100,$200, $400, $800, $1000
AND #S$7F

A character constant is an apostrophe followed by any
printable or displayable character. The value of a
character constant is the ASCII (or ATASCII) value of
the character following the apostrophe.
EXAMPLES: 'A ‘¥ ' ‘=
(as used:) CMP #'=
CMP #'Z+1 ; same as #$5B

3.9 STRINGS

Strings are of two types. String 1literals (example:
"This 1is a string literal"), and string variables for
Macros (example: %$5).

Example: 10 .BYTE "A STRING OF CHARACTERS"

or
Example: 20 .SBYTE %$1

-—=36--

CHAPTER 4: DIRECTIVES

As noted in Section 3.1, the instruction field of an
assembled 1line may contain an assembler directive
(instead of a valid 6502 instruction). This chapter
will list and describe, in roughly alphabetical order,
all the directives 1legal under MAC/65 (excepting
directives specific to macros, which will be discussed
separately in Chapter 5).

Directives may be classified into three types: (1)
those which produce object code for use by the
assembled program (e.g., .BYTE, .WORD, etc.); (2) those
which direct the assembler to perform some task, such
as changing where in memory the object code should go
or giving a value to a label (e.g., *=, =, etc.); and
(3) those which are provided for the convenience of the
programmer, giving him/her control over listing format,
location of source, etc. (e.qg., .TITLE, .OPT,
.INCLUDE) .

Obviously, we <could in theory do without the type 3
directives; but, as you read the descriptions that
follow, you will soon discover that in practice these
directives are most useful in helping your 6502
assembly language production. Incidentally, all the
macro-specific directives could presumably be
classified as type 3.

Three of the directives which follow (.PAGE, .TITLE,
and .ERROR) allow the user to specify a string
(enclosed in quotes) which will be printed out. For
these three directives, the user is 1limited to a
maximum string length of 70 characters. Strings longer
than 70 characters will be truncated.

-—37--

Section 4.1

directive: *=

purpose: change current origin of the assembler's
location counter

usage: [label] *= expression

The *= directive will assign the value of the
expression to the 1location counter. The expression
cannot be foward referenced. *= must be written with
no intervening spaces.

Example: 50 *= $1234 ; sets the location
counter to $1234

Another common usage of *= is to reserve space for data
to be filled in or used at run time. Since the single
character "*" may be treated as a label referencing the
current location counter value, the form "*= *+exp" is

thus the most common way to reserve "exp" bytes for
later use.

Example: 7@ LOC *= *+1 ; assigns the current
value of the location
counter to LOC and
then advances the
counter by one.

(Thus LOC may be thought of as a one byte
reserved memory cell.)

CAUTION: Because any label associated with this
directive is assigned the value of the location counter
BEFORE the directive is executed, it is NOT advisable

to give a label to "*=" unless, indeed, it 1is Dbeing
used as in the second example (i.e., as a memory
reserver).

NOTE: Some assemblers use "ORG" instead of "*=" and may
also have a separate directive (such as "DS" or "RMB")
for '"defining storage" or ‘"reserving memory bytes".
Use caution when converting from and to such
assemblers; pay special attention to label usage. When
in doubt, move the label to the next preceding or next
following line, as appropriate.

-=38--

Section 4.2

directive: =

purpose: assigns a value to a label

usage: label = expression

The = directive will equate "label" with the value of
the expression. A "label" can be equated via "=" only

once within a program.
Example: 10 PLAYERG = PMBASE + $200
Note: If a "label" is equated more than once, "label"

will contain the value of the most recent equate. This
process, however, will result in an assembly error.

Section 4.3

directive: .=
purpose: assign a possibly transitory value to
a label
usage: label .= expression
The .= directive will SET "label" with the value of the

expression. Using this directive, a "label" may be set
to one or more values as many times as needed in the
same program.

EXAMPLE:

19 LBL .= 5

20 LDA #LBL ; same as LDA #5
30 LBL .= 3+'A

40 LDA #LBL ; same as LDA #68

CAUTION: A label which has been equated (via the "="
directive) or assigned a value through usage as an
instruction label may not then be set to another value
by ".=".

--39--

Section 4.4

directive: .BYTE [and .SBYTE]

purpose: specifies the contents of individual
bytes in the output object

usage:
[label] .BYTE [+exp,] (exp)(strvar) [, (exp)(strvar) ...]
[label] .SBYTE [+exp,] (exp)(strvar) [, (exp)(strvar) ...]

The .BYTE and .SBYTE directives allow the user to
generate individual bytes of memory image in the output

object. Expressions must evaluate to an 8-bit
arithmetic result. A strvar will generate as many
bytes as the 1length of the string. .BYTE simply

assembles the bytes as entered, while .SBYTE will
convert the bytes to Atari screen codes (on the Atari)
or to characters with their most significant bit on (on
the Apple II).

Example: 100 .BYTE "ABC" , 3 , -1

This example will produce the following output bytes:
41 42 43 @3 FF.

Note that the negative expression was truncated to a
single byte value.

Example: 50 .SBYTE "Hello!"

On the Atari, this example will produce the following
screen codes:

28 65 6C 6C 6F Q1.
On the Apple II, the same example would produce the
following bytes:

C8 E5 EC EC DF Al.

SPECIAL NOTE: Both .BYTE and .SBYTE allow an additive
Modifier. A Modifier is an expression which will be

added to all of bytes assembled. The assembler
recognizes the Modifer expression by the presence of
the "+" character. The Modifier expression will not

itself be generated as part of the output.
Example: 5 .BYTE +$80 , "ABC" , -1

This example will produce the following bytes:
Cl C2 C3 7F.

Y, -

Example: 199 .BYTE +$8@, "DEF", 'G+$80
This example will produce: C4 C5 C6 47.

(Note especially the effect of adding $80 via the
modifier and also adding it to the particular byte.
The result is an unchanged byte, since we have added a
total of 256 ($10@), which does not change the lower
byte of a 16 bit result.)

Example: 55 .SBYTE +$40 , "Al2"

This example will produce: 61 51 52 Atari
@1 F1 F2 Apple II.

Example: 80 .SBYTE +$C@, 'G-$C@, "REEN"

This example will produce: 27 F2 E5 E5 EE Atari
C7 92 85 85 S8E Apple II.

Note: .SBYTE performs its conversions according to a
numerical algorithm and does NOT special case any
control characters, including BELL, TAB, etc.--these
characters ARE converted.

Section 4.5

directive: .CBYTE

purpose: same as .BYTE except that the most
significant bit of the last byte of a
string argument is inverted

usage:
[label] .CBYTE [+exp,] (exp)(strvar) [, (exp)(strvar)...]

The .CBYTE directive may often be used to advantage
when building tables of strings, etc., where it is
desirable to indicate the end of a string by some
method other than, for example, storing a following
zero byte. By inverting the sense of the upper bit of
that last character of the string, a routine reading
the strings from the table could easily do a BMI or BPL
as it reads each character.

Example: ERRORS .CBYTE 1, "SYSTEM"

The line shown would produce these object bytes:
@1 53 59 53 54 45 CE

(continued on next page)

—4]1--

(.CBYTE, continued)

And a subroutine might access the characters thus:

LDY #1
LOOP LDA ERRORS,Y
BMI ENDOFSTRING
INY
BNE LOOP
ENDOFSTRING
Section 4.6
directive: .DBYTE [see also .WORD]
purpose: specifies Dual BYTE values to be

placed in the output object.
usage: [label] .DBYTE exp [,exp ...]
Both the .WORD and .DBYTE directives will put the value

of each expression into the object code as two bytes.
However, while .WORD will assemble the expression(s) in

6502 address order (least significant byte, most
significant byte), .DBYTE will assemble the
expression(s) in the reverse order (i.e., most

significant byte, least significant byte).

.DBYTE has limited usage in a 6502 environment, and it
would most probably be used in building tables where
its reversed order might be more desirable.

EXAMPLE : .DBYTE §1234,1,-1

produces: 12 34 @0 @1 FF FF
.WORD $1234,1,-1
produces: 34 12 @1 00 FF FF

Section 4.7

directive: .ELSE

purpose: SEE description of .IF for purpose and usage.

—42--

Section 4.8

directive: .END
purpose: terminate an in-memory assembly
usage: [label] .END

The .END directive will terminate the assembly ONLY if
the source is being read from memory. Otherwise, .END
will have no effect on assembly.

This "no effect" is handy in that you may thus .INCLUDE
file(s) without having to edit out any .END statements
they might contain. 1In truth, .END 1is generally not
needed at all with MAC/65.

Section 4.9

————— L___
directive: .ENDIF
purpose: terminate a conditional assembly block

SEE description of .IF for usage and details.

Section 4.10

directive: .ERROR
purpose: force an assembler error and message
usage: [label]l .ERROR [string]

The .ERROR directive allows the user to generate a
pseudo error. The string specified by .ERROR will be
sent to the screen as if it were an assembler-generated
error. The error will be included 1in the count of
errors given at the end of the assembly.

Example: 100 .ERROR "MISSING PARAMETER!"

——43-—-

Section 4.11

directive: .FLOAT

purpose: specifies floating point constant values
to be placed in the output object.

usage:
Tlabel] .FLOAT floating-constant [,floating-constant..

This directive would normally only be used by the
programmer wishing to access the built-in floating
point routines of the Atari Operating System ROM's (or
similar routines as supplied with the BASIC XL package
from 0SS for Apple II or equivalent machines).

Each floating point constant following the .FLOAT
directive will produce 6 bytes of output object code,

in a format consistent with the above-mentioned
floating point routines. In particular, the first byte
contains the exponent portion of the number, in

excess-64 notation representing powers of 10@8. The
upper bit of the exponent byte designates the sign of
the mantissa portion. The following 5 bytes are the
mantissa, in packed BCD form, normalized on a byte
boundary (consistent with the powers-of-10@ exponent).

EXAMPLES:
.FLOAT 3.14156295,-2.718281828

The above example would produce the following bytes in
the output object code:

40 03 14 15 62 95

Cg 27 18 28 18 28

NOTE: Only floating point constants, NOT expressions,
are legal as operands to .FLOAT. Generally, this is
not a problem, since the user may perform any constant
arithmetic on a calculator (or in BASIC) before placing
the result in his/her MAC/65 program.

——44--

Section 4.12

directive: .IF

purpose: chooses to perform or not perform some
portion of an assembly based on the
"truth" of an expression.

usage: .IF exp
[.ELSE]
.ENDIF
usage note: there may be any number of lines of

assembly language code or directives
between .IF and .ELSE or .ENDIF and
similarly between .ELSE and .ENDIF.

The .IF, .ELSE, and .ENDIF directives control
conditional assembly.

When a .IF is encountered, the following expression is
evaluated. If it is non-zero (TRUE), the source lines
following .IF will be assembled, continuing until an
.ELSE or .ENDIF is encountered. If an .ELSE is
encountered before an .ENDIF, then all the source lines
between the .ELSE and the corresponding .ENDIF will not
be assembled. If the expression evaluates to =zero
(false), the source lines following .IF will not be
assembled. Assembly will resume when a corresponding
.ENDIF or an .ELSE is encountered.

The .IF-.ENDIF and .IF-.ELSE-.ENDIF constructs may be
nested to a depth of 14 levels. When nested, the
"search" for the "corresponding" .ELSE or .ENDIF skips
over complete .IF-.ENDIF constructs if necessary.

Examples:

10 LIF 1 ; non-zero, therefore true
20 LDA # '? ; these two lines will

39 JSR CHAROUT : be assembled

49 .ENDIF

——45--

Section 4.12 (.IF continued)

EXAMPLE:

10 IF @ ; expression is false
11 LDX # >ADDRESS ; these two lines will
12 LDY # <ADDRESS ; not be assembled

13 LIF 1

14 -.ERROR "can't get here"

15 ; likewise, this can't be assembled because it
16 ; is "nested" within the .IF @ structure

17

18 .ELSE

19

29 LDX # <ADDRESS ; these lines will

21 LDA # >ADDRESS : be assembled

22 . ENDIF

23 JSR PRINTSTRING ; go print the string

Note: The assembler resets the conditional stack at the
begining of each pass. Missing .ENDIF(s) will NOT be
flagged.

—46--

Section 4.13

directive: . INCLUDE

purpose: allows one assembly language program to
request that another program be included
and assembled in-line

usage: .INCLUDE #filespec

usage note: this directive should NOT have a label
The .INCLUDE directive causes the assembler to begin
reading source 1lines from the specified "filespec".
When the end of "filespec" is reached, the assembler
will resume reading source from the previous file (or
memory) .

CAUTION: The .INCLUDEd file MUST be a properly SAVE4Q
MAC/65 tokenized program. It can NOT be an ASCII file.
Note: A .INCLUDED file cannot itself contain a .INCLUDE
directive.

EXAMPLE: .INCLUDE #D:SYSEQU.M65

This example line will include the system equates file
supplied by OSS.

-——47—-

Section 4.14

directive: .LOCAL

purpose: delimits a local label region

usage: .LOCAL

usage note: this directive should not be associated

with a label.

This directive serves to end the previous local region
and begin a new local region. It is assumed that the
first local region begins at the beginning of the
assembly, and the last local region ends at the end of
the assembly.

Within each local region, any label beginning with a
question mark ("?") is assumed to be a "local label”.
As such, it is invisible to code, equates, references,
etc., outside of its own local region.

This feature 1is especially handy when using automatic
code generators or when several people are working on a
single project. In both these cases, the coder may use
labels beginning with "?" and be sure that there will
be no duplicate label errors produced.

EXAMPLE: 180 *= $4000
11 LDX #3 ; establish a counter
12 ?LOOP

13 LDA FROM,X ; get a byte
14 STA TO,X ; put a byte

15 DEX more to do?

16 BPL ?LOOP ; goes to label on line 12
17 ;

18 .LOCAL ;s another local region!
19 ;

20 ?LOOP = 6

21 ;

22 LDY #?LOOP ; same as LDY #6

23 (etc.)

FEATURE: Local labels MAY be forward referenced, just
like any other label.

NOTE: Local labels do not appear in the symbol table
listing.

-—48--

Section 4.15

directive: .OPT
purpose: selects various assembly control OPTions
usage: .OPT option

(or)

.OPT NO option

usage notes: the valid options are as follows:
LIST ERR EJECT OBJ
MLIST CLIST NUM WAIT

The .OPT directive allows the user to control certain
functions of the assembly. Generally, coding ".OPT
option" will invoke a feature or option, while ".OPT NO
option" will "turn off" that same feature.

The following are the descriptions of the individual
options:

LIST controls the entire assembly listing.
NO LIST turns off all listing except error lines.

ERR will determine if errors are returned to the
user in the listing and/or the screen.
NO ERR is thus dangerous.

EJECT controls the title and page listing.
NO EJECT only turns off the automatic page
generation; it has no effect on .PAGE requests.

OBJ determines if the object code is written to the
device/memory.
NO OBJ is useful during trial assemblies.
OBJ is NECESSARY when the object code is to
placed in memory.

NUM will auto number the assembly listing instead of
using the user line numbers. NUM will begin at 100
and increment by 1.
NUM is generally not useful except for final,
"pretty" assemblies.

—=49--

Section 4.15 (.OPT continued)

MLIST controls the listing of Macro expansions. NO
MLIST will list only the lines within a Macro expan-
sion which generate object code. MLIST will expand
the entire Macro.
NO MLIST is extraordinarly useful in producing
readable listings.

CLIST controls the listing of conditional assembly.
NO CLIST will not list source lines which are
not assembled.

CLIST will 1list all lines within the
conditional construct.

WAIT will cause assembly to halt before printing
the page number and title string. Assembly will
resume when the console START key is pressed (or
RETURN key on Apple II).
WAIT is generally useful only with printers
not capable of handling continuous paper.

NOTE: Unless specified otherwise by the user, all of

the options will assume their default settings. The
default settings for .OPT are:

LIST listing IS produced

ERR errors are reported

EJECT pages are numbered and ejected
NO NUM use programmer's line numbers
MLIST all macro lines are listed
CLIST all failed conditionals 1list
NO WAIT use continuous paper, etc.

NO OBJ SEE CAUTION 111!

CAUTION: The OBJ option is handled in a special way:
IF assembling to memory the object default is NO OBJ.
IF assembling to a device the object option is OBJ.

NOTE: Macro expansions with the NO NUM option will not
be listed with line numbers.

——50-—

Section 4.16

directive: . PAGE

purpose: provides page headings and/or moves
to top of next page of listing

usage: .PAGE [string]

usage note: no label should be used with .PAGE

The .PAGE directive allows the user to specify a page
heading. The page heading will be printed below the
page number and title heading.

.PAGE will eject the next page, and prints the most
recent title and page headings.

Example: 300 .PAGE "EXECUTE LABEL SEARCH"
Note: The assembler will automatically eject and print

the current title and page headings after 61 lines have
been listed.

Section 4.17

directive: .SBYTE
purpose: produces "screen" bytes in output object
usage: see .BYTE description, section 4.4

—=51—-

Section 4.18

directive: .SET

purpose: controls various assembler functions
usage: .SET dcnuml , dcnum2

The .SET directive allows the user to change specific
variable parameters of the assembler. The dcnuml
specifys the parameter to change, and dcnum2 is the

changed value. The following table summarizes the
various .SET parameters. Defaults for each parameter
are given in parentheses, followed by the allowable
range of values.

dcnuml dcnum?2 function

[4] (4) 1-4 sets the .BYTE and .SBYTE
listing format. 1 to 4
bytes can be printed in
the object code field of
the listing.

1 (9) ©0-31 sets the assembly listing
left margin. The speci-
fied number is the number
of spaces which will be
printed before the assem-
bled source line.

2 (80) 40-132 set width for listing,
adjust for your printer.

3 (12) @,12 form feed select. @ implies
no form feed on printer--use
multiple line feeds. Any
other used as form feed char.

4 (66) any number of lines per page for

—=52-=

listing.

Section 4.19

directive: .TAB
purpose: sets listing "tab stops" for readability
usage: .TAB dcnuml ,dcnum2 ,dcnum3

The .TAB directive allows the user to specify the
starting column for the 1listing of the instruction
field, the operand field, and the comment field
respectively. The defaults are 8,12, 20.

Example: 200 .TAB 16,32,50
1200 .TAB 8,12,20 ; restores defaults

Section 4.20

directive: .TITLE
purpose: specify assembly listing heading
usage: .TITLE string

The .TITLE directive allows the user to specify a
assembly title heading. The title string will be
printed at the top of every page following the page
number.

Section 4.21

directive: .WORD [see also .DBYTE]
purpose: place 16 bit word values in output object
usage: [1abel] .WORD exp [,exp ...]

The .WORD and .DBYTE directives both put the value of
each following expression into the object code as two
bytes. But where .WORD will assemble the expression(s)
in 6502 address order (least significant byte, most
significant byte), .DBYTE will assemble the
expression(s) in reverse order (most significant byte,
least significant byte).

Generally, for 6502 programs, .WORD is the more useful
of the two, and 1is more compatible with the code
produced by assembled 6582 instructions.

EXAMPLE: .DBYTE §$1234,1,-1
produces: 12 34 @0 @1 FF FF
-WORD $1234,1,-1
produces: 34 12 @1 @0 FF FF
—=53—-

——54—-—

CHAPTER 5: MACRO FACILITY

A MACRO DEFINITION is a series of source lines grouped
together, given a name, and stored in memory. When the
assembler encounters the corresponding name in the
instruction (opcode, directive) column, the saved lines
will be substituted for the Macro name and assembled.
Effectively, this allows the user to define and then
use new assembler instructions. Depending upon the
code stored in its definition, a macro might be thought
of as either an "extra" directive or a "new" opcode.

The process of finding a macro in the table when its
name is used, and then assembling the code it was
defined with, is called a MACRO EXPANSION. The unique
facility of Macro Expansions is that they may have
PARAMETERS passed to them. These parameters will be
substituted for the "formal parameters" during the
expansion of the Macro.

The use (expansion) of a Macro in a program requires
that the Macro first be defined. To the set of
directives already discussed in chapter 4, then, must
be added two new directives used for defining new
macros:

+MACRO

.ENDM

This chapter will first discuss these two directives,
show how to invoke a macro (cause its expansion) and
then examine the use of formal and calling parameters,
including string parameters.

-=55-—

Section 5.1

directive: . ENDM

purpose: end the definition of a macro

usage: . ENDM

usage note: generally, the .ENDM directive should

not be labelled.

This directive 1is wused solely to terminate the
definition of a macro. When invoking a macro, do NOT
use this directive. Basically, the concept of macros
requires that all source 1lines between the .MACRO
directive and the .ENDM directive be stored in a
special section of memory (the macro table). Thus,
encountering an improperly paired .ENDM directive is
considered a severe assembly error. See the
description of .MACRO for further information.

—-56--

Section 5.2

directive: .MACRO

purpose: initiates a macro definition

usage: +«MACRO macroname

usage note: "macroname" may be any valid MAC/65

label. It MAY be the same name as
a program label (without conflict).

The .MACRO directive will cause the lines following to
be read and stored under the Macro name of "macroname".
The definition is terminated with the .ENDM directive.

All instructions except another .MACRO directive are
valid Macro source lines. A Macro definition can NOT
contain another Macro definition.

A simple example of a MACRO DEFINITION:
19 .MACRO PUSHXY ; The name of this Macro is "PUSHXY"

11 ; When this Macro is used (expanded), the following
12 ; instructions will be substituted for "PUSHXY"

13 and then assembled.

14 TXA

15 PHA

16 TYA

18 PHA

19 .ENDM ; The terminator for "PUSHXY"

SPECIAL NOTE: ALL 1labels used within a macro are
assumed to be local to that macro. MAC/65 accomplishes
this by performing a "third pass" of the assembly
during macro expansions. Thus, a label defined within
a macro expansion is available to code which follows
the macro; but another expansion of the same macro with
the same label will reset the labels value. The action
is similar to the ".=" directive, except that forward
references to internal macro labels ARE legal.

An example follows, on the next page.

——57--

Section 5.2 (.MACRO continued)

EXAMPLE:
28 .MACRO MOVEG6
21 LDX #5
22 LOOP

23 LDA FROM,X
24 STA TO,X

25 DEX
26 BPL LOOP
27 .ENDM

The label "LOOP" is local to this macro usage, and yet
it may (if needed) be referenced outside the macro
expansion (although not in another macro expansion).
(Note that if a macro label is only defined once by a
single macro usage, the effect is the same as if the
label were defined outside any macro.) Although the
.LOCAL-produced 1local regions may be used by and with
macros, the user is limited to a maximum of 62 1local
regions. No such restriction applies to the number of
possible local usages of a label in a macro expansion.

--58-—

5.3 MACRO EXPANSION, PART 1

As stated above, a macro is expanded when it is used.
And the "use" of a macro is simplicity itself.

To invoke (use, expand--all equivalent words) a macro,
simply place its name in the opcode/directive field of
an assembler line. Remember, though, that macros MUST
be defined before they can be used.

For example, to invoke the two macros defined in
examples in the previous section (5.2), one could
simply type them in as shown and then enter and
assemble:

EXAMPLE:
2000 ALABEL PUSHXY

2010 ; and pushxy generates the code
2020 ; TXA PHA TYA PHA

2039 ;

20490 MOVE®6

2050 ; similarly, MOVE6 is used
2060 JMP LOOP

2070 ; and LOOP refers to the label
2080 defined in the MOVE6 macro

Note that the use of a label on the macro invocation is
optional. The label is assigned the current value of
the 1location counter and 1is not dependent upon the
contents of the macro at all.

There are many more "tricks" and features usable with
macros, but we will continue this discussion after an
examination of macro parameters as used in a macro
definition.

—=59—-

5.4 MACRO PARAMETERS

Macro parameters can be of two types: expressions
(which are evaluated as 16 bit words) or strings. The
parameters are passed via the macro expansion

(invocation, wuse, etc.) and are stacked in memory in
the order of occurance. A maximum of 63 parameters can
be stacked by a macro expansion, including expansions

within expansions.

However, before a parameter can be wused in an
expansion, there must be a way of accessing it in the
MACRO DEFINITION. Parameters are referenced in a macro
definition by the character "%" for expressions and the
characters "%$" for strings. The value following the
character refers to the actual parameter number.

SPECIAL NOTE: The parameter number can be represented
by a decimal number (e.g., %2) or may be a label
enclosed by parentheses (e.g., %$(LABEL)). Of course,
strings may be similarly referenced, as in %$(INDEX) or
2S81.

Examples:

10 LDA # >%1 ; get the high byte of parameter 1.
15 CMP (%11 ,X) ; yes, that really is number 11.
20 .BYTE %2-1 ; value of parameter 2 less 1.
NOTE: the above is NOT equivalent to using
parameter %1. Parameter substitution

has highest precedence!

25 SYMBOL .= SYMBOL + 1
39 LDX # -%(SYMBOL) ; see the power available?
49 .BYTE %$1,%$2,0 ; string parameters, ending 0.

Remember, in theory the parameters are numbered from 1
to 63. 1In reality, the TOTAL number of parameters in
use by all active (nested) macro expansions cannot
exceed 63. This does NOT mean that you can have only
63 parameter references in your macro DEFINITIONS. The
limit only applies at invocation time, and even then
only to nested (not sequential) macro usages.

—60-—

SPECIAL NOTE: In addition to the "conventional"
parameters, referred to by number, parameter zero (%0)
has a special meaning to MAC/65. Parameter zero
allows the user to access the actual NUMBER of real
parameters passed to a macro EXPANSION.

This feature allows the user to set default parameters
within the Macro expansion, or test for the proper
number of parameters in an expansion, or more. The
following example illustrates a possible use of %@ and
shows usage of ordinary parameters as well.

EXAMPLE:

19 +MACRO BUMP

11

12 ; This macro will increment the specified word
13 ;

14 ; The calling format is:

15 ; BUMP address [,increment 1J].

16 ; If increment is not given, 1 is assumed

17 ;

18 .IF %¥0=0 .OR %0@>2

19 .ERROR "BUMP: Wrong number of parameters"
20 .ELSE

21 ;

22 ; this is only done if 1 or 2 parameters

23 ;

24 .IF %0@>1 ; did user specify "increment" ?
25 ; this is assembled if user gave two parameters
26 LDA %1 ; add "increment" to "address".
27 CLC

28 ADC # <%2 ; low byte of the increment

29 STA %1 : low byte of result

39 LDA %1 +1 ; high byte of location

31 ADC # >%2 ; add in high byte of increment
32 STA %1 +1 ; and store rest of result

33 ;

34 .ELSE

35 ; this is assembled if only one parameter given
36 INC %1 : just increment by 1.

37 BNE SKIPHI ; implicitly local label

38 INC %1 +1 ; must also increment high byte
39 SKIPHI

49 .ENDIF ; matches the .IF %0>1 (line 24)
41 .ENDIF ; matches the .IF of line 18

42 . ENDM ; terminator.

—61--

5.5 MACRO EXPANSION, PART 2

We have shown how macro definitions may include
specifications of particular parameters (the
specifications might also be called "formal
parameters"). This section will show how to pass
actual parameters (equivalently "value parameters",
"calling parameters", etc.) to the definition.

The concept is simple: on the same line as the macro

invocation (by use of its name, of course) and
following the macro's name, the user may place
expressions (or strings, see section 5.6). MAC/65

simply assigns each of these values a number, from 1 to
63, and then, during the macro expansion, replaces the
formal parameters (%1, %2, %(label), etc.) with the
corresponding values.

Does that sound too complicated? Internally, it is.
Externally, it is as easy as this:

EXAMPLE :

Assume that the BUMP macro has been defined (as above,
section 5.4), then the user may invoke it as needed,
thus:

109 ALABEL BUMP A.LOCATION
110 INCR .= 7
120 BUMP A.LOCATION, 3
130 BUMP A.LOCATION, INCR-2
140 BUMP
150 BUMP A.LOCATION, INCR, 7
160 A.LOCATION .WORD @
note: lines 140 and 150 will each cause the
BUMP error to be invoked and printed

Of course, you can also do silly things, which will no

doubt produce some pretty horrible (and hard to debug)
code:

170 BUMP INCR,A.LOCATION
will try to increment address 7 by something
180 BUMP PORTS
assuming that PORTS5 is some hardware port,
strange and wonderful things could happen

-—62--

5.6 MACRO STRINGS

String parameters are represented in a macro definition
by the characters "%$". All numeric parameters have a
string counterpart, not all of which are useful. All
string parameters have a numeric counterpart (their
length).

As a special case, %$0 always returns the macro NAME.

The following table shows the various string and
numeric values returned for a given parameter:

As appears in string returned numeric value
Macro call: (in quotes): returned:
"A String 1 2 3" "A String 1 2 3" length of string
NUMERICSYMBOL "NUMERICSYMBOL" value of label
SYMBOL+1 "SYMBOL" value of expr
254 the string of parameter 4 value of orginal
(above would be used by a macro calling another macro)
-LABEL "LABEL" value of expr
GEORGE*HARRY+PETE undefined value of expr
.DEF CIO "CI10" value of expr
2 + 2 * 65 undefined value of expr

——63--

A Macro string example:

10 «MACRO PRINT

11 ;

12 ; This Macro will print the specified string,
13 ; parameter 1, but if no parameter string is
14 ; passed, only an EOL will be printed.

15 ;

16 ; The calling format is: PRINT [string]
17

18 .IF % =1 ; is there a string to print?
19 JMP PASTSTR ; yes, jump over string storage
20 STRING .BYTE %$1,EOL ; put string here.

21 ;

22 PASTSTR

23 LDX #>STRING ; get string address into X&Y
24 LDY #<STRING ; for JSR to 'print string'
25 JSR STRINGOUT

26 .ELSE

27 ; no string...just print an EOL

28 LDA #EOL

29 JSR CHAROUT

39
31 .ENDIF
32 . ENDM ; terminator.

To invoke this macro, then, the following calls would
be appropriate:

100 PRINT "this is a string”
110 PRINT
120 PRINT message

999 message .BYTE "another string",EOL
note that, in line 120, only a single word (1label,
actually) is allowed.

——64--

5.7 SOME MACRO HINTS

Each person will soon develop his/her own style of
writing macros, but there are certain common sense
rules that we all should heed.

A. When a macro is defined, its entire definition must
be stored in memory (in a macro table). Since memory
space is obviously finite, it is a good idea to keep
macros as short as possible. One way to do this is to
avoid putting comments (remarks) within the body of the
macro. If you do document your macros (and we hope you
do), place the comments in the file BEFORE the .MACRO
directive. The assembler will then do nothing at all
with them and they will occupy no additional space.

B. Don't use a caller's macro parameter unless you are
sure that it is there. Using a parameter that the
caller 1left out will produce a MACRO PARAMETER error.
Depending upon the macro definition, this may or may
not also produce undesired results. An example of
unsafe coding:

.IF %0>1 .OR %2=0
.WORD %1
.ENDIF

The danger here occurs if the caller invokes the macro
with only one parameter. Since %2 is non-existent (and
hence undefined), the sub-expression "%2=0" is indeed
true and the effect of "%0>1" is nullified. Of course,
the lack of parameter 2 will produce a "PARAMETER
ERROR", but it will already be too late. A better
coding of the above would be:

IF %0>1
.IF %2<>0
«WORD %1
.ENDIF
.ENDIF

C. Even though labels defined within macros are 1local
to each invocation, they are still "visible" outside
the macro(s). Thus, it might be a good idea to have a
special form for 1labels defined in macros and avoid
that form outside macros. The macro 1library supplied
with MAC/65 uses 1labels beginning with "@" as local
labels to macros.

——65--

5.8 A COMPLEX MACRO EXAMPLE

The following set of macros is designed to demonstrate
several of the points made in the preceding sections.
Aside from that, though, it is a good, usable macro
set. Study it carefully, please. (The 1line numbers
are omitted for the sake of brevity. Any numbers will
do, of course.)

the first macro, "@CH", is designed to load an
IOCB pointer into the X register. If passed a
value from @ to 7, it assumes it to be a constant
(immediate) channel number. If passed any other
value, it assumes it to be a memory location which
contains the channel number.

e me o~ ome e

NOTE that these comments are outside the body of
; the macro, thus saving valuable table space.

.MACRO @CH

LJIF 3157

LDA %1 ; channel # is in memory cell
ASLA

ASLA

ASLA

ASLA : times 16
TAX

.ELSE

LDX #%1*16

.ENDIF

.ENDM

: this next macro, "@CV", is designed to load a
Constant or Value into the A register. If
passed a value from @ to 255, it assumes it

to be a constant (immediate) value. If passed
any other value, it assumes it to be a memory
location (non-zero page).

.MACRO @CV
.IF %1<256
LDA #3%1
.ELSE

LbDA %1
.ENDIF

. ENDM

——66—-—

The third macro is "@FL", designed to establish
a filespec. 1If passed a literal string, QFL
will generate the string in line, jumping around
it, and place its address in the IOCB pointed to
by the X register. 1If passed a non-zero page
label, @FL assumes it to be the label of a valid
filespec string and uses it instead.

.MACRO @FL
.IF %1<256
JMP *+31+4

@F .BYTE %$1,0
LDA #<@F
STA ICBADR, X
LDA #>Q@F
STA ICBADR+1,X
.ELSE
LDA #<%1
STA ICBADR, X
LDA #>%1
STA ICBADR+1,X
.ENDIF
.ENDM

-—67--

The main macro here is "XIO", a macro to

implement a simulation of BASIC's XIO command.

The general syntax of the usage of this macro is:
XIO command,channel [,auxl,aux2] [,filespec]

where channel may be a constant from # to 7
or a memory location.
where command, auxl, and aux2 may be a constant
from @ to 255 or a non-zero page location
where filespec may be a literal string or
a non-zero page location
if auxl and aux2 are omitted, they are assumed
to be zero (you may not omit aux2 only)
if the filespec is omitted, it is assumed to
be "S:"

.MACRO XIO
.IF %0<2 .OR %0>5
.ERROR "XIO: wrong number of parameters"
.ELSE
QCH %2
QCv %1
STA ICCOM,X ; command
.IF %0>=4
QCvV %3
STA ICAUX1,X
QCv %4
STA ICAUX2,X
.ELSE
LDA #0
STA ICAUX1,X
STA ICAUX2,X
. ENDIF
.IF %0=2 .OR %0=4
@FL "S:"
.ELSE

@FPTR .= %0

@FL %$(@FPTR)
.ENDIF
JSR CIO
.ENDIF
.ENDM

——68=--

Did you follow all that? The trick is that, the way
"XIO" 1is specified, it is legal to pass it 2, 3, 4, or
5 arguments; but each of those numbers represents a
unique combination of parameters, to wit:

XI10 command, channel

XIO command, channel, filespec

XI0 command, channel,auxl,aux?2

XIO command, channel, auxl, aux2, filespec

This 1is not a trivial macro example. Perhaps you will
not have occasion to write something so complex. But
MAC/65 provides the tools to do many things if you need
them.

-——69--

---this page intentionally left blank--

. ¥

CHAPTER 6: COMPATIBILITY

There are many different 6502 assemblers available, and
it seems that each has a few foibles, bugs, or whatever
that are uniquely its own (and, of course, they are
called "features" by their promoters). Well, MAC/65 is
no different.

This chapter is devoted to telling you of some of the
things to watch out for when converting from another
6502 assembler to MAC/65. We will restrict ourselves
to such things as directives and operators. We will
NOT go into a discussion of how to convert the actual
6502 opcodes (equivalently: instructions, mnemonics,
etc.). We consider it mandatory that any good 6582
assembler will follow the MOS Technology standard in
this regard.

Example: We know of some antique 6502 assemblers that
specify the various addressing modes via special
opcodes. Thus the conventional "LDA #3" becomes
"LDAIMM 3" and "LDA (ZIP),Y" Dbecomes "LDAIY ZIP".
Unfortunately, there was never any standard established
for such distortions, so we shall ignore them as
antique and outmoded. In any case, unless you are
entering a program out of an older magazine, you are
unlikely to run into one of these strange beasts.

The rest of this chapter pays homage to our birthright.
MAC/65 is a direct descendant of the Atari
assembler/editor cartridge (via EASMD). As much as
possible, we have tried to keep MAC/65 compatible with
the cartridge. Unfortunately, 1in the interest of
providing a more powerful tool, a few things had to be
changed. The next section of this chapter, then,
enumerates these changes.

6.1 ATARI'S ASSEMBLER/EDITOR CARTRIDGE

This section presents all known functional differences
between the Atari cartidge and MAC/65. Obviously,
MAC/65 also has many more features not enumerated here,
but they will not impact the transferrance of code
originally designed for the cartridge (or, for that
matter, EASMD).

-—71--

By default, the Atari cartridge produces object code,
even when the destination of the object is RAM memory.
This 1is a dangerous practice, at best: it is too easy
to make a mistake in a program and write over DOS, the
user's source, the screen memory, or even (horror of
horrors) some of the hardware registers.

MAC/65 makes a special case of object in memory: you
don't get it wunless you ask for it. You MUST have a
".OPT OBJ" directive before the code to be generated or
the code will not be produced.

6.1.2 OPERATOR PRECEDENCE

The cartridge assigns no precedence to arithmetic
operators. MAC/65 uses a precedence similar to
BASIC's. Most of the time, this causes no problems;
but watch out for mixed expressions.

Example: LDA #LABEL-3/256
seen as LDA #{LABEL-3} / 256 by the cartridge
seen as LDA #LABEL - {3/256} by MAC/65

6.1.3 THE .IF DIRECTIVE

The implementation of .IF in the cartridge is clumsy
and unusable. MAC/65's implementation is more
conventional and much more powerful. Rather than try
to offer a long example here, we will simply refer you
to the appropriate sections of the two manuals.

-T2

CHAPTER 7: ERROR DESCRIPTIONS

When an error occurs, the system will print

*k*k ERROR -
followed by the error number (unless the error was
generated with the .ERROR assembler directive) and, for
most errors, a descriptive message about the error.

Note: The Assembler will print up to 3 errors per line.

The format used in the listing of descriptions which
follows is simply ERROR NUMBER, ERROR MESSAGE,
description and possible causes.

1 ~ MEMORY FULL

All user memory has been used. If issued by the

Editor, no more source lines can be entered. If

issued by the Assembler, no more labels or macros

can be defined.
NOTE: If memory full occurs during assembly and
the source code is located in memory, SAVE the
source to disk, type NEW, and assemble from the
disk instead. Now the assembler can use all of
the space formerly occupied by your source for
macro and symbol tables, etc.

2 ~ INVALID DELETE
Either the first 1line number is not present in
memory, or the second line number is less than the
first line number.

3 ~ BRANCH RANGE
A relative instruction references an address
displacement greater than 129 or less than 126
from the current address.

4 -~ NOT Z-PAGE / IMMEDIATE MODE
An expression for indirect addressing or immediate

addressing has resolved to a value greater than
255 ($FF).

5 = UNDEFINED
The Assembler has encountered a undefined label.

6 - EXPRESSION TOO COMPLEX
The Assembler's operator stack has overflowed. If
you must use an expression as complex as the one
which generated the error, try breaking it down
using temporary SET labels (i.e., using ".=").

——73--

7

8

9

19

11

12

13

14

15

16

17

- DUPLICATE LABEL
The Assembler has encountered a label in the label
column which has already been defined.

- BUFFER OVERFLOW

The Editor syntax buffer has overflowed. Shorten
the input line.

- CONDITIONALS NESTING
The .IF-.ELSE-.ENDIF construct 1is not properly
nested. Since MAC/65 cannot detect excess

.ENDIFs, the problem must be an EXTRA .ELSE or
.ENDIF instead.

- VALUE > 255

The result of an expression exceeded 255 when only
one byte was needed and allowed.

- CONDITIONAL STACK

The .IF-.ELSE-.ENDIF nesting has gone past the
nurioer allowed. Conditionals may be nested a
maximum of 14 levels.

— NESTED MACRO DEFINITION

The Assembler encountered a second .MACRO
directive before the .ENDM directive. This error
will abort assembly.

-~ OUT OF PHASE
The address generated in pass 2 for a label does

not match the address generated in pass 1. A
common cause of this error are foward referenced
addresses. If using conditional assembly (with or

without macros), this error can result from a .IF

evaluating true during one pass and false during
the other.

~ *= EXPRESSION UNDEFINED
The program counter was forward referenced.

- SYNTAX OVERFLOW

The Editor 1is unable to syntax the source line.
Simplify complex expressions or break the 1line
into multiple 1lines.

-~ DUPLICATE MACRO NAME
An attempt was made to define more than one Macro

with the same name. Only the first definition
will be valid.

- LINE # > 65535
The Editor cannot accept line numbers greater than
55535.

——74--

18

19

20

21

22

23

24

27

30

31

- MISSING .ENDM

In a Macro definition, an EOF was reached before
the corresponding . ENDM terminator. Macro
definitions cannot cross file boundrys. This
error will abort assembly.

- NO ORIGIN

The *= directive 1is missing from the program.
Note: This error will only occur if the assembler
is writing object code.

- NUM/REN OVERFLOW

On the REN or NUM command, the 1line number
generated was greater than 65535. If REN issued
the error, entering a valid REN will correct the
problem. If NUM issued the error, the
auto-numbering will be aborted.

- NESTED .INCLUDE

An included file cannot itself contain an .INCLUDE
directive.

- LIST OVERFLOW
The list output buffer has exceeded 255

characters. Use smaller numbers in the .TAB
directive.

- NOT SAVE FILE
An attempt was made to load or assemble a file not
created with the SAVE command.

- LOAD TOO BIG
The load file cannot fit into memory.

—- NOT BINARY SAVE

The file is not in a valid binary (memory image,
assembler object, etc.) format.

- INVALID .SET

The first dcnum in a .SET specified a non-existant
Assembler system parameter.

— UNDEFINED MACRO

The Assembler encountered a reference to a Macro
which is not defined. Macros must first be
defined before they can be expanded.

- MACRO NESTING

The maximum level of Macro nesting has exceeded 14
levels.

—=75——

32

128

- BAD PARAMETER
In a Macro expansion,
nonexistent parameter,

a reference was made to a
or the parameter number

specified was greater than 63.

- 255 [operating system errors]
Error numbers over 127 are generated in the
operating system. Refer to the OS/A+ manual for

detailed descriptions
causes.

——T76-—

of such errors and their

APPENDIX A

Actually, the bulk of this appendix is contained on
your master MAC/65 diskette in the form of a system
macro file. This appendix is here simply to alert you
to the existence of the file and to give a brief
description of the macros available. We would suggest
that you use MAC/65 to LOAD and LIST (to a printer or
the screen) the file IOMAC.LIB.

May we suggest that you adopt a naming convention for
you MAC/65 files, both SAVEd and LISTed, that does not
conflict with anything? We use the following
extensions (though you are obviously free to rename our
files to your own preferences):

.M65 MAC/65 SAVEd files
.ASM MAC/65 LISTed files
.LIB MAC/65 SAVEd libraries

(note that C/65 insists on
its runtime library being
named RUNTIME.LIB, hence this
convention)

In any case, the macros available in IOMAC.LIB are:

OPEN chan, auxl,aux2, filename
Opens the given filename on the given
channel using auxl and aux2 as per OS/A+
specifications.

PRINT chan [,buffer [,length]]
If no buffer given, prints just a CR on
chan. If no length given, 1length assumed
to be 255 or position of CR, whichever is
smaller. Buffer may be literal string, in
which case length is ignored if given.

INPUT chan,buffer [,length]
If no length given, defaults to 255 bytes.

BGET chan,buffer,length
Binary read, a 1la BASIC XL, of length
number of bytes into the given buffer
address.

BPUT chan,buffer,length
Binary write of length number of bytes from
the given buffer address.

CLOSE chan
Closes the given file.

. L

NOTES:

XIO command,chan [,auxl,aux2][,filename]
As described in chapter 5.

"chan" may be a literal channel number (@ through
7) or a memory location containing a channel
number (@ through 7).

"auxl", "aux2", "length", and "command" may all be
either 1literal numbers (8 to 255) or memory
locations.

"filename" may be either a literal string (e.g.,
"D:FILE1.DAT") or a memory location, the latter
assumed to be the address of the start of the
filename string.

Where memory locations are given instead of
literals, they must be non-zero page locations
which are defined BEFORE their usage in the
macro(s). The following example will NOT work
properly 11 :

PRINT 3,MESSAGEl ; WRONG!

MESSAGEl1 .BYTE "This WON'T WORK l1! "

These macros are useful instruments, but they really
are meant only as examples, to show you what you can do

with
them

MAC/65. Please feel free to study them and change
as you need.

——78--

a reference manual for

BUG/ 65

an Assebly Language Debugging program for
use with 6502-based computers built by
Apple Computer, Inc., and Atari, Inc.

The programs, disks, and manuals comprising
BUG/65 are Copyright (c) 1982 by
McStuff Company
and
Optimized Systems Software, Inc.

This manual is Copyright (c) 1982 by
Optimized Systems Software, Inc., of
19379 Lansdale Avenue, Cupertino, CA

Rev 1.1

All rights reserved. Reproduction or translation of

any part of this work beyond that permitted by sections

197 and 198 of the United States Copyright Act without
the permission of the copyright owner is unlawful.

PREFACE

BUG/65 1is an interactive debugging tool for use in the
development of assembly language programs for the ATARI
8009 or ATARI 400 personal computers. It's designed to
take as much of the drudgery out of assembly language
debugging as possible. The design philosophy behind
BUG/65 is that the computer should serve as a tool in
the debugging process as opposed to a hindrance. One
result of this philosophy is that BUG/65 requires a
relatively large amount of memory when compared to
simpler debug monitors. This 1is the result of a
tradeoff between memory and functionality, with
function winning out.

BUG/65 is a RAM 1loaded machine language program
occupying 8K of memory; it is self relocatable as
shipped and requires a full 48K bytes of memory.
BUG/65 is also designed to be floppy disk based - it
isn't intended to be used in cassette-only systems.
BUG/65 was designed for use by an experienced assembly
language programmer.

BUG/65 1is an original product of the McStuff Company,
which developed the product under the name "McBUG",
which name is their trademark.

For use on the ATARI 80@ or 490 computer with a
minimum of 48K of RAM and one floppy disk drive.

TRADEMARKS

The following trademarked names are used in various
places within this manual, and credit is hereby given:

0S/A+, BUG/65, MAC/65, and C/65 are trademarks of
Optimized Systems Software, Inc.

Apple, Apple 11, and Apple Computer(s) are trademarks
of Apple Computer, Inc., Cupertino, CA

Atari, Atari 400, Atari 800, Atari Home Computers, and
Atari 850 Interface Module are trademarks of
Atari, Inc., Sunnyvale, CA.

Summary
Section
Section

Section

Section

Section

Section

Section

TABLE OF CONTENTS

of Major Features

1 -

w W
|
1

DO

auunun

c e o

D W
|

oanbd WN

(o)l o) We) W) Mo\ W)}

o« .

Command Summary
Notation used, syntax

Address Parameters
Spaces as Delimiters

Loading and Running BUG/65
Specifying BUG/65's Loadpoint Address
Creating a Non-Relocatable Version

Command Entry
Command Line Editing
Normal and Immediate Commands
Command Execution
Multiple Commands on a Line

Command Termination
Normal Termination
Error Termination
Command Suspension
Command Abort
The RESET Key
Manual Restart

Detailed Command Descriptions
A -- ASCII memory change

-- set relocation Base

—-- Compare memory blocks

-— Display Memory

—-- Execute command file

-- Fill a memory block

-- Go to user program

—- Hexadecimal arithmetic
disk Inventory (directory)
-~ create command file
~~ convert hex to decimal
-- Locate hex string in memory
-- Move memory block
-~ select output (Printing) device(s)
—— Quit (to OS/A+)

OoOWRECERUHIQE@MOOW
1
1

(continued)

TABLE OF CONTENTS (continued)

Section 7 -- Detailed Command Description (continued)
7.16 The read commands
7.16.1 R -- Read binary file
7.16.2 R% -- Read sector
7.17 S -- Substitute (change) memory
7.18 T -- Trace user routine
7.19 U —-- call User subroutine
7.20 V -- Verify user registers
7.21 The write commands
7.21.1 W -- Write binary file
7.21.2 W% -- Write sector
7.22 X -~- change user register values
7.23 Y -- disassemble memory block
7.24 Z -- instant assembler
Section 8 -- Special Command Modifiers
8.1 Return key
8.2 / -- repeat command line forever
8.3 = ~- display last command line

Section 9 --

Section 19 --
19.1

Section 11 —-

Section 12 —--
12.1

Section 13 --

Appendix A --

Memory Protection

Memory Usage
Page Zero Sharing

Customization, Configuration

User Command Interface
User Command Handler Example

Error Messages

Use of BUG/65 with OS/A+ Version 4.1

34

35
35

36

38
41

43

45

SUMMARY OF MAJOR FEATURES OF BUG/65

A full set of debugging commands -~ change
memory, display memory, goto user program with
break points, etc.

Binary file read and write, including appended
write.

A disassembler.

An instant assembler providing labeling
capability.

Expanded command addressing capability: hex or
decimal addresses, + and - operators supported,
relocated addresses supported.

Read or write disk sector(s).

Multiple commands permitted in a command line.
Command lines can be repeated with a single
keystroke or repeated forever with the special
slash operator.

Support for relocatable assemblers - the base of
a module can be specified and then used to
reference addresses in that module.

BUG/65 commands can be executed from a command
file, and there is a command to create command
files.

Hex to decimal and decimal to hex conversions
provided.

Memory protection of BUG/65's code and data.
BUG/65 won't allow you to use a BUG/65 command
that will destroy any part of BUG/65 itself.
For example, you can't use the Fill command to
overwrite BUG/65's code.

Page zero sharing. BUG/65 shares page zero with
a user program by keeping two copies of the
shared page zero locations - one for the user
and one for BUG/65 itself.

_—1--

SECTION 1 : COMMAND SUMMARY

This section is intended to be a handy reference guide

and will

probably prove indispensable after the user

has thoroughly read through the rest of this manual.

For the

experienced debug user, might we suggest at

least a quick perusal of Sections 2 through 6 and
Sections 8 and 9.

The following table is simply a syntax summary of the

available commands. Excepting for the first three
commands (which are described in Section 8), all the
commands are described in alphabetical order in Section
7.
COMMAND
CODE SYNTAX PURPOSE
{RETURN} Repeat last command line
/ When appended to a command
line: repeat line forever.
= Display last command line
A <addr>p Ascii mode memory change
B <addr> Base address for relocation
C <startaddrl> <endaddrl> <startaddr2>
Compare memory blocks
D <startaddr> l<endaddr>] Display memory
E #filespec Execute a command file
F <startaddr> <endaddr> [<value>]
Fill memory block with value
G [<startaddr>] [@<breakpoint> [Rn=<value>] [I=<count>]]
Go at address, set optional
breakpoint, with optional Register
value breakpoint and pass Counter.
H <numberl> <number2> Hexadecimal arithmetic result
I disk Inventory (directory listing)
J #filespec,string create command file
K <number > convert hex to decimal

——2—

L L <startaddr> <endaddr> <bytel> [<byteN> ...]
Locate byte string in memory
block

M M <startaddr> <endaddr> <toaddr>
Move memory block

P P sl [P] Print output on Screen and/or
Printer

Q Q Quit...go to 0S/A+

R R [<offset>] #filespec Read a binary file to memory

with optional offset

R% R% [<sectornumber> [<bufferaddr> [<numsectors>]]]
Read sector(s) from disk to
memory buffer

S S <addr>p Substitute memory, numeric
mode
T T [S] l<count>] Trace, with optional Skip

over subroutine calls, for
(optional) count instructions

U U <addr> [<param>] call User routine at given
address and pass optional
parameter in X,Y registers

\4 \4 View user registers

w W [:A] <startaddr> <endaddr> #filespec
Write a block of memory to a
binary image file, optionally
appending instead of creating
new file.

W% W% [<sectornumber> [<bufferaddr> [<numsectors>] 1]
Write sectors from memory
buffer to disk

X XA or XX or XY or XS or XP or XF
change user register value

Y Y <startaddr> [<endaddr>])
disassemble memory block

Z Z <addr>p instant assembler (at address)

3=

<Covd>

¥ Is
[...]
or
filespec

SECTION 2: Notations Used In This Manual

The following notations are used in this manual:

Is used to indicate a numerical address
parameter. The address expression between the
two characters "<" and ">" may be any valid

address as described in Section 3. For example,
<START> means that you can enter any valid
address expression to specify the START
parameter.

used to indicate one and only one blank. In
most cases, blanks are insignificant and any
number of them may be entered between commands
and parameters. However, in certain cases, one
and only one blank must be entered - this blank
is indicated by the "P" character.

Is used to specify an optional parameter. For
example, [<VALUE>] would indicate that VALUE is
an optional address parameter. You'll find that
many parameters are optional, and in such cases
logical default values will be supplied by
BUG/65.

Is used to delimit a list of choices. In such a
list, one and only one choice may be used. For
example, "+ or -" indicates that you may enter a
plus sign or a minus sign, but not both.

Is used to indicate a standard OS/A+ filespec.
This consists of the device name followed by a
colon and the filename. For example,
"D: DATAFILE" is a wvalid filespec for a file
named DATAFILE on disk drive one.

—4--

SECTION 3: Address Parameters

BUG/65 allows numerical addresses to be specified in a
variety of ways. You can use hexadecimal or decimal
notation, add and subtract terms, or add a relocation
factor to any address. The following Backus-Naur
definitions describe the various address types:

<ADDR> := + or - <TERM> [+ or - <ADDR>]
<TERM> := <NUMBER> or X<NUMBER>

<NUMBER> := <DECNUM> or <HEXNUM>

<DECNUM> := .<DECIMAL DIGITS>

<HEXNUM> := <HEXADECIMAL DIGITS>

In the above, the only item not literally defined is
the "X" item in the definition of a TERM. This is used
to indicate that the following NUMBER is to be
relocated by adding the value of the current relocation
base to the value of NUMBER. The current relocation
base is set by the "B" command.

All address parameters are interpreted as 16-bit
positive numbers in the range of @ to 65535. Overflow
isn't detected or reported as an error.

Some examples will help (all of these are valid address
expressions):

1FAl a hexadecimal number.

.100 a decimal number (one hundred).

1000+ .20 a hexadecimal number plus a decimal
number . This evaluates to 1014 hex

(4116 decimal).
1+2-3+4 a long expression. Evaluates to 4.
X1234 a relocated address. If the current

relocation base has the value $1000,

then this expression will evaluate
to $2234.

-5

3.1 Spaces as Parameter Delimiters

BUG/65 uses spaces as parameter delimiters. This makes

for

easier and quicker entry of commands. However, it

does introduce some conventions regarding the use of
spaces that you must be aware of:

*

Spaces may not be embedded in a number. For
example, "12 34" is interpreted as two
parameters ($12 and $34) and not as the single
parameter $1234.

Spaces aren't allowed between the "X" relocation
specifier and it's associated relocated address.
For example, "X 1234" 1is interpreted as two
parameters. The first will have the value of
the current relocation base and the second is
$1234.

Any number of spaces may be used to separate two
parameters. For example, "1234 5678" 1is a
perfectly valid way of entering the two
parameters $1234 and $5678.

—6——

SECTION 4: Loading and Running BUG/65

BUG/65 is shipped on your master diskette as a
relocatable COMmand file, named "BUG65.COM" .
Therefore, BUG/65 functions just as does any OS/A+
extrinsic command: simply type "BUG65" when OS/A+
prompts with Dl: (or Dn: if you have changed default
drives...see the OS/A+ manual for more details) and
BUG/65 will 1load into memory and relocate itself to
just above the current value of LOMEM (contents of
$2E7-S$2E8) .

4.1 Specifying BUG/65's Load Address

I

If you need BUG/65 to load at some location other than
LOMEM (which is typically around $2000 with OS/A+
version 2 and around $2C@% with version 4), you may
also enter a load address on the OS/A+ command line.
The address must be in hex, must be at or below $9A0@,
and should be above LOMEM. Remember, BUG/65 occupies
8K bytes, which means it will occupy memory starting at
the address you give and ending $200@ bytes higher.

EXAMPLE:
[D1:]BUG65 8000

This usage will load BUG/65 at $8000, set its

restart point at $8200@, and occupy memory
from $8000 through $9FFF.

-—T

4.2 Creating a Non-Relocatable Version

In order to allow itself to be relocated virtually
anywhere in memory, BUG/65 as shipped includes a
relocation bit map and a relocation program. In
addition, relocatable BUG/65 always loads in at
locations $9800 through $BC@@F. If these addresses are
"poison" to you (e.g., if you want to use BUG/65 with a
cartridge plugged in), you may wish to produce a
non-relocatable version designed to run within an
address range you pick.

If so, USING A 48K SYSTEM, simply specify the
loadpoint, as shown in the preceding section (e.g, via
"BUG65 7@00") and allow BUG/65 to load and relocate.
Then exit to O0OS/A+ (via Quit) and use the O0S/A+
intrinsic command SAVE to save a non-relocatable
version. The address range to be SAVEd may be
calculated as follows:

SAVE filename.COM loadpoint+$20@ loadpoint+$2000

Thus, if you had specfied "BUG65 7890", you could save
the non-relocatable version via

SAVE BUG700@.COM 7200 9000
thus also giving it a name which will later remind you

where it will load at. To execute this non-relocatable

version, simply type in its name (BUG708@ in the
example shown).

—8——

SECTION 5: Command Entry

When you see BUG/65's input prompt (the ">" character)
in the 1left-hand column of the screen, then you're in
command entry mode. Any data typed at that point will
be entered into the command line buffer - the command
line isn't executed until you type RETURN. You can
enter as many commands in one command line as will fit
in the command line buffer (180 characters). As soon
as you type the RETURN, you'll leave command entry mode
and BUG/65 will begin executing the command(s) in the
command line.

You can tell the difference between command entry mode
and command execution mode. In command entry mode, the
cursor is displayed. When a command is executing, the
cursor is blanked. If you try to enter more than 100
characters in the command line, BUG/65 will beep the
bell and not allow any more characters to be input. At
that point, you may either hit RETURN to execute what's
in the command line so far, or edit some characters out
of the command line with the BACKSPACE key.

5.1 Command Line Editing

When entering commands, you may edit mistakes with the
BACKSPACE key. The BACKSPACE will move the cursor one
column to the left and delete whatever character was in
that column. Unfortunately, the normal system editing
facilities aren't supported. This is because of the
manner in which BUG/65 does keyboard input.

-—Qa

5.2 Normal and Immediate Type Commands

BUG/65 has two types of commands =~ normal and
immediate. Normal commands are those that don't
require interaction with the operator for their
execution. Immediate commands do require operator
interaction. Normally, you'll never be aware of the
distinction between the two types - command entry
"flows" without any consideration of the command type
required. The only difference is that an immediate
command must be the first command entered in a command
line. Once an immediate command is entered, BUG/65
will begin interacting with the operator for further
input. Since this interaction 1is required for
completion of the command, it doesn't make sense to
allow immediate commands to be "stacked" in the middle
of a command line for execution between other commands.
If you try to enter an immediate command in the middle
of a command 1line, you'll get an "IMMEDIATE ERROR"
error message and find yourself back in the command
entry mode.

The immediate commands are the "A" command (ASCII
memory change), the "S" command (hex memory change),
the "X" command (change user registers), and the "2"
command (instant assembler).

5.3 Command Execution

For a normal type command, BUG/65 will begin command
execution as soon as you type RETURN. For immediate
type commands, BUG/65 will begin command execution as
soon as you type the command character (provided that
character is the first character in the command line).

——10--

5.4 Multiple Commands on a Line

Multiple commands may be entered on the same command

line. Normally, successive commands in the command
line don't require command separators between them
other than at least one space character. The

exceptions to this are commands for which an optional
parameter is being defaulted. For example, the display
memory command ("D") may have an optional parameter
specified as the end of the area of memory to be
displayed. If that ending parameter isn't specified,
BUG/65 will default the end to the start plus eight
bytes. If you wanted to enter two successive display
commands in the command line without defaulting the end
parameters, you could type

D 10008 1016 D 2000 2010

and no command separators would be required because
BUG /65 knows that the "D" command only has two
parameters and will interpret further characters in the
command 1line as the beginning of a new command.
However, if you wanted to default the ending address of
the first display command, then you'd have to insert a
command separator so that BUG/65 knows that the first
display command is finished. If you didn't do this,
then the second display command "D" would be
interpreted as the second parameter of the first
display command (the end address would be interpreted
as $@D. The command separator is a comma, so in this
case you would enter the commands as follows:

D 10088, D 2000 2010

—-11--

SECTION 6: Command Termination

This section describes the many ways that a command
will stop.

6.1 Normal Termination

Once a command line is given to BUG/65 for execution,
BUG/65 will execute all of the commands in the line to
conclusion before returning to command entry mode.
It's possible to instruct BUG/65 to execute a command
line "forever" (see Section 8.2), in which case BUG/65
will never come back to command entry mode until you

manually intervene (with ESC or BREAK - see Section
6.4)
6.2 Error Termination

If an error occurs in command execution, BUG/65 will
beep the bell and display a short error message in
English indicating the cause of the error. Command
execution will stop and you'll enter the command entry
mode. Any commands in the command 1line after the
command which caused the error won't be executed. (You
should also be aware that BUG/65 will close any file
that has been opened using IOCB number one when any
error occurs.) (A complete list of error messages is
in Section 14.)

6.3 Command Suspension

Once BUG/65 begins executing a command 1line, you may
temporarily suspend command execution by hitting the
space bar. This will put BUG/65 in a "hold" condition,
at which point you have two alternatives: you can
restart the command by hitting the space bar again, or
you can abort the command with ESC or BREAK.

6.4 Command Abort

You can abort any command that is executing (except for
the read and write disk commands) by hitting the ESC or
BREAK keys. BUG/65 will stop executing the command and
you'll enter command entry mode.

-—12--

6.5 The RESET Key

BUG/65 traps the RESET key so that hitting RESET will
bring you back to BUG/65. RESET will stop any command
that is executing. You'll see the BUG/65 version and
copyright prompt, and you'll be in command entry mode.
RESET will reset all of BUG/65's internal stuff except
for any user defined or modified parameters. For
example, the user's registers, the current relocation
base, etc., aren't cleared on a RESET - they'll retain

whatever values they had before the RESET. (A1l of
this depends, however, on the fact that the reset
vectors haven't been modified by the user - either by

using a BUG/65 command or by a user program. If you've
modified the reset vectors, then the action of the
RESET key is your responsibility.)

6.6 Manual Restart

Since BUG/65 is relocatable, the manual restart point
(coldstart) depends upon where it has been relocated
to. If you specified an address to 1load BUG/65 when
you gave the OS/A+ command line (e.g., BUG65 4000),
then the coldstart point is $200 greater than the
address specified, and you may use 'RUN address' from
0s/A+ if desired (e.g, RUN 4208 if the original command

was BUG65 40@00). 1In any case, you may inspect location
$P00C (via the BUG/65 command 'D C') to determine the
coldstart point. The 6502 word address in locations

$0C and $0D (LSB, MSB order) points to BUG/65's restart
point. The result of a manual restart is the same as
if the default RESET key processing occurred (see
section 6.5).

-——13--

SECTION 7: Command Descriptions

Throughout the descriptions of the commands, comments
are sometimes presented in the command 1line examples.
These are denoted by the characters "*/". Anything
appearing on a line after these characters is a comment
and is NOT part of the command line being exemplified.

The commands are presented in alphabetical order.

-—14--

7.1 A - Change Memory, ASCII mode

A <ADDR>p

The A command allows you to replace the contents of
memory bytes beginning at location <ADDR> with ASCII
characters. As soon as you type the required space
character after the address, BUG/65 will prompt you
with the current contents of the memory location at
<ADDR>. Those contents will be displayed as an ASCII
character. At that point, you have the following
options:

1. Typing a SPACE will cause the current memory
location to be skipped and the contents of the next
memory location to be displayed.

2. Typing an UNDERLINE will cause the current address
to be decremented by one. The new address is then
displayed on the next line of the screen followed by
the contents of the new memory location.

3. Typing a RETURN will cause the address of the
current memory location to be displayed on the next
line of the screen followed by the contents of the
current location.

4. Typing ESC will get you out of the command and back
into command entry mode.

5. Typing any character other than "@" will cause the
ATASCII value of that character to be entered into
memory at the current address. The address is then
incremented by one and the contents of the new
memory location are displayed.

6. Typing the character "@" causes the next character
typed to be entered into the current memory location
as its pure ATASCII value without any of its control
character significance. For example, typing "@ ESC"
will insert the ATASCII value for ESC into memory.
The address is then incremented by one and operation
continues as in 5. above.

After you exercise any option except option 4., BUG/65

will again prompt you with the contents of the current
location and you may then choose from any option again.

——15--

7.2 B - Set Relocation Base

B <ADDR>

The B command will set the value of the relocation base
to ADDR. The relocation base is intended for use with

relocating assemblers. In a relocatable environment,
listings typically are addressed from location zero.
When a module to be debugged is subsequently loaded
into memory, it will have a relocation offset added to
the addresses in the listing. The B command allows you
to set the relocation base to the load address of the
module you're working on and then to reference
addresses within the module by simply prefixing each
address expression with the relocator symbol "X". For
example, suppose that a relocatable module is loaded at
location $5380 in memory. Suppose further that we want
to display the contents of a memory location which is
$230 from the beginning of the module. The following
commands would do the job:

B 5380, D X230

The world isn't overrun with relocating assemblers for
the ATARI. However, until it is, the B command has
other useful applications. These take advantage of the
fact that the relocation base value is a variable which
can be modified quring command execution. For example,
suppose you know that the string of characters "ABCD"
is stored somewhere on a diskette and you want to find
the sector that contains it. The following commands
will do the trick:

B 1

D X, R%® X 4000 1, L 4000 40@7F 41 42 43 44, B X+1/

——16--

This uses some commands not introduced yet, but this is
what happens: First, X is set to 1 with one command
line. Then a second command line will display memory
at the location X (so you'll know where you're at as
you step through), read sector number X into memory
locations $4000-$407F, locate the string "ABCD" in that
sector buffer, then bump X by one for the next sector.
The slash at the end of the command line means that the
command line will execute forever. What will happen is
that BUG/65 will continuously read diskette sectors.
For every sector read, you'll see at least a memory
display of eight bytes beginning at address X (which is
the sector number). If the Locate instruction finds
the string "ABCD" in the sector buffer, it will display
the location of the string. At that point, 3just hit
ESC to stop the command, and display the value of X ("D
X RETURN"). The sector containing the string will
either be the value of X or one before it, depending on
how fast your ESC was.

7.3 C - Compare Memory Blocks

C <STARTBLOCK1> <ENDBLOCK1> <STARTBLOCK2>

Compare is used to compare the contents of two blocks
of memory . The block of memory beginning at
STARTBLOCK1 and ending with ENDBLOCK1l is compared to
the same size block beginning at STARTBLOCK2. If both
blocks are the same, then there will be no output. 1f
any bytes in the blocks differ, then BUG/65 will
display a line of data in the following format for
every byte that is different:

AAAA = BB CCCC = DD

where AAAA = the hex address of the differing location
in the first block, BB = the hex contents of 1location
AAAA, CCCC = the hex address of the differing location
in the second block, and DD = the hex contents of
location CCCC.

17—

7.4 D - Display Memory

D <START> [<END>]
The D command displays the contents of the memory block
beginning at START and ending at END. If END isn't
specified, then the default value of START+7 is used.
The memory block is displayed in the following format:
AAAA = BB BB BB BB BB BB BB BB CCcccccee

where AAAA

the hex address of the first byte in this

line, BB = the hex contents of successive memory
locations beginning at location AAAA, and C = the ASCII
character interpretation of the positionally

corresponding BB value of the byte.

7.5 E - Execute a Command File

E #filespec

The E command is used to execute a command line from a
command file. The file specified by filespec must
consist of a line of BUG/65 commands and parameters and
must be ended with an ATASCII EOL character ($9B).
BUG/65 will only execute one command 1line from a
command file and then it will stop reading the file.
Command files can be chained however, so that the last
command in one file can execute another command file.
An E command should be the last command in a command
line because any commands after the E in the line won't
be executed.

7.6 F - Fill a Memory Block with a Value

F <START> <END> [<VALUE>]

The F command will fill the block of memory beginning
with START and ending with END with VALUE. If VALUE
isn't specified, then zero will be used. Note that
VALUE 1is a byte value - the least significant byte of
the 16-bit VALUE will be used for the fill.

--18--

7.7 G - Goto a User Program

G [<START>] [@<BRKPOINT> [RN=<VALUE>] [I=<COUNT>]]

The G command will execute a user program beginning at
START. If START isn't specified, then execution begins
at the current value of the user's PC register.
BRKPOINT is an optional breakpoint. If the wuser's
program trys to execute the instruction at BRKPOINT,
the program will break back to BUG/65 and BUG/65 will
display the contents of the user's registers at that
point. Examples:

G 1000 /* go at location $1000, no breakpoint

G @4308 /* go from wherever our PC was and
break at location $4300 */

A Dbreakpoint may be conditionally qualified by a
required value in a specified register. "RN=<VALUE>"
will tell BUG/65 to break at that point only if the
value of user register "N" equals VALUE. If that
condition isn't met, then the user's program is allowed
to continue executing at the location of the
breakpoint. (The instruction that was at the
breakpoint location WILL be executed.) The mnemonic
names of the registers that may be specified for "N"
are: A, X, Y, S, and F, which stand for the user's A,
X, Y, Stack, and Status (flags) registers respectively.
(Note that only the least significant byte of VALUE is
used for this qualification.)

Example:
G 1009 @1422 RX=33
/* go from location $1000 and break at
location $1422 only if register X
equals $33 */
A breakpoint may also be qualified with an iteration
counter. "I=<COUNT>" tells BUG/65 to allow the
execution of the instruction at the breakpoint COUNT
times before breaking.
Example:
G 1000 Q23008 I=2
/* go from location $1000 and break
the second time we hit the instruction
at $2300 */

-—19--

The register and iteration qualifications may be used
together. 1In this case, the register condition must be
met before the iteration counter is decremented. As in
the following example:

G 1000 @1234 RA=50 I=3

/* go from location $1008 and break

the third time the instruction at loc-
ation $1234 is executed with register
A equal to $50 */

All of this flexibility isn't without its price,
however. Because BUG/65 has to do quite a bit of
evaluation at every breakpoint before deciding if the
break condition has been met, don't expect to be able
to conditionally pass through breakpoint instructions
at real-time speed. As long as you never execute the
instruction at the breakpoint, you're OK, but as soon
as BUG/65 gets the break, expect several hundred
ingstructions to be executed before your program is
given back control after the break isn't met.

Also, BUG/65 was NOT designed to allow breakpoints in
PROM resident code. If you attempt to set such a
break point, or if you try to set a breakpoint at a
non-existent memory location, you'll get a "BREAKPOINT
ERROR".

One other thing. BUG/65 will automatically remove
breakpoints from your program after a break occurs.
Breakpoints aren't 1left set after the break is
performed.

7.8 H - Hexadecimal Arithmetic

H <NUMBER1> <NUMBER2>

The H command will calculate the sum NUMBER1 + NUMBER2
and the difference NUMBER1 - NUMBER2 and display the
results on the next 1line of the screen as two hex
words. The sum is the first word displayed, the
difference is the second.

Y, .

7.9 I - Display Disk Directory

The I command will display the directory of the
diskette in drive one. The display can be suspended or
halted with the SPACE or ESCAPE keys respectively.

J #filespec, string

The J command allows you to create command files for
execution by the E command. The string in the command
is any string of valid BUG/65 commands. The string
will Dbe written to the file specified by filespec in
the format expected by the E command. Please note the
comma after the filespec - it's required, else BUG/65
won't know where your filespec stops and your command
string starts. Also note that the J command doesn't
allow multiple commands in the command 1line to be
executed after the J command - everything in the line
after the filespec and up to the RETURN is written to
the file instead of being executed.

7.11 K - Convert Hex to Decimal

K <NUMBER>

The K command will convert NUMBER to a decimal number
and display the result on the next line of the screen.
NUMBER can be any valid address expression.

To convert decimal to hex, just display memory at the
decimal location of the number you want to convert.
The hex equivalent of the decimal location appears in
the display output as the hex word on the beginning of
the line. For example, to convert 10809 decimal to hex,
just execute the command "D .1008". You'll see the hex
conversion of 1080 as the first hex word on the next
line.

-—21--

L <START> <END> <BYTEl> <BYTE2> ... <BYTEn>

The L command will search the block of memory beginning
at START and ending at END for a hex string. The hex
string is defined by BYTEl...BYTEn, which are
interpreted as the hex bytes of the pattern string.
(Only the least significant bytes of the address values
are used for each byte in the string.) Wildcard bytes
which will match any byte in memory may be specified by
the character "*" in the string. BUG/65 will output
the addresses of every occurrence of the string found
in the block. For examples:

L 1000 10FF 41 42 43

/* will 1locate any occur- rences of
the string "ABC" in the memory block
$1000 to S10FF */

L 1000 2008 18 * 20

/* will locate any occur- rences of a
three-character string which begins
with $10 and ends with $208 in the
memory block $1000 to $2000 */

M <START> <END> <TO>

The M command will move the block of memory beginning
at START and ending at END to TO. BUG/65 will take
care to handle overlapping moves correctly, either for
moves up or down.

-—22-=

P [s] [pr)

The P command is used to select output to either the
screen ("S") or the printer ("P") or to both ("SP").

For example:

P S /* turns screen output on,
printer output off */

P P /* turns printer output on,
screen output off *

P S P /* turns both screen and
printer output on

P /* turns both outputs off -
commands will still be
accepted and executed, you

just won't see their entry or
output anywhere. */

In addition to allowing you to list BUG/65 results to
the printer, this command was designed to allow you to
debug the generation of intricate screen displays
without having the outputs of BUG/65 commands scroll
your display off the screen. It is a little crude, and
might have a few problems depending on what your
program has done to OS, but 1is handy to have in

emergencies. (The LFFLAG and NULFLG bytes in the
Configuration Table can help you here - see section
11.)

7.15 Quit to 0S/A+ command

The Q command will coldstart DOS. The results are
essentially the same as when you power-up the machine.

——23--

R [<OFFSET>] #filespec

The R command is used to load binary files. If OFFSET
is specified, then OFFSET is added to the load
address(es) specified in the file, and the data will be
loaded at the 1loading point(s) plus OFFSET. This
allows you to load a file into a different memory
location than where it is origined at. After the file
is loaded, the load starting point specified 1in the
file is placed into the user's PC register.

BUG/65 supports concatenated binary file sections as
described in the DOS 2.08S manual. If such a file 1is
loaded using the OFFSET option, however, ALL file
sections will be loaded starting at the load addresses
specified in the file plus OFFSET. In addition, the
user's PC register will contain the value of the 1load

point of the 1last file section 1loaded (not plus
OFFSET) .

R¥ [<SECNO> [<BUFFER> [<NOSECS>]] 1]

The R% command allows you to read a sector or a group
of sectors from a diskette in disk drive number one.
SECNO specifies the sector number to be read and
defaults to one. BUFFER specifies the buffer the
sector is to be read into and defaults to BUG/65's
loadpoint plus $2000. NOSECS specifies the number of
sectors to read and defaults to one. If more than one
sector 1is specified, then consecutive sectors are read
sequentially into memory beginning at BUFFER.

——24-=

7.17 S - Change Memory, Numeric mode

S <ADDR>P

The S command allows you to replace the contents of
memory bytes beginning at location ADDR with numerical
values. As soon as you type the required space
character after the address, BUG/65 will prompt you
with the current contents of the memory location at
ADDR. Those contents will be displayed as a
hexadecimal byte value. At that point, you have the
following options:

1. Typing SPACE will cause the current memory
location to be skipped and the contents of
the next memory location to be displayed.

2. Typing an UNDERLINE will cause the current
address to be decremented by one. The new
address is then displayed on the next 1line
of the screen followed by the contents of
the new memory location.

3. Typing a RETURN will cause the address of
the current memory location to be displayed
on the next line of the screen followed by
the contents of the current location.

4. Typing ESC will get you out of the command
and put you back into command entry mode.

5. Typing an address value (any valid address
expression) will cause that value to be
entered into memory at the current address.
The address is then incremented by one and
the contents of the new memory location are
displayed. (Only the 1least significant
byte of the address value will be entered
into memory.)

After you exercise any option except option 4., BUG/65
will again prompt you with the contents of the current
memory address and you may select any of these options
again.

-=25--

T [S] [<COUNT>]

The T command will single-step through user program
instructions beginning with the instruction at the
current user PC register. The number of instructions
to be executed are specified by COUNT, which defaults
to one. If "S" 1is specified, then all of the
instructions in a subroutine are counted as one
instruction for tracing purposes - the trace is turned
off until return from the subroutine ("S" stands for
"skip the subroutine"). After every instruction
traced, BUG/65 will display the contents of the user's
registers.

Some examples:

T /* will execute one instruction and then
display the register contents */

T 5 /* will execute five instructions,
displaying registers after each
instruction */

TS 10 /* will execute 16 instructions. If any
of the instructions are JSR's, then the
trace will be turned off after the JSR
until the subroutine executes an RTS */

The trace command can't be use to trace instruction
execution through PROM resident code. Any attempt to
do so, or to trace through non-existent memory, will
result in a "BREAKPOINT ERROR".

7.19 U - Call a User Subroutine

U <ADDR> [<PARAM>]

The U command is wused to call a user subroutine at

ADDR. The wuser routine 1is passed the optional
parameter PARAM in the X register (low byte) and Y
register (high byte). The user routine should return
to BUG/65 wvia an RTS instruction. If PARAM isn't

specified, then zero is used.

-——26--

7.20 V - Display User's Registers

it e e e e =t e e e e e e e

v

The V command will display the contents of the wuser's
registers in the following format:

A X Y SP NV_BDIZC
HH HH HH HH BBBBBBBB HHHH LDA 1000,X

This is interpreted as

the
the
the
the
the
the
the
the
the
the
the
the
the

-]

(T T O 1 R

<ZunKXy

"ANHD W

hex
hex
hex
hex

value of
value of
value of
value of

binary value
binary value
binary value
binary value
binary value
binary value
binary value
binary value

hex

value of

PC INSTR

follows:

the A reg

the X reg

the Y reg

the stackpointer

of the negative flag

of the overflow flag

of an unused bit in the
of the break flag

of the decimal flag

of the interrupt enable bit
of the zero flag

of the carry flag

the PC reg (This is a

pseudo register maintained by BUG/65.

It contains the location of the next

user program instruction to be executed.)
INSTR = the instruction at the current PC

-—27 ==

7.21.1 W - Write a File

W [:A] <START> <END> #filespec

The W command is used to write a binary file. Memory
from START to END is written to the file specified by
filespec in the standard OS/A+ binary file format. If
the ":A" option isn't specified, then the data written
will replace the current contents of the file if the
file already exists. If the ":A" option is specified,
then the data is appended to any data already in the
file. A load header consisting of a start and end
address as described in the OS/A+ manual will precede
the appended data.

7.21.2 W% - Write Sector(s)

We [<SECNO> [<BUFFER> [<NOSECS>]] 1]

The W% command is used to write a sector or a group of
sectors to a diskette. SECNO specifies the sector
number to be written and defaults to one. BUFFER
specifies the memory location of the sector data to be
written and defaults to the BUG/65 loadpoint plus
$2000. NOSECS specifies the number of sectors to be
written and defaults to one. If more than one sector
is specified, then consecutive sectors are written
sequentially from memory beginning at BUFFER.

--28--

X REGNAME

The X command allows you to change the contents of user

registers.
mnemonic.

REGNAME is a one-character register name
The allowed register names and their

meanings are:

Lo B I N

After you
changed,
character

A register

X register

Y register

stackpointer register

program counter pseudo-register
status register (flags)

type in the name of the register to be
BUG/65 will prompt you with that name
followed by an equals sign. At that point

you have the following options:

1.

Enter the new value for the register. The
new value may be any valid address
expression. After the new value, typing

RETURN will end the command. Or you can type
SPACE which will prompt you with another
register name for possible change. The next
register name is determined by the order of
the above list. For example, if you change
register Y then hit a space after the new
value, BUG/65 will prompt you for possible
change of register S. This prompt 1list
continues through register F and then wraps
back to register A again.

Enter RETURN or ESC to end the command.
BUG/65 will display the new contents of the
registers and then put you back into command
mode.

——29--

Y

<START> <END>

The Y command will disassemble instructions in memory

beginning

at START and ending at END. The following

conventions are used in the disassembly:

1.

2.

Standard MOS Technology mnemonics are wused
for opcodes.

Illegal opcodes are displayed as "***",

All numeric operands are displayed as
hexadecimal numbers.

Zero page operands will display as ' two hex
digits, all other non-immediate operands will
display as four hex digits.

No operand is displayed for accumulator mode
operands.

Y/,

Z <ADDR>W

The Z command allows you to assemble instructions to be
stored in memory at ADDR. Immediately after typing the
SPACE character (or RETURN, which is allowed as well),
BUG/65 will prompt you with the current program counter
value of the instant assembler (which initially will be
ADDR) . At that point you may type in a valid assembly

language instruction. The format for an instruction
line is:

[<LABEL>] <OPCODE> [<OPERAND>]

LABEL may be any label in the form "Ln", where "n" may
be any digit from zero to nine. OPCODE may be any
valid MOS Technology instruction mnemonic or one of two
pseudo-ops (described below). OPERAND, if allowed by
the addressing mode of the instruction, may be any
valid address expression. At 1least one space must
separate a label from an opcode or an opcode from an
operand.

After typing your instruction, type RETURN and the
instruction will be entered into memory at the current
PC if it doesn't contain any errors. If there are any
errors, then BUG/65 will display an error message and
will reprompt you with the current (unchanged) PC. If
there are no errors, then BUG/65 will display the
object code created by the instruction to the right of
the instruction on the screen and will prompt you with
the PC of the next instruction on the next screen line.
You may exit the instant assembler by typing ESC at any
time, or by typing RETURN by itself in response to the
PC address prompt.

The instant assembler provides you with two pseudo-ops.
"/" followed by an address will change the PC to that

address. It acts 1like an ORG ("*=") pseudo-op. For
example, "/4000" will set the PC of the next
instruction 1location to $4000. "+" followed by an

address will insert the value of that address (least
significant byte) at the current PC and bump the PC by
one. It acts 1like a DB (.BYTE) pseudo-op. For
example, "+34" will insert the hex byte 34 at the
current PC.

—=31--

The instant assembler provides a simple labeling
capability. You may prefix an instruction with a two
character label of the form "Ln", where "n" may be any
digit from @-9. You may then use that label as an
operand in an instruction, with the following three
restrictions:

1. Immediate type operands (#HH) can't be
labels.

2. Indirect type operands can't be labels.

3. A label can't be combined with any of the
standard address operators (+, -, X, etc.)

Label references may be forward or backward. BUG/65
will store unresolved references and resolve them when
the label is 1later defined. You may reference
undefined labels twenty times before BUG/65 runs out of
room to store the unresolved locations - you'll then
get an error message and the assembly will be aborted.
The same label may be reused more than once. In such
cases, BUG/65 will use the last defined address of the
label when it is referenced.

If any labels have been referenced but not defined when
you exit the instant assembler, BUG/65 will prompt you
with a message and the label name followed by an equals
sign. At that point you may either define the label by
entering any valid address expression followed by a
RETURN, or you may chose not to define it and simply
hit RETURN. If you don't define the label, then the
value of the 1label is defaulted according to the
following two rules.

1. If an instruction using the undefined label
is a relative branch, then the value of the
label for that instruction defaults to the
location of the instruction plus two.

2. For all other instructions, the value of the
label defaults to the 1location of the
instruction plus three.

These rules guarantee that all branching instructions
using undefined 1labels are effectively turned into
NOP'S. This offers some measure of protection against
a program going into never-never land. (If you
reference a 1label that isn't yet defined, the object
code displayed to the right of the instruction on the
screen will show addresses generated according to these
rules. Don't worry, when the label is subsequently
defined, BUG/65 goes back and fixes up all these
references.)
-=32--

SECTION 8: Special Command Modifiers

{RETURN}

The 1last command 1line entered and executed may be
repeated without typing the whole thing in again - just
hit RETURN. BUG/65 remembers the last line entered for
just this purpose.

8.2 Repeat Command Line Forever

Appending a slash to the end of a command line will
cause BUG/65 to repeat the execution of that command
line forever. The only way to stop such a repeat is to
suspend or abort the command.

8.3 Display Last Command Line

If you want to see what your 1last command 1line was,
possibly because you might want to repeat it, just type
the "=" <character as the first character of the new
command line. BUG/65 will display the 1last line
entered for you.

-=33—-

SECTION 9: BUG/65 Memory Protection

BUG/65 won't allow you to modify any portion of it's
code or variable storage areas with a BUG/65 command.
Any attempt to do so will result in a "PROTECTION
ERROR". For example, if we assume that the BUG/65 was
loaded via the command "BUG65 20@08", the following
command will cause an error because it attempts to move
a memory block into BUG/65's area:

M 4000 A4QOFF 2000

BUG/65 protects all memory from loadpoint to
loadpoint+$1FFF in this manner, where loadpoint is that
specified in the invoking OS/A+ command line (or LOMEM,
if no loadpoint is specified). (The memory protection
feature can be turned off by changing a byte in the
Configuration Table.)

——34--

SECTION 1@: BUG/65 Memory Usage

BUG/65 uses memory from $80 to $XX and loadpoint to

loadpoint+$@1FF for variable storage. You can
determine the value of XX by looking at the LSTPG@ byte
in the Configuration Table. It wuses memory from

loadpoint+$209 to loadpoint+$1FFF for code storage.

BUG/65 will share the page zero memory that it needs

with a user program. It does this by keeping two
copies of these page zero locations. When BUG/65 is
running, the BUG/65 page zero locations contain

BUG/65's stuff. When a Go is done to a user program,
BUG/65 will save it's own page zero data and replace it
with the user's data. If a user program breaks back to
BUG/65, the reverse operation is performed.

In addition, BUG/65 will translate any command
reference to these shared page zero locations so that
the wuser may modify or inspect his own page zero data.
It does this by translating any command reference to
the wuser's page zero data to the location where the
user's copy of the data is actually being stored. This
is all transparent to the user. For example, you can
fill memory from $80 to $FF with zeros without crashing
BUG/65. If you then display $80 to $FF, you will see
zeros. They aren't really in locations $88 to SFF of
course, but they will be when you run your program.
(This is the reason it may seem to take an
extraordinarily 1long time to perform certain commands
(Fills, for example). The reason is that every memory
reference has to go through this translation process -
both to translate zero page references if necessary and
to check to make sure that BUG/65 isn't being
overwritten.)

——35--

SECTION 11: Customization with the Configuration Table

There is a Configuration Table 1located "~ near the
beginning of the code segment of BUG/65. By changing
this data, you can customize some BUG/65 stuff. 1In the
table which follows, "+Sxxx" means that the
configuration value is located $xxx bytes above the
loadpoint address, where loadpoint 1is the address
specified in the invoking OS/A+ command line (or LOMEM,
if 1loadpoint is not specified). Example: if the
invoking command was "BUG65 600@", then DISPV will be
located at $6209.

NAME LOCATION FUNCTION/COMMENTS

DISPV +5209 A JMP instruction to BUG/65's
display a character routine. All
chars displayed on the screen go
through here. The char to be
displayed is passed in reg A.

PRINTV +$20C A JMP instruction to BUG/65's print
a character routine. All chars
sent to the printer go through
here. The char to be printed is
passed in reg A.

GETKYV +S$20F A JMP instruction to BUG/65's get a
keyboard character routine. All
keyboard reads go through here.
The key read is returned in reg A.

TSTKYV +$212 A JMP instruction to BUG/65's test
for a key waiting routine. All
tests for ey waiting go through
here. If no key is waiting, the
equal flag is returned set. (The
key is NOT returned by this routine
- GETKYV will be called to read the
key if there's one waiting.)

BEEPV +$215 A JMP instruction to BUG/65's bell
routine. All Dbeeps are generated
through here. To eliminate the
beeps, Jjust patch this out with an
RTS. @

CHRCLR +$218 Character background color byte
value.

CHRLUM +$219 Character luminance byte value.

BRDCLR +$21A Border color byte value.

EOLBYT +$21B This is the byte sent to the

printer at the end of a line.
Normally set to @DH or 9BH.
-—=36-——

LFFLAG +$21cC If nonzero, then a 1linefeed
character is sent to the printer
after every EOLBYT.

NULFLG +$21D If nonzero, then 48 nulls will be
sent to the printer after every
line. Used to flush the printer
buffer maintained by the ATARI OS
so that all 1lines will print
immediately.

PROTFG +$21E If nonzero, then BUG/65 will not
allow itself to be overwritten with
a BUG/65 command. If zero, then
BUG/65 will allow itself to be

modified.

MCBEND +$21F High byte of end address of
BUG/65's code. Normally set to
high byte address of

loadpoint+$2000 (e.g, $50 if the
invoking O0S/A+ command were BUG65
3000). You would change this if
you added any user command handlers
after BUG/65. The handlers would
then be included in BUG/65's memory
protection features.

To change anything in the Configuration Table, you must
first disable memory protection by writing a small
program to stuff a zero into PROTFG. For example,
assuming that the loadpoint is $2000 (command line was
BUG65 2000), then using the instant assembler, you
could enter "LDA #08, STA 221E, RTS" at location $5000,
and then run the program with the "U" command by
entering "U5@00@ <RETURN>". This will disable memory
protection. Then make your changes, reenable memory
protection if you want by storing $FF into PROTFG, then
dump the modified BUG/65 to diskette.

Be careful when changing any of the JMP instruction
vectors. Since BUG/65 is constantly calling these
locations, the instant you change them control will be
passed to the new routine. Your replacement routines
had better be in place and ready to run or it's ga-ga
time. Actually, you will probably have to change all
three bytes of a vector at once with a small user
program.

Also, be careful about calling the vectors DISPV,
PRINTV, GETKYV, TSTKYV, and BEEPV. Since they use
BUG/65's page zero data to operate, they can't be
called from a running user program without first
calling the MCBGP@ routine defined in the User Program
Interface section.

-——37==

SECTION 12: User Command Interface

It's possible to add commands to BUG/65. The hooks to
do so have been provided in a group of vectors located
at loadpoint+$0220 called the User Command Interface
Vectors. These vectors provide most of the interfaces
to BUG/65 that you'll need to add commands.

The commands you add may be activated by any non-
BUG/65 command char. For example, you could add the
numeric commands "1" through "gn, When BUG/65
recognizes a non- alphabetic command character, it will
call the vector USERCMD. 1In it's initial state, USRCMD
is just a 3-byte subroutine that returns the equal flag
reset. BUG/65 assumes that the equal flag being reset
means that a user command handler considers the command
illegal. In this case, BUG/65 will report a "CMD

ERROR". If USRCMD returns the equal flag set, then
BUG/65 assumes that a user command handler processed
the command. In this case, BUG/65 won't generate a

command error, and will proceed to process the rest of
the command line.

So, to add your own command handler, just patch a JMP
to your handler at USRCMD. BUG/65 will pass you the
command character that it considered illegal in reg A.
On return, you must indicate the status of the command
- equal set means you handled it, equal reset means you
didn't like it either.

-=38--

There are a number of other vectors in the User
Interface group which you may use to process the
command. Here's the complete 1list (and, as in the
previous section, the string "+$xxx" indicates a
displacement from the loadpoint):

NAME LOCATION FUNCTION/COMMENTS

USRCMD +$220 Subroutine called by BUG/65 on
every non alpha comand char.
Returns equal set if command

handled by user, else equal reset.

GETCHR +$223 User handler can tell this to get
the next char from the command line
in reg A.

PUTCHR +$226 User handler can call this to

return the last char taken from the
command 1line. The char itself
doesn't have to be passed. This is
used to put chars back that you've
taken but don't want - like an EOL.

GET1HX +$229 User handler can call this to
collect a hex address from the
command 1line. The address is

returned in a word at SFE,SFF. If
next command line chars are not a
valid address, zero is returned.

GET 2HX +$22C User handler can call this to
collect two hex addresses from the
command line. The first address is
returned 1in a word at SFC,SFD, the
second at SFE, SFF. Zero is
returned for any invalid address.

GET 3HX +$22F User handler can call this to
collect three hex addresses from
the command line. The first

address is returned in a word at
SFA,SFB, the second at S$FC,SFD, and
the third at SFE,SFF. Zero is
returned for any invalid address.

—=39--

ADRCHK

ERRPAR

DHXBYT

DHXWRD

CTBPTR

LSTPG@

+$232

+$235

+$238

+$23B

+$23E

+$240

User handler can call this to
perform the usual BUG/65 address
checking and translation. The
checking refers to not allowing
BUG/65 to be overwritten. The
translation refers to correcting
user page zero addresses. The user
handler passes the address to check
in reg X (LO) and req Y (HI). If
the address points into BUG/65, a
"PROT ERROR" will occur, and the
user handler will not be returned
to. If the address references a
user page zero value that is being
stored somewhere else by BUG/65,
then the address of where the
actual wuser page zero byte is
located will be returned in reg X
(LO) and reg Y (HI).

The user handler can JMP to here to
report a parameter error. There is
no return back to the user handler.
BUG/65 will abort command line
processing.

The user handler can call this to
display a hex byte. The byte is
passed in reg A.

The user handler can call this to
display a hex word. The hex word
is passed 1in reg X (LO) and reg Y
(HI).

This is a pointer to BUG/65's jump
table for the alphabetic comands.
Every letter has a word entry in
this table. The entry is the
address of the handler for that
command minus one. The first word
in the table is the address minus
one for the "A" command, the last
is the same for the "Z" command.
If you want, you can change this
table to point to your own comand
routines, thereby changing the
BUG/65 command set.

This is the address (byte value) of
the last page zero location used by
BUG/65. You can use this to locate
free page zero memory for your own
use. (See the example user command
listing.).

Y, .

%* SPECIAL NOTE **

All of the above routines assume that BUG/65 data is in
page zero. THEY WILL NOT WORK if called from a running
user program for that reason, unless the user program
manages page zero with the following two routines:

MCBGP@ +$241 Assumes BUG/65 data is in page
zero. Saves BUG/65 page zero and
replaces with user page zero. Use

this routine from a running user
program before calling any of the
above routines.

USERP® +$244 Assumes user data is in page zero.
Saves user page zero and restores
BUG/65 page zero. Use this routine
from a running user program after
calling any of the above routines
to restore the running program's
page zero data.

Here is an assembly listing of an example user comand.
This command will be command "1". It will calculate
and display an exclusive-or checksum byte on a range of
memory. The syntax of the command is:

1 <START> <END>

NOTE: It is highly recommended that user commands only
be patched into a non-relocatable version of BUG/65.

See Section 4.2 for instructions on making a
non-relocatable version with a user specified
loadpoint.

khkhkhkhkkkhkhkhkhkhkhkkhkkhkhkhkhkhkhkkhkkhkhkhkhkhkkhkhkhkhkkkhkhkhkhkkkkkkkkkk
EQUATES INTO BUG/65:

H
7

loadpoint = 2?2?22 to be determined by user!!
lp = loadpoint just an abbreviation
MCBEND = 1p+$21F BUG/65 END CODE MSB
DISPV = 1p+$209 DISPLAY CHAR

USRCMD = 1p+$220 USER COMMAND VECTOR
GET2HX = 1p+$22C GET 2 HEX PARAMS

HEX1 = SFC HEX PARAM 1 RESULT

HEX2 = SFE HEX PARAM 2 RESULT
ERRPAR = 1p+$235 REPORT PARAM ERROR
DHXBYT = 1p+$238 DISPLAY HEX BYTE

LSTPG@ = 1p+$240 LAST BUG/65 P@ BYTE USED
EOL = $9B END OF LINE CHAR

-—4]--

;**

*= USRCMD PATCH US INTO BUG/65
JMP USERC1

i

*= 1p+$2000 RIGHT AFTER BUG/65 CODE
USERC1 CMP #'1 COMMAND "1" ?

BEQ CMDOK YES

RTS ELSE RTN EQUAL RESET - ERR
CMDOK JSR GET 2HX GET START, END

LDA HEX1 MAKE SURE BOTH SPECIFIED

ORA HEX1+1

BEQ PARMER OR ELSE ERROR

LDA HEX2
ORA HEX2+1
BNE PARMOK

PARMER JMP ERRPAR REPORT PARAM ERROR

PARMOK LDX LSTPG@O LAST BUG/65 P@ BYTE

(WE'LL USE THE NEXT
FOR OUR ACCUMULATOR)

LDA #0 CLEAR ACCUMULATOR
STA 1,X
TAY INIT Y PTR INDEX
LOOP LDA HEX2+1 PAST END ADDRESS ?
CMP HEX1+1
BCC DONE YES
BNE NXTEOR NO
LDA HEX2
CMP HEX1
BCC DONE YES
NXTEOR LDA (HEX1),Y CALC EOR CHKSUM
EOR 1,X EOR WITH ACCUM
STA 1,X AND SAVE IN ACCUM
INC HEX1 BUMP PTR

BNE LOOP
INC HEX1+1
JMP LOOP

DONE LDA #EOL TO NEXT SCREEN LINE

JSR DISPV
LDX LSTPGO RESTORE ACCUM ADDRESS
LDA 1,X DISPLAY HEX RESULT
JSR DHXBYT
LDA £37] RTN OK (EQUAL SET)
RTS
*= MCBEND CHANGE BUG/65 CODE
.BYTE >[*+$FF] END BYTE TO INCLUDE
.END THAT'S ALL FOLKS

—42—=

SECTION 13: Error Messages

The following is a list of all of the error messages
and a short explanation of each one:

COMMAND ERROR
An attempt to execute an illegal command. A
letter or number that isn't a wvalid command
mnemonic was interpreted as a command character.
For example, trying to execute the command "N"
will cause a command error.

IMMEDIATE CMD ERROR
An attempt to execute an immediate type command
in the middle of a command line. An immediate
command (A, S, X, or Z) must be the first
command on a command line. See section 5.2.

PROTECTION ERROR
An attempt was made to modify BUG/65's code or
variable memory areas with a BUG/65 command.

PARAM ERROR
Caused by the usage of any invalid command
parameter.

REGISTER ERROR
An invalid register name was specified in either
the G or X command.

BREAKPOINT ERROR
An attempt was made to set a breakpoint in
either PROM memory space or non-existent memory.

PRINTER ERROR
Any printer error returned to BUG/65 by the
operating system. (BUG/65 uses the ATARI OS to
print characters. Any error returned by the OS
on a print character call will cause this
error.)

SYNTAX ERROR
Caused by an error in the syntax of a command.

I/O0O ERROR - NNN
Any disk I/0 error returned to BUG/65 by the
operating system. (BUG/65 uses the OS/A+ to do
disk I/0. Any error returned by the 0S/A+ call
will cause this error.) NNN is the decimal
error number returned by the 0S. Refer to your
0S/A+ manual for the meanings of these numbers.

——43-—-

* %k %k

* % %

* %k

* k%

* % %

ERROR - MNEMONIC
In the instant assembler, an invalid opcode
mnemonic was entered.

ERROR - OPERAND

In the instant assembler, an invalid instruction
operand was entered.

ERROR - RANGE

In the instant assembler, a branch out of range
was attempted.

ERROR - TOO MANY LABEL REFS
In the instant assembler, too many references
have been made to an undefined 1label. BUG/65
2.9 allows twenty references to undefined labels
before it's label buffer overflows.

ERROR - UNDEFINED - Ln
In the instant assembler, a label has been
referenced but not defined. "n" 1is the label
number that needs definition.

—b4--

APPENDIX

This section applies only to those users who own
version 4 of 0OS/A+.

The version of BUG/65 which you received 1is not
directly compatible with version 4 of OS/A+. Included
on your disk, however, is a program which converts the
BUG65.COM file into a form which will work under
version 4. This program, BUGV4FIX.COM, is a binary
program that modifies the relocatable version of BUG6S5.

The resultant version of BUG65.COM will work ONLY with
version 4. Further, under version 4, the R (read
binary file) command will not work properly under all
conditions. We suggest instead using the O0OS/A+ LOAD
command for loading binary files into memory, although
the ERROR 136 produced by the R command may simply be
ignored, 1if desired. Only location $09 is improperly
affected by this error.

HOW TO USE THE PROGRAM:

1) Copy the files BUG65 .COM and
BUGV4FIX.COM to a version 4 disk using
the COPY24 command (see the O0OS/A+
manual for details on this command).

2) At the version 4 "D1:" prompt, type the
command :
BUGV4FIX [RETURN]

3) The file BUG65.COM on that disk is now
compatible with version 4 of OS/A+.

WARNING: Do NOT perform the BUGV4FIX command on your
version 2 master disk!

——45-—

This Reference Manual and the program —
MAC/65™ are Copyright ©1982
Optimized Systems Software, Inc.

